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Abstract—Managing access to information inside computer
systems is vital to permit authorized sharing of hardware, without
inadvertently permitting unauthorized sharing of data. Current
approaches to managed information sharing, such as Multiple
Independent Levels of Security (MILS), leverage on processor
virtualization to provide information security. However, system-
on-chip (SoC) architectures, which have multiple processing cores
and other, non-processor computing elements, can not properly
enforce security policies with processor virtualization alone.

In this paper, we propose extending this virtualization property
to other processing elements in the SoC architecture, so each one
appears as though it is dedicated, but is actually shared over
time. We develop the design of the Coarse-Grained Security
Tagged Architecture (CG-STA), which uses this approach to
reliably enforce information disclosure policies. A 16-core CG-
STA prototype system, which includes shared, non-processor
hardware elements, is implemented on a Xilinx ML501 FPGA
Evaluation Platform. The prototype demonstrates the feasibility
of the design, the security features it allows, and the trade-offs
with the approach.

I. INTRODUCTION

Due to multitasking requirements, modern computers must
share hardware resources among various computational pro-
cesses, making them vulnerable to unauthorized information
disclosure. Multitasking allows tasks and users with different
security considerations or principles to perform computations
on a single system through the sharing of the system’s com-
putational and storage resources. This sharing is essential to
keep costs down, as each user does not need to buy a fully
isolated computer. However, it is also potentially dangerous as
information may be transferred, on purpose or inadvertently,
in violation of the security policy. One crucial challenge
is, therefore, to properly manage information access inside
computer systems, so that authorized sharing of hardware is
permitted, but unauthorized data disclosure is impossible.

In this paper, we consider embedded systems which incor-
porate a system-on-chip (SoC) design, where several cooper-
ating processing elements, not restricted to a single CPU, are
placed on the same physical chip. The need for SoC designs
is driven by hardware/software co-design, reconfigurable com-
puting, and the rapid adaptation of multicore technology.

Since SoC systems can also be shared among various se-
curity principals, approaches to properly manage information
access are required. For example, a government-issued cell

phone can reasonably be expected to process information flows
of varying sensitivity on multiple processing elements within
a single device. However, traditional information-security so-
lutions often focus solely on information flows within a single
logical CPU, creating a need for novel solutions to controlled
information disclosure in embedded SoC architectures.

To address this need, we propose the Coarse-Grained
Security Tagged Architecture (CG-STA). In this architecture,
shown in Figure 1, each hardware component, such as a
processor core, DSP, or memory unit, is associated with a tag
manager. Dataflows leaving components are tagged with the
current security mode of the underlying component. Incoming
flows are then filtered to only permit components to receive
data when allowed by the system-wide security policy. The
security policy can, in this way, dictate and restrict the
rights of each component to observe and communicate with
other components. With an isolation-based security policy,
for example, not only the processor appears as a dedicated
resource that is actually shared over time (as with traditional
virtualization), but every active component in the system
also has this same property. By working only on input and
output dataflows, our approach does not require a fine-grained
understanding and verification of the dataflows through the
internals of every hardware component, but can still provide
useful control of information sharing.

The main contributions of this paper are:

• An SoC template architecture, the Coarse-Grained Secu-
rity Tagged Architecture, which permits authorized shar-
ing of hardware, but makes unauthorized data disclosure
impossible;

• Analysis of the CG-STA in terms of added design com-
plexity, flexibility, and trusted computing base require-
ments;

• The implementation of a 16-core hardware prototype
CG-STA system, along with discussion of the challenges
and limitations of our design.

This paper is organized in two main parts. After reviewing
related work in Section II, Section III outlines the design and
justification of the proposed CG-STA, starting from a clean-
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Fig. 1. A dataflow from the DSP to Processor Core #2 is transparently tagged
and filtered by the Tag Managers to comply with the system-wide information
disclosure policy.

slate design of a secure, multi-processing-element system. This
is followed by the second part of the paper, Section IV, which
describes the FPGA-based implementation of a 16-core CG-
STA prototype. Challenges unique to CG-STA computing are
presented and the future course for the research is then laid
out. The paper finishes with conclusions in Section V.

II. RELATED WORK

Classical approaches for information security focus primar-
ily on securing data flows on processors, and do not extend
easily to SoC architectures with multiple shared processing
elements. For example, virtual machines [1] can be used to
provide Multiple Independent Levels of Security (MILS) [2],
which isolate computations of different security levels by using
a minimalistic separation kernel.

In SoC systems, however, peripherals and other processing
elements play a much larger role in the computation, and
therefore must be correctly and efficiently shared. There are
two common approaches to virtualize non-processor elements
in a VMs: software device emulation, and hardware virtualiza-
tion support. In software device emulation, device functions
and access is controlled either within the hypervisor [3],
or in an isolated VM (the approach taken by MILS). In
addition to inflating the trusted computing base, this approach
incurs significant overhead since it must emulate, in software,
interfaces to processing elements. The second approach, hard-
ware virtualization support, involves modifying the hardware
of the components themselves to support virtualization [4].
Such modifications are likely to be extensive, device-specific,
and must be correct for information security to be enforced.
The proposed CG-STA, on the other hand, demands only a
small hardware component called the Sterilize Mechanism
to be information-secure, which incurs less overhead during
operation than software device emulation, while being simpler
and therefore easier to verify than hardware component virtual-
ization. The complexity of the Sterilize Mechanism is further
discussed in the context of our hardware implementation in
Section IV-B.

