SimTrace: Capturing Over Time Program Phase Behavior

Steven Flolid — UT Austin
Emily Shriver — Intel Labs
Zachary Susskind — UT Austin
Benjamin Thorell — UT Austin
Lizy John — UT Austin

Proxy Motivation

* Pre-silicon design emulators are prohibitively slow
Comparing Run Time on Different Platforms

Silicon
Emulation

* Current techniques create proxies that capture key performance and power
metrics

* Itis beneficial to use the same workload throughout all stages of system
design

Prior Art: Limitations & Research

Limitations

= CPU Centric
= Limited automation, requires hand-tuning

= Not modeling over-time behavior of metric (e.g. IPC, dynamic capacitance, cache miss)

Open Research Questions

= Capture over time behavior

" |ncrease automation

Problem with Average Proxies

Existing techniques do not capture over time variation within a program

When a system runs multiple proxies, shared resources may not be utilized correctly

Power management algorithms use over time behavior

Proxy of a workload with two phases

- Original Perf. Metric
3.0 1 .-+« Proxy Perf. Metric

2.5

8

2.0
1.5 #

Latency (cycles)
&

=
o

1.0 1

Pertormance Metric

0.5

o

0.0 — T T . : . oG
0 2000 4000 6000 8000 10000 0 005 01 015 02 025 03 035 04 045 05

Time Injection rate per core (packet/cycle)

Overview of Simpoint

Simpoint [1] breaks a workload into equal sized regions (100 Million Instructions)

* Regions are profiled based on micro-architecture independent Basic Block Vectors (BBV)

Similar regions are clustered together based on the BBV using K-means

A single region is simulated to represent each cluster

Cluster Representative

Workload Performance Overtime Simpoint Clustering Results

= = N N
<) 3] o)]

Performance Metric

o
wn

} 141 — Cluster ID Weight Perf. Metric
h 13 —— 0 0.87% 1.60
<21 - - E— fl 23.62% 1.21]
% 101 — - 2 1.36% 1.91 Simpoint
€91 - o 3 12.00% 1.47)
551) 4 0.09% 1.04 Weighted Estimate
% o] = - 5 0.44% 1.47 Sum
! % 2 6 0.69% 1.61 1.61
i 33 = @ ——m———— 7 0.36% 1.46
i 21 - LT 8| 0.84% 1.54)
i 0 : . —_— . 9 0.17% 1.33
0 10000 20000 30000 40000 10000 20000 30000 40000 10 3.60% 1.19
Dynamic Instruction Count (100M) Dynamic Instruction Count (100M) 11 0.82%| 1.74
12) 5.28% 1.77
13 121% 1.41
14 48.65% 1.85

[1] Automatically Characterizing Large Scale Program Behavior: https://dl.acm.org/citation.cfm?id=605403

https://dl.acm.org/citation.cfm?id=605403

The SimTrace Technique

e Simpoint possesses an over time cluster
trace but does not use it

* A single representative proxy could be
created for each cluster

* Replaying the proxies in the cluster trace
order results with a SimTrace

* This technique could serve as a baseline
for future over time proxies

Cluster Proxy

ID Metric
0 1.60
1 1.21
2 1.91
3 1.47
4 1.04
5 1.47,
6 1.61
7 1.46
8 1.54
9 1.33

10 1.16
11 1.74
12 1.77
13 1.41
14 1.85

Simpoint Clustering Results

=

Cluster ID for Region
= e
OFNWAUONOWOOHFHNWAR
i
i

0 10000 20000 30000 40000
Dynamic Instruction Count (100M)

SimTrace Approximation

N
5

-+ Original Perf. Metric 4
.-+ SimTrace Perf. Metric X

g
o

=
w

g
=}

Performance Metric

o
w

0 10000 20000 30000 40000
Dynamic Instruction Count (100M)

Measuring Over Time Similarity

A Program’s average error is often used for accuracy measures

Proxy of a workload with two phases

- Original Perf. Metric

|xex erimental — Xre erencel
Average ET'TOT' — p f g 3.0 --++ Proxy Perf. Metric
xreference 24

e Qver time comparisons require more powerful techniques

0 2000 4000 6000 8000 10000

Time

e Various options in literature to measure time series similarity[1]

