SimTrace: Capturing Over Time Program Phase Behavior

Steven Flolid – UT Austin Emily Shriver – Intel Labs Zachary Susskind – UT Austin Benjamin Thorell – UT Austin Lizy John – UT Austin

Proxy Motivation

• Pre-silicon design emulators are prohibitively slow

Comparing Run Time on Different Platforms									
Silicon	1 second	1 minute							
Emulation	4.7 hours	11.8 days							

- Current techniques create proxies that capture key performance and power metrics
- It is beneficial to use the same workload throughout all stages of system design

Prior Art: Limitations & Research

Limitations

- CPU Centric
- Limited automation, requires hand-tuning
- Not modeling over-time behavior of metric (e.g. IPC, dynamic capacitance, cache miss)

Open Research Questions

- Capture over time behavior
- Increase automation

Problem with Average Proxies

- Existing techniques do not capture over time variation within a program
- When a system runs multiple proxies, shared resources may not be utilized correctly
- Power management algorithms use over time behavior

Overview of Simpoint

- Simpoint [1] breaks a workload into equal sized regions (100 Million Instructions)
- Regions are profiled based on micro-architecture independent Basic Block Vectors (BBV)

40000

- Similar regions are clustered together based on the BBV using K-means
- A single region is simulated to represent each cluster .

Cluster ID	Cluster Weight	Representative Perf. Metric
0	0.87%	1.60
1	23.62%	1.21
2	1.36%	1.91
3	12.00%	1.47
4	0.09%	1.04
5	0.44%	1.47
6	0.69%	1.61
7	0.36%	1.46
8	0.84%	1.54
9	0.17%	1.33
10	3.60%	1.16
11	0.82%	1.74
12	5.28%	1.77
13	1.21%	1.41
14	48.65%	1.85

[1] Automatically Characterizing Large Scale Program Behavior: https://dl.acm.org/citation.cfm?id=605403

The SimTrace Technique

- Simpoint possesses an over time cluster trace but does not use it
- A single representative proxy could be created for each cluster
- Replaying the proxies in the cluster trace order results with a SimTrace
- This technique could serve as a baseline for future over time proxies

Measuring Over Time Similarity

• A Program's average error is often used for accuracy measures

Average Error = $\frac{|x_{experimental} - x_{reference}|}{x_{reference}}$

• Over time comparisons require more powerful techniques

- Various options in literature to measure time series similarity[1]
 - Point by point Mean Abs Error
 - Euclidean Distance
 - Correlation

- Dynamic Time Warping
- Kolmogorov-Smirnov Test
- Many Others

[1] An Empirical Evaluation of Similarity Measures for Time Series Classification: <u>https://arxiv.org/abs/1401.3973</u>

We used metrics recommended by [1]

····· Original Perf. Metric ···· SimTrace Perf. Metric

Simtrace Results

Simtrace Results (Cont..)

- Program's with similar average IPC can have vastly different over time behavior
- Simtrace naturally removes complexity from a program's performance
- Simtrace follows regular trends more accurately than irregular trends

1.0

0.5

0.0

0

10000

20000

Dynamic Instruction Count (100M)

30000

40000

							25.	Exchange2 Simtrace Comparison	
Simil	arity Re	esults	5				3.0	-	Original
	Trace Length #					DTW /	2.5 · 2.0 · <u>2</u> 1.5 ·		
IPC	simpoints	MAPE	Avg Err	Pear Cor	Euc Dist	#simpoints	1.0		
leela	49,459	1.2%	-0.0015	0.87	3.65	0.01	0.5	-	
exchange2	66,589	1.6%	-0.0006	-0.07	26.35	0.04	0.0	0 10000 20000 30000 40000 50000	60000
gcc	17,817	5.4%	-0.0005	0.88	28.99	0.36		AvgErr	e
xz	45,718	6.2%	-0.0094	0.96	34.29	0.13	_	Resultar	le
mcf	22,460	10.4%	0.0044	0.72	20.92	0.10		rearcor	×

- SimTrace performs well for Point by Point error metrics • (MAPE, Avg Err)
- Each technique captures some characteristics of over time performance

Conclusions and Next Steps

Conclusions:

- Promising initial results, but more investigation is needed
- DTW and Euclidean are useful for comparison but are difficult to interpret without normalization

Next Steps:

- Create Simtraces for other benchmarks of SPEC CPU 2017
- Explore Simtrace's ability to capture over time behavior of micro-architecture independent metrics (Imix, branches, footprint, etc)
- Normalizing Euclidian distance and Dynamic Time Warping