A related approach for embedded systems is TrustZone [5]
from ARM. In this approach, a single bit is used to partition

the system into secure and nonsecure components. The CG-
STA’s tagging mechanism offers more flexibility than this
approach and can therefore permit more complex security
policies, as discussed in Section III-B.

The CG-STA is related to tagged architectures. In a tagged
architecture, data is coupled with metadata called tags which
describe the logical type or security classification of the
associated data. In traditional tagged architectures [6], [7],
[8], which we consider fine-grained tagged architectures, cou-
ple data flowing through a processor with meta-data about
its type or security level, which is then tracked and used
to either enforce information-flow policies or execute type-
specific instructions within the processor. For example, adding
two integers with a high-security classification produces a
result with a high-security clearance, which, later, can not
be loaded by the processor while a low-security clearance
process is running. However, when extending this approach
to systems with multiple processing elements, two drawbacks
become apparent. First, correct design requires an in-depth
understanding of the inner workings of the processing element
(traditionally the processor), which would need to be replicated
for each non-processor computation element. Second, there
are many special-case tag-propagation rules which must be
introduced due to unintuitive component usage. In a processor
for instance, XORing a register with itself, a common way to
clear a register, should also clear its associated tag, instead of
propagating it according to the standard XOR tag-propagation
rule [9]. Obtaining an exhaustive set of these special-case
rules, while still maintaining information security, is nontrivial.
Our proposed CG-STA, on the other hand, only maintains
tagging information on an input/output flow level (which
we consider a course-grained tagging approach). This allows
information disclosure security to be easier to implement,
specify, and verify. The downside of this, though, is that each
component can only exist in a single processing mode at
a time, which was not a restriction for fine-grained tagged
architectures.

There is also a large body of work addressing information
security strictly in software. Much recent research focuses
on web browser policies that attempt to isolate untrusted
computation from external sources, from trusted computation
originating on the host computer [10]. For example, browser
extension source code can automatically be examined to detect
information flows which may violate this isolation policy[11].

While this line of work is certainly more easily applicable
since it is software-based, the CG-STA addresses security
isolation at a lower, hardware level. This is desirable because
we strive to fulfill the NEAT requirements [2] of a high-
security system. A NEAT security mechanism should be Non-
bypassable, Evaluatable, Always Invoked and Tamperproof.
By using hardware for security, we trade off the flexibility of
software approaches for higher security assurance. We must
make sure, however, that the proposed hardware mechanism
is powerful enough to enforce desired security policies, but not
overbearing, since it can not be changed. The possible policies
permitted by the CG-STA will be discussed further in Section
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III-B.
Lastly, another class of security attacks which is not the

focus of this work deals with covert channels [12] from the
proposed architectural design. Guidelines for these channels
typically require offline analysis and and online measurement
in order to minimize their effects [13]. Mitigation techniques
exist to perform these tasks [14], [15].

III. ARCHITECTURAL JUSTIFICATION

We now motivate the design of the Coarse-Grained Security
Tagged Architecture, and arrive at the design which we have
implemented in the second part of this paper. First, in Section
III-A, we take a clean-slate design approach to building
an information-secure system, arriving at the final design
of the CG-STA. Then, Section III-B discusses the types of
information-security policies permitable by the mechanisms
present in the CG-STA.

A. CG-STA Design

We now take a clean-slate design approach to building
an information-secure system. We describe several systems
iteratively, at each step relaxing some restrictions to gain
flexibility without compromising security. We will describe,
in order, a fully-isolated system, a semi-isolated system (with
shared interconnect), a restartable semi-isolated system, and
finally the CG-STA.

We start by considering a Fully-Isolated System, shown in
Figure 2. In this type of system, components processing data
with different security classifications are completely disjoint
and share no data. Clearly, such a system does not permit
information leakage between different security classifications.
Notice that the security of this type of system does not come
from the physical separation of the system parts, but rather by
the lack of communication between components with different
security classifications.

Bus

Encryption Engine
Digital Signal 

Processor (DSP)

Processor 
Core #1

Processor 
Core #2

Bus

Fig. 2. In a Fully-Isolated System, computations in different security domains
are performed on physically separated hardware.

An isolated communication policy is essential to the next
step in the construction, which is to have a shared top-level
interconnection system between various system components.
This type of system, which we call a Semi-Isolated System,
is shown in Figure 3. The essential property of the common
interconnect is that it does not permit any communication
between the different security classifications, and therefore
the system is logically equivalent to the completely isolated
system. Since we are using the shared interconnect to provide

security correctness, it is part of the trusted computed base.
Additionally, since it is a shared resource, care must be taken
to prevent denial-of-service attacks and covert channels.

Bus

Interconnect 
Interface

Processor 
Core #2

Digital Signal 
Processor (DSP)

Processor 
Core #1

Encryption Engine

Mode 
B

Interconnect 
Interface

Mode 
B

Interconnect 
Interface

Mode 
A

Interconnect 
Interface

Mode 
ABootstrap Element

Mode Configuration

Fig. 3. In a Semi-Isolated System, computations in different security domains
share a bus and their communication is tagged and filtered by Interconnect
Interfaces. In the figure, components can only receive data sent by other
components in the same security mode. The security modes are initially
configured using the Bootstrap Element.