* Point by point Mean Abs Error e Dynamic Time Warping We used metrics

_ _ recommended by [1]
* Euclidean Distance * Kolmogorov-Smirnov Test
e Correlation * Many Others

[1] An Empirical Evaluation of Similarity Measures for Time Series
Classification: https://arxiv.org/abs/1401.3973 2

https://arxiv.org/abs/1401.3973

Simtrace Results

357 357
3.0 3.0 e
2.5
2.04
154
1.0
0.5
0.0 T T T T T T T 0.0 T T ™ T T T T T
0 10000 20000 30000 40000 50000 60000 0 2500 5000 7500 10000 12500 15000 17500
Dynamic Instruction Count (100M) Dynamic Instruction Count (100M)
35 Exchange2 Simtrace 35 Mcf Simtrace
3.0 3.0
251 251 . . B . . C e e mm———
sod ORI T et P 2.0
154 154 . o .
1.0 1.0) - }) T
0.5 0.5 -
0.0 T 0.0

T T T T T T
0 10000 20000 30000 40000 50000 60000

T T T T T T T T
[2500 5000 7500 10000 12500 15000 17500
Dynamic Instruction Count (100M)

IPC

3.5

3.0 4

2.54

2.01

1519

1.04

0.5

D

Original Perf. Metric
SimTrace Perf. Metric

0.0

35

T
5000

10600 15600 20600
Dynamic Instruction Count (100M)

Leela Simtrace

3.0 4

2.54

2.01

151

1.04

0.5

- - -

0.0

T
5000

10600 15600 20600
Dynamic Instruction Count (100M)

Simtrace Results (Cont..)

IPC

IPC

3.5 7

3.0 4

2.54

2.04

1.5

1.0

0.5 1

0.0

35

3.0 A

2.54

2.0

1.5 1

104

0.5 4

0.0

Xz —

10000

20000 30000 40000 50000
Dynamic Instruction Count (100M)

Xz Simtrace

MAPE=6.2%

10000

20000 30000 40000 50000
Dynamic Instruction Count (100M)

Program’s with similar average
IPC can have vastly different
over time behavior

Simtrace naturally removes
complexity from a program’s
performance

Simtrace follows regular
trends more accurately than
irregular trends

IPC

IPC

357

3.0 4

2.54

2.04

1.5

1.0

0.5

0.0

35

3.0 4

2.54

2.04

1.5

1.0

0.5

0.0

Original Perf. Metric
SimTrace Perf. Metric

Gce —

]
0 10000 20000 30000 40000
Dynamic Instruction Count (100M)
Gce Simtrace
MAPE=5.4%
s .
0 10000 20000 30000 40000

Dynamic Instruction Count (100M)

35 Exchange2 Simtrace Comparison

Similarity Results - e
Trace :
Length g sy
simpoints;] MAPE| Avg Err|Pear Cor|Euc Dist #simpointsjiisl
leela 49,459 1.2% -0.0015 0.87 3.65 0.01]
exchange2 66,589 1.6% -0.0006[BMO 2635 | 0.04 5 ww we e ww we oo
gcc 17,817 5.4% -0.0005 0.88 28.99 0.36 gl e
Xz 45,718 6.2% -0.0094 0.96 34.29 0.13 e
mcf 22,460 10.4% 0.0044 0.72 20.92 0.10 “

* SimTrace performs well for Point by Point error metrics
(MAPE, Avg Err)

APE

e Each technique captures some characteristics of over
time performance

Smaller is
better

Euc-Dist

10

Conclusions and Next Steps

Conclusions:
* Promising initial results, but more investigation is needed

* DTW and Euclidean are useful for comparison but are difficult to interpret without
normalization

Next Steps:
* Create Simtraces for other benchmarks of SPEC CPU 2017

* Explore Simtrace’s ability to capture over time behavior of micro-architecture
independent metrics (Imix, branches, footprint, etc)

* Normalizing Euclidian distance and Dynamic Time Warping

11

