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Proxy Motivation

* Pre-silicon design emulators are prohibitively slow
Comparing Run Time on Different Platforms

Silicon
Emulation

* Current techniques create proxies that capture key performance and power
metrics

* Itis beneficial to use the same workload throughout all stages of system
design



Prior Art: Limitations & Research

Limitations

= CPU Centric
= Limited automation, requires hand-tuning

= Not modeling over-time behavior of metric (e.g. IPC, dynamic capacitance, cache miss)

Open Research Questions

= Capture over time behavior

" |ncrease automation



Problem with Average Proxies

Existing techniques do not capture over time variation within a program

When a system runs multiple proxies, shared resources may not be utilized correctly

Power management algorithms use over time behavior

Proxy of a workload with two phases
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Overview of Simpoint

Simpoint [1] breaks a workload into equal sized regions (100 Million Instructions)

* Regions are profiled based on micro-architecture independent Basic Block Vectors (BBV)

Similar regions are clustered together based on the BBV using K-means

A single region is simulated to represent each cluster

Cluster  Representative
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[1] Automatically Characterizing Large Scale Program Behavior: https://dl.acm.org/citation.cfm?id=605403
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The SimTrace Technique

e Simpoint possesses an over time cluster
trace but does not use it

* A single representative proxy could be
created for each cluster

* Replaying the proxies in the cluster trace
order results with a SimTrace

* This technique could serve as a baseline
for future over time proxies

Cluster Proxy
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Simpoint Clustering Results
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Measuring Over Time Similarity

A Program’s average error is often used for accuracy measures

Proxy of a workload with two phases
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e Qver time comparisons require more powerful techniques
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e Various options in literature to measure time series similarity[1]

* Point by point Mean Abs Error e Dynamic Time Warping We used metrics

_ _ recommended by [1]
* Euclidean Distance * Kolmogorov-Smirnov Test
e Correlation * Many Others

[1] An Empirical Evaluation of Similarity Measures for Time Series
Classification: https://arxiv.org/abs/1401.3973 2
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Simtrace Results
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Simtrace Results (Cont..)
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Program’s with similar average
IPC can have vastly different
over time behavior

Simtrace naturally removes
complexity from a program’s
performance

Simtrace follows regular
trends more accurately than
irregular trends
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35 Exchange2 Simtrace Comparison

Similarity Results - e
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* SimTrace performs well for Point by Point error metrics
(MAPE, Avg Err)

APE

e Each technique captures some characteristics of over
time performance

Smaller is
better

Euc-Dist
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Conclusions and Next Steps

Conclusions:
* Promising initial results, but more investigation is needed

* DTW and Euclidean are useful for comparison but are difficult to interpret without
normalization

Next Steps:
* Create Simtraces for other benchmarks of SPEC CPU 2017

* Explore Simtrace’s ability to capture over time behavior of micro-architecture
independent metrics (Imix, branches, footprint, etc)

* Normalizing Euclidian distance and Dynamic Time Warping
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