We have not yet disclosed the architecture of the shared
interconnect, we have only described how it works at a high
level. In a typical present-day architecture, one possibility for
this interconnect would be something similar to the front-side
bus. In some multicore and manycore systems, the interconnect
could be a network-on-chip. Although possible, it is probably
undesirable to use a lower-level interconnect, such as an intra-
core bus. The primary reason for this is that removing the
interconnect should result in physically isolated components
which each run in a single security mode. If a low-level
interconnect is used, a connection may still remain using the
high-level interconnect (after removing the interconnect the
components are not physically isolated). Additionally, some
components are tightly coupled and it does not make sense to
have them operate in different security modes. An example of
this case could be a processor core and its local instruction
store.

One remaining issue with the semi-isolated system is initial
system configuration. The security modes must be assigned to
the Interconnect Interfaces correctly prior to bus usage. We
propose this bootstrapping is done by unique and unforgeable
bus messages from a Bootstrap Element within the trusted
computed base. Care must be taken by the Bootstrap Ele-
ment to properly identify the components connecting to the
Interconnect Interfaces. Additionally, this Bootstrap Element
may send some minimal initialization data to the components,
depending on the security context of the corresponding Inter-
connect Interface. However, this is a functional consideration
rather than a correctness requirement.

The system described so far is safe from overt information
leakage across security contexts, but it does not yet permit
sharing of anything but the interconnect. In the next step
of the construction, we permit each component to be used
by multiple security levels over time (although at any one
time instant each component only processes data in a single
security level). Starting with our semi-isolated system, we can
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run the entire system with one security configuration. In order
to use a different security configuration, we can turn off the
system, presumably clearing all stored internal state, and then
restart the system using the Bootstrap Element to configure
the system with a different mode configuration. As long as
no state is saved between restarts, this Restartable Semi-
Isolated system, shown in Figure 4, properly enforces the
system-wide security policy. The restart must be initiated by a
trusted component, since malicious control of this ability could
lead to a denial of service. The Restarter component, which
performs this task, is therefore part of the trusted computing
base.

Bus

Interconnect 
Interface

Processor 
Core #2

Digital Signal 
Processor (DSP)

Processor 
Core #1

Encryption Engine

Mode 
B

Interconnect 
Interface

Mode 
B

Interconnect 
Interface

Mode 
A

Interconnect 
Interface

Mode 
ABootstrap Element

Restarter

Pre-restart Signal

Fig. 4. A Restartable Semi-Isolated System contains a Restarter which,
prior to system restart and reconfiguration, sends a pre-restart signal to all
components. The components will then save their state to persistant storage
(not shown), the system will be completely restarted (presumably clearly
all internal component state), and the Bootstrap Element will reinitialize the
Interconnect Interfaces with new security modes.

One large drawback of the approach described so far is that
meaningful work may be lost when the system is restarted.
To address this, we employ co-design of the interconnect
hardware and the controlled components. Prior to initiating
a restart, the Restarter sends a pre-restart signal to all compo-
nents, indicating that the components should save their state to
persistent storage. Each component can then send a feedback
signal back to the Restarter when they have completed saving
their state, or it will wait for a timeout to occur when the reset
will be initiated anyway (in order to prevent components from
causing a denial of service by delaying the restart indefinitely).

The reason this approach works and prevents information
leakage is that restarting the system presumably clears the
state of every component, such that information processed
previously by each component is not available to the com-
putation currently being performed by the component (unless
it was accessed from permanent storage in accordance with the
security policy). Notice, however, that an entire system restart
is not necessary in order to have this property. Components
can be restarted individually and reused, as long as their state
is cleared between uses. This is the approach taken by the final
Coarse-Grained Security Tagged Architecture (CG-STA).

In the Coarse-Grained Security Tagged Architecture
(Figure 5), each component not only saves its state when
instructed by the Restarter, but is also modified to include
a hardware (non-bypassable) Sterilize Mechanism to reset the

state of every value stored internally within the component.
The Sterilize Mechanism is stronger than a traditional reset
capability, which many components already support. Specifi-
cally, the Sterilize Mechanism must clear the entire accessible
state, so that no prior information is available after it occurs,
whereas a traditional reset need only bring the component into
one valid initial state. In the Pacoblaze microcontroller, for
example, a reset will set the program counter to 0, but will not
clear the registers or internal scratchpad memory. The Sterilize
Mechanism, however, has to do the extra work to clear all
internally accessible information. The overhead and tradeoffs
of the Sterilize Mechanism will be discussed further in the
implementation section (Section IV-B).

Bus

Interconnect 
Interface

Processor 
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Processor 
Core #1

Encryption Engine

Mode 
B

Interconnect 
Interface

Mode 
B

Interconnect 
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Mode 
A

Interconnect 
Interface

Mode 
ABootstrap Element

Restarter

Sterilize Mechanism Sterilize Mechanism

Sterilize MechanismSterilize Mechanism

Sterilize Command

Fig. 5. The CG-STA requires that each component have a Sterilize
Mechanism, which can be used by the Restarter to clear the internel state
of each component during runtime security-mode reconfiguration.

Using the previously-described modules, individual com-
ponents can be effectively restarted in a four-step process.
First the Restarter instructs them to save their state. Then,
after a save-complete message arrives or a timeout expires,
the Restarter initiates the non-bypassable Sterilize Mechanism.
Third, the Mode Setter assigns the reset component’s Intercon-
nect Interface a new security classification. Finally, the Mode
Setter sends the component some initialization data, which the
component uses to load its state from persistant storage.

The modules necessary for CG-STA computation are de-
scribed in the Table I.

While there are several modules in the trusted computing
base, the majority of the system complexity is contained in the
untrusted components. Fine-grained component modification
to support data flow tagging, a complex and potentially error-
prone process, is not necessary with the CG-STA approach.

B. Security Policy

The specific security policy enforced by the CG-STA de-
pends on the intent of the system designer. However, certain
precautions must be taken when initiating mode changes of
individual components, which we will describe in this section.
First, however, we outline two common security policies
supported by the CG-STA.

The easiest policy to enforce is the one described in the
CG-STA design section, complete isolation. If, for instance,
a finite number of virtual systems are to appear to run on
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Module Description Trusted Computing Base?
Interconnect Provides communication among components and other

modules.
Yes

Interconnect Interface Interfaces each component with the Interconnect; auto-
matically tags bus transactions and filters messages in
accordance with the security policy.

Yes

Bootstrap Element Sets the security policy of each of the Interconnect
Interfaces; sends initialization data to the components.

Yes

Restarter Sends a message to the components informing them to
save their state; activates the Sterilize Mechanism.

Yes

Sterilize Mechanism Clears all stored values in the corresponding component. Yes
Components Operates on data flows. Examples include processor

cores, DSPs, dedicated memories, and custom IP cores.
No

TABLE I
ALTHOUGH SEVERAL MODULES MUST BE PRESENT FOR CORRECT CG-STA COMPUTATION, THE MAJORITY OF THE SYSTEM COMPLEXITY IS CONTAINED

IN THE UNTRUSTED COMPONENTS.

the same physical system, the CG-STA can be configured to
provide verified isolation. Each virtual system is assigned a
unique identifier. Each Interconnect Interface tags data flows
from each component with the unique identifier of the corre-
sponding virtual system. For filtering, only messages on the
interconnect with a matching unique identifier are propagated
by the Interconnect Interface into the underlying component
for processing. In this way, an exclusive view of the physical
system is presented to each virtual system.

Another security policy the CG-STA can enforce is the
Bell and La Padula security policy [16]. In this model,
there are four disclosure levels of information, unclassified,
confidential, secret, and top secret, and then within each level
there are several mutually exclusive compartments, all of
which a component must have permission to access before
receiving the data. Two security rules should be enforced by
the Interconnect Interfaces. First, components should only be
able to read data with a lower or equal security classification.
Second, components should only be able to write data with
an equal or higher security classification. To enforce such a
model, the Interconnect Interface would tag all data leaving
each component with the security level of the component,
and, when receiving, only data with a lower or equal security
classification would be propagated into the component. One
issue with this approach is that discretionary upclassification
of data is not possible. The reason for this is that the
tags on the interconnect are transparent to the underlying
components, so the security policy and its enforcement also
becomes transparent. Discretionary upclassification, however,
requires a security reclassification action to be initiated by the
component. If discretionary upclassification of data is desired,
the Interconnect Interfaces could be designed to perform some
limited introspection of the outgoing data which would contain
of an indication of the intentions of the underlying component
(the intention to send the data at a higher classification level).
If a higher security classification is indicated in the data,
this would then affect the outgoing tag sent on the bus by
the Interconnect Interface. Notice, however, that this requires
adding complexity to the logic of the Interconnect Interface,
which is part of the trusted computing base of the system,

and would therefore have to be done with care to maintain the
correctness of the system.

With all security policies, there are practical considerations
due to the restart and sterilize procedures in the CG-STA.
We describe two of these: potential for data loss during mode
switches, and the consistent appearance of the system to each
virtual system.

In most systems, data delivery on the front-side bus is
assumed to be reliable. However, if the Sterilize Mechanism
of the receiving component of a bus transaction is activated
before the sending component, messages could effectively be
dropped. For example, if a peripheral is sterilized before a
component processing the peripheral’s interrupt, the interrupt
acknowledge bus message may not be observed arriving at the
peripheral. For this reason, sending components should be ster-
ilized before receiving components. Unfortunately, there is not
always such a clear distinction among components, as system-
wide communication flows rarely form a directed acyclic graph
(DAG). However, recall that before activating the Sterilize
Mechanism, components receive a save-state, pre-restart signal
from the Restarter. The timeout after the pre-restart message
before forced activation of the Sterilize Mechanism should
be long enough such that the components can first enter a
consistent state without any lingering communication, and then
save their state to persistent storage.

An additional consideration is the view of the system pre-
sented to each virtual system. When components are restarted
and their state is restored, it may be expected that the physical
system has not changed and therefore the same components
which were previously available are still active. Although com-
ponents can be designed with plug-and-play support, which
would allow components to appear as suddenly removed from
the system, policies doing this would need to be co-designed
with the underlying processing elements.

IV. HARDWARE CG-STA PROTOTYPE

Based on the CG-STA design developed in Section III, we
have implemented a multicore CG-STA prototype in order to
evaluate critical aspects of the design. First, we will present
details about the overall architecture implementation. Next,
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we describe the tradeoffs associated with the component’s
Sterilize Mechanism. Finally, we discuss implementation ob-
servations and their implications for CG-STA and tagged
computing.

A. Implemented Components Overview

Our prototype CG-STA was developed on a Xilinx ML501
Evaluation Platform, which features a XC5VLX50 FPGA. On
top of this FPGA, we programmed the logical architecture
shown in Figure 6. The implemented architecture has a pa-
rameterized number of Pacoblaze cores connected to the bus,
which has been verified as working with up to 16 independent
processing cores.

Instructions Pacoblaze

Bus Module

Instructions Pacoblaze

Bus Module

Instructions Pacoblaze

Bus Module

Bus

Main Memory LED Peripheral

Tags

Serial Port
Interface

Coarse-Grained 
Tag Manager

Coarse-Grained 
Tag Manager

Coarse-Grained 
Tag Manager

Fine-Grained 
Tag Manager

Coarse-Grained 
Tag Manager

Coarse-Grained 
Tag Manager

Coarse-Grained 
Tag Manager

Mode Setter

Fig. 6. The implemented CG-STA contains components that communicate
through tag managers.

In our prototype (Figure 6), several types of components
were implemented in order to have a functioning CG-STA
system. Since we desired to have an external access to the
system, we implemented a Serial Port Interface component to
use as the main external communication mechanism. Through
instructions from the serial port, the Mode Setter acts as the
CG-STA Bootstrap Element and the Restarter. Messages sent
from components must pass through an Interconnect Interface,
either coarse-grained in the case of single-mode components,
or fine-grained in the case of concurrently shared components
such as the Main Memory Module. An LED Peripheral is
present to visually display output which controls 8 LEDs
on the ML501. Each Pacoblaze core is coupled with a bus
module for interfacing with the system bus, and an associated
instruction store. Upon receiving a sterilize command message
from the Mode Setter, each Interconnect Interface initiates its
component’s Sterilize Mechanism.

B. Sterilize Mechanism

One main architectural requirement of the CG-STA is that
each component be modified to include a Sterilize Mechanism
capable of resetting the component’s visible state. One of
the goals of the implementation was to evaluate the effort
required to add this mechanism to existing components, and
the overhead it required both in terms of area and in terms
of performance. Area overhead versus performance is a trade

off, with the most direct design of a Sterilize Mechanism
consuming more area.

Given the HDL source code, a direct Sterilize Mechanism
can be added in a way similar to a synchronous reset, with
the additional condition that every register in the design
be reset to a constant value. This was the approach taken
for modifying the Pacoblaze processor core. This process
should be done recursively for all components internal to
the design (in the Pacoblaze design it was also done for
the ALU, register file, and all other internal modules). The
main benefit of this approach is that it requires minimal
understanding of the underlying component design and is
therefore easy to do (we did not have to understand the
internal operation of the Pacoblaze in order to add the Sterilize
Mechanism). Additionally, tools could be made which scan
the HDL for Verilog reg statements and VHDL signal
statements to check that every register is in fact sterilized,
and that all internally instantiated components also have a
correct Sterilize Mechanism. Such automated checking would
be significantly benefitial for architectural validation, since the
Sterilize Mechanism is part of the trusted computing base in
the architecture and existing components will likely need to be
augmented in order to incorporate a Sterilize Mechanism. The
drawback of this approach is that it may consume significant
area, especially if the component has many registers which
maintain a significant amount of state information. This is
especially a problem for components whose main function is to
store data, such as the instruction store or memory peripheral,
so a different approach to designing their Sterilize Mechanism
was taken.

The approach taken to design the Sterilize Mechanism for
memory components is to trade off performance in order
to reduce circuit area. For a memory module, it would be
inefficient to reset the entire memory in a single cycle. Instead,
a multiplexer is used for the write source into the memory
block, and the sterilize signal starts a simple state machine
which outputs zero to incrementally-increasing addresses in
the memory block. In terms of Xilinx-specific FPGA consider-
ations, this allows BRAM blocks to still be used to implement
memory instead of flip flops, which saves significant area.
However, the downside is that the Sterilize Mechanism is
less efficient now, taking multiple cycles to fully sterilize the
memory. For a fine-grained tag manager, such as the one
used for the Main Memory Module, tags can be reset (which
resets the memory) on a smaller granularity, which incurs less
overhead than clearing the entire memory.

This area-time tradeoff is not a binary decision. Modern
memory systems contain multiple banks which can be con-
currently written. A sterilize implementation could, therefore,
clear all the memory banks in parallel, which would save area
over a one-cycle clear, but still be more efficient than a serial
write over the entire memory space.

C. Architectural Observations

Over the course of implementing the CG-STA, several
important observations were made. In this section we briefly
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describe each of these, since they may have implications on
future tagged architecture research.

First, we noticed that instructions do not map directly
into a security compartment. When tracking information flow
through a processor, it is clear that one of the inputs is the
instruction, so therefore the processor’s security classification
should include the instruction compartment. However, the
output of the processor is usually not instructions, so the output
flow should not be tagged with the instrcution compartment.
In a pure MLS system, this is a declassification of the instruc-
tions, since, strictly speaking there is a possibility they could
be inferred from the output flow of the system, and is therefore
a violation of the security policy. The solution in the CG-STA
prototype is to employ different security modes for reading
and writing. The check for the compartment instruction, then,
does not occur when the bus module is receiving bus data, but
is instead internal to the processor component. Specifically, the
check occurs when data is written to the instruction store. This
solution creates a hierarchy of tagging. At the top level, the
Coarse-Grained Tag Managers tag security levels and enforce
coarse-grained information-flow security. At the lower level,
the processor itself does some additional tagging and checking
on input / output flows, so only data tagged as instructions
are allowed to be executed. This approach makes sense, since
the instruction compartment requirement is specific to the
processor core and not a generalized part of the architecture.

Another observation which may have implications for other
tagged systems is that tagged main-memory writes incur addi-
tional overhead when compared with a non-tagged approach.
This is because tagged memory writes must first read the tag
of the memory address to which they are writing, to make
sure they are not overwriting data with a higher security tag
(which, if allowed, could be used to corrupt data and cause
a denial of service). This effectively halves the possible write
speed. This additional latency can not be avoided even if the
tags are sent in parallel on the bus. Along this line, storing
tags for every byte in addition to data has the effect of halving
the usable memory size. One option here is to use a single tag
for groups of data words instead of each tagging each word
individually. In the case of a parallel tag bus, there is no extra
overhead for performing tagged reads.

The next architectural observation is that the Sterilize
Mechanism in the CG-STA may cause issues with external
components. For example, if there is timing synchronization
between an internal component and an external component,
activating the Sterilize Mechansim of the internal component
ruins this synchronization (since its internal state is cleared).
This was apparent when the Serial Port Interface component
was reset. When the Sterilize Mechanism was actived, the
serial port hardware would lose clock synchronization with
the host computer and the first byte sent after activating the
Sterilize Mechanism was usually corrupted (after the first few
bytes were sent, synchronization was restored). Also, if there
was an internal component acting as a network interface,
sterilizing its internal state would not reset external routers,
which may cause unexpected behavior.

Although only the Sterilize Mechanism is necessary for in-
formation security, components must save and load their states
for proper functionality across resets. This need not be done
entirely in hardware, as we demonstrated with our Pacoblaze
microcontroller. The software in our prototype would not only
save its own state, but would also load and save the state of
the LED peripheral. This requires, however, that all important
component state is visible to the software so that it can be
loaded and saved. Additionally, this introduces overhead when
performing resets.

System-Wide Virtualization is related to IOMMU technol-
ogy [17]. Using an architecture with an IOMMU, where pe-
ripheral I/O goes through a memory management unit, seems
to be an intermediate solution to the information security
problem. In an IOMMU architecture, external peripherals are
isolated from the processor, but peripherals are not isolated
from each other. In this sense, it is a hybrid solution between
System-Wide Virtualization and no protection. With the CG-
STA, security policies are possible which limit peripheral
interactions to those allowed by the system’s security policy.

Another observation is that compartment tags in our pro-
totype are handled in a global, hardcoded way. Ideally there
would be a dynamic tagging manager which could distribute
unique tags to the Mode Setter and cooperating components
during runtime, which would produce a cleaner implementa-
tion. If persistent tags across restarts are desired, the dynamic
tag manager would have to take this into account when
distributing tags with new compartments. This would allow
components to request a tag with a new, unique compartment
for an isolated execution of the system. The particular bit value
of the compartment they get, however, is unimportant.

Finally, we present a list of features essential to general
tagged architectures. In a tagged architecture, three types of
components are necessary: (1) components which produce
the tags, (2) components which move tags around with their
associated data, and (3) components which perform operations
and checks with the tags. The reliable functionality of the
tagging mechanism depends on all three of these compo-
nents. In the CG-STA, tags are created by the Interconnect
Interfaces (configured by the Mode Setter). Tags are moved
around with their associated data by both the bus, and, on
a broader time span, using the fine-grained tagged Main
Memory Module. The operations performed on the tags are
bus-transaction filtering, which are also performed by the
Interconnect Interfaces (configured by the Mode Setter). In
order to attack the tagging mechanism of the CG-STA, one
of these components would need to contain a vulnerability.
In traditional tagged processors, tags are created based on
manually assigning security classifications to input datasets,
and performing processor operations on data. Tags are moved
around within the processor, onto buses, and into memory and
persistent storage. The tag operations, mostly security checks,
are performed within the processor. If any one of the com-
ponents dealing with tag creation, movement, or checking is
incorrect, the functionality of the tagging can be circumvented.

Much research on tagged architectures, however, is con-
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cerned with either tag creation or tag checking, and less
emphasis is placed on tag movement through the system. Tag
movement should guarantee that data stays coupled with its
description tags. This process has many avenues of attack. For
example, if separate buses transport the data and the tags, it is
possible that the tag bus experiences a parity error and has to
resend, while the data bus successfully completes the transac-
tion. This may decouple the data from the bus for a short time.
Alternatively, if the data and tag are sent in back-to-back bus
transactions, rebooting the machine between bus transactions
might violate tag movement requirements. If the tags can be
arbitrarily overwritten in memory, they can be decoupled from
their data. If tags are stored in persistent storage, which can be
accessed externally, tags may be decoupled from data. Keeping
tags coupled with their data throughout the architecture is just
as important to the reliability of the tagging mechanism as
having correct tag propagation rules, or correctly classifying
input data.

D. Future Extensions

The current CG-STA was demonstrated as functional on a
16-core Pacoblaze prototype. The next immediate step for CG-
STA research is to modify the arhcitecture to be closer to a de-
ployment system. Specifically, immediate steps to take would
be to use a 32-bit microprocessor such as the Microblaze or
LEON3 processor with proper preemption instead of an 8-
bit microcontroller. The overhead of the Sterilize Mechanism
on these processors, in terms of area, timing, and possible
effect on critical path, would be more interesting to evaluate.
With such processors, a high-end bus would be required, and
new tag managers would need to be developed to provide this
interface. An evaluation of benchmark applications running on
such an off-the-shelf processor, instead of programs designed
spefifically for our architecture, is also needed. Additionally,
rather than having embedded programs with direct access to
physical memory, running the CG-STA with full operating
systems on the cores may present additional challenges and re-
quire unique solutions. Another desired extension is to provide
a disciplined way to interact with external components, such
as network cards and other off-chip peripherals, that would
not cause unintended behavior after activating the Sterilize
Mechanism.

V. CONCLUSIONS

We have designed, evaluated, implemented a CG-STA
system-on-chip architecture to provide integrated security
for embedded systems. This was done by designing system
components which maintain information about their current
security principal, enforce flows between components, and
require components to sterilize, or flush, their entire internal
state before switching security principals. A 16-core CG-STA
prototype was implemented, verified, and evaluated on top of
a Xilinx ML501 FPGA.

The CG-STA approach has both drawbacks and benefits.
The primary drawback is that each computational element
can only be in one security mode at any point in time.

A single component is not allowed to concurrently process
data in different security domains. Additionally, hardware
components do need minor modifications to be able to sterilize
their internal state, as well as load and save important values
across state flushes. This may not always be possible since
processing elements may not be distributed as HDL code.
If this is possible, however, there are significant benefits to
the CG-STA approach. The design can take advantage of the
dissemination of computation from a single processing core
to distributed computation engines, by permitting authorized
hardware component cooperation. The design also disallows,
on the hardware level, malicious components from being able
to intercept or interfere with computations of incompatible
security classifications. The modifications necessary to the
components to make them CG-STA-compatible are minor,
requiring little additional component engineering effort. Most
importantly, the architecture is simple to understand and there-
fore simple to verify as information-secure. In high-security
embedded SoC devices, the CG-STA design provides a non-
bypassable, built-in security mechanism.
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Abstract— EEG high frequency oscillations, known as ripples, 

in subdural Electroencephalography (EEG) have been 

associated to the seizure onset zone (SOZ). Ripples, which can 

be visible in the frequency range from 80 to 250 Hz, are 

considered reliable biomarkers (like interictal EEG spikes) to 

identify the epileptic focus in the brain. Consequently, an 

automated detection method is proposed with the aim of 

identifying those electrodes that have a higher count of these 

events. The computational approach considered in this paper 

relies on processing the EEG records using the Intel Single-

Chip Cloud Computer (SCC) platform. This new method 

preserves data coherency through the message-passing 

interface and utilizes dynamic voltage and frequency scaling 

(DVFS) capability of SCC, yielding both energy saving and 

performance benefit. The proposed SCC-based method for 

detecting high frequency oscillations (HFO) is validated by 

EEG experts at Miami Children's Hospital, and the location of 

the electrodes with higher counts will be compared with the 3-

D source localization using interictal spikes to demonstrate the 

relation if any that exists between them. 

Keywords: Cloud computing, Intel SCC, EEG 

processing, High frequency oscillation, Power-aware 

computing 

I.  INTRODUCTION  

Epilepsy is a common medical condition characterized by 

a predisposition to unprovoked recurrent seizures. A seizure 

is the manifestation of an abnormal, hypersynchronous 

discharge of a population of cortical neurons [1].  Affecting 

over 60 million people around the world, Epilepsy is the 

second most frequent neurological disorder other than stroke.  

Advanced clinical techniques are used to diagnose 

epilepsy, such as computed tomography (CT), 

encephalogram (EEG), magnetic resonance imaging (MRI), 

positron emission tomography (PET), and functional MRI, 

along with others. While the aforementioned techniques 

yield a coarse approximation of the epileptogenic region, 

they otherwise lack either the spatial or temporal resolution 

necessary to accurately determine the seizure focus location. 

When this is the case, invasive recording techniques such as 

intercranial-EEG (iEEG) or Electrocorticography (ECoG), 

which are characterized by the placement of electrode arrays 

on the cortex of the brain, are performed. 

During ECoG recording it is routine clinical practice to 

place multiple electrode arrays on different areas of interest 

to the neurologists. Multiple arrays act to both eliminate 

certain cortical regions of interest and designate cortical 

areas where more analysis may be needed. For example, it is 

customary for a patient undergoing ECoG to have sixty-five 

or more implanted electrodes.  

Within Epilepsy research, many relevant algorithms are 

useful throughout the process of localization of the seizure 

onset zone (SOZ). These include interictal spike detection, 

seizure onset detection, artifact detection and elimination, 

high frequency oscillations (HFO) detection as well as many 

others [2-6]. For HFO detection, patients are monitored 

throughout the night and sleep ECoG is recorded for up to 10 

hours. What‟s more, high resolution clinical-use EEG 

machines have an eclipsing sampling rate of 2KHz. Due to 

these characteristics, it can be seen that any extensive time 

recordings will yield large amount of data which requires 

enormous computing power.  

In the last several decades, we have seen how 

microprocessor performance have been dramatically 

improved by increasing the operating frequency, from 5MHz 

of Intel 8086 to the astounding 5.2GHz of IBM z196 [7]. 

Unfortunately, in recent years, power-thermal issues have 

limited the pace at which processor frequency can be 

increased [8]. In an effort to utilize the abundant transistor 

real estate offered by the Moore‟s Law [9] and at the same 

time contain the power-thermal issues, current developments 

in microprocessor design favor increasing core counts over 

frequency scaling to improve processor performance and 

energy efficiency [10].  

In the commercial field, it is common to have a 2, 4, 6 or 

even more cores housed in one chip nowadays; while the 

research community makes use of experimental many-core 

architectures containing tens or even hundreds of processors. 

Today, the challenge is not only how to develop powerful 

hardware architectures that satisfy the demands of high 

resources-consuming applications, but also the development 

of applications that could effectively explore the capabilities 

offered by many-core architectures. There are major benefits 

that can be obtained from parallel programs running on 

many-core platforms.  
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The Single-Chip Cloud Computer (SCC) experimental 

processor [10] is a 48-core „concept vehicle‟ created by Intel 

Labs as a platform for many-core software research. This 

system allows the implementation and study of parallel 

applications by supporting a message-passing programming 

model for communication among the cores. The SCC also 

includes hardware elements which support dynamic voltage 

and frequency scaling (DVFS) for improving energy 

efficiency.  

As we mentioned earlier, ECoG recording and HFO 

detection would not be easily processed by desktop 

computers or even specialized software. Due to the 

limitations of the processing platforms that are available to 

researchers in this field, currently only a sub-section of this 

data, ranging between a few seconds to a few minutes, will 

be subjected to analysis while the rest of the data is 

discarded. In this paper we will illustrate the benefits of 

utilizing the SCC as the platform of choice for EEG 

algorithm implementation, by demonstrating the energy 

savings and computational benefits associated with Intel‟s 

48-core Single-chip Cloud Computer. 

The rest of the paper is organized as follows. In Section II 

we present an overview of the SCC platform. Section III 

contains the methodology we propose for processing EEG 

data on the Intel SCC platform and Section IV describes the 

algorithm implemented for the detection of HFOs. In Section 

V we present and comment on the obtained results. We 

conclude in Section VI and give an outlook for future work. 

II. COMPUTATION PLATFORM 

The Single-Chip Cloud Computer contains 48 Pentium™ 
class IA-32 cores on a 6×4 2D-mesh network of tiled core 
clusters with high-speed I/Os on the periphery [10]. There is 
a unique hardware feature called Message Passing Buffer 
(MPB), shared by every two cores, that is optimized to 
support message passing programming model to 
communicate among all the cores.  

The SCC platform used in this research can be 
considered a computational benefit to almost any parallel 
application performed on it due to the fact that it possesses 
48 cores. However, there are two main benefits that make the 
SCC platform suitable for EEG signal processing: its inter-
core communication or message-passing abilities, and the 
capacity for DVFS.  These two aspects of the SCC make 
EEG processing a promising application because they 
address two problems that are inherent to processing of this 
type. 

The first difficulty that occurs when processing EEG data 
is that a significant amount of time and energy is consumed 
upon the access and distribution of the data. This problem is 
magnified within a parallel architecture [11]; while a few 
cores are accessing and loading the data, many of the cores 
are running at the same power levels without contributing to 
the overall progress. As shown in Figure 1, every two cores 
form a frequency island and every eight cores form a voltage 
island. The SCC allows the user to fully control these voltage 
and frequency islands that are present on the chip.  

In this way we can act to minimize wasted energy by 
setting cores to lower power states while accessing large 
amounts of data. A similar approach has been demonstrated 
by the use of multiple voltage-frequency gears that run at 
different segments throughout the program in order to 
maximize performance while saving energy in a PC cluster 
setting [12]. 

 

 
Figure 1. Frequency domains and voltage domains on SCC chip 

 
The second issue with EEG data is that there tends to be 

dynamic global parameters for most algorithm 
implementations. This means that the processing of one 
electrode may be dependent on a parameter defined by 
another electrode or a group of electrodes. This is due to the 
aggregate nature of the EEG signal itself. The EEG signal 
stems from a summation of neuronal activity; therefore a 
single phenomenon may have components in many 
surrounding electrodes. A program which distinguishes a 
particular activity of interest, such as interictal spikes, may 
need information from numerous electrode signals in order 
to confidently detect their presence within the data set. This 
establishes a need for effective and user-controllable inter-
core and thus inter-electrode communication. When such 
algorithms are run in a parallel manner, this becomes a more 
detrimental issue. Without explicit user defined 
communication protocols, there would potentially be cache 
coherency issues and/or memory allocation issues due to 
variables growing inside loops. The SCC allows the user, 
through use of the RCCE library [13] (an API library for 
message passing programming model specially designed for 
SCC), the ability to control and synchronize inter-core 
communication due to the message-passing benefits of the 
SCC platform. 

III. METHODOLOGY 

The proposed method for implementing EEG algorithms 
on the SCC platform is shown in Figure 2 and outlined 
below. 
1. Electrode dependencies and any need for global 

parameters are identified. This knowledge will lead to 
an understanding of the appropriate inter-core 
communication that will be necessary for proper 
execution. 

2. Once inter-core communication is understood, the 
program needs to be broken down into segments. These 
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segments are divided into two categories, 
communication-intensive and computation-intensive. 
Parts of code that accesses the data and distributes 
appropriate data to proper cores would be considered 
communication-intensive while parts of code that utilize 
many processing cores for filtering or detection of any 
kind would be considered computation-intensive. These 
segments would then be run using the appropriate 
voltage-frequency gear that would result in performance 
benefits while maintaining energy savings. 

3. Once there is an awareness of the necessary 
communication between cores and the code has been 
segmented and assigned correct gears, the code needs to 
be modified with the correct RCCE library functions so 
as to be implemented and executed on the SCC 
platform. 

 

 
Figure 2. Proposed EEG-SCC Methodology 

 

 The EEG data and results that are presented within this 
paper are gathered from a patient who was monitored 
overnight with multiple electrode arrays placed on his cortex 
totaling sixty-five electrodes at the Brain Institute in Miami 
Children‟s Hospital (MCH) [14]. In the validation of this 
algorithm, 10-minute segments were analyzed consisting of 
32 electrodes. This number of electrodes was analyzed for 
each run of the simulation because this is a preliminary 
analysis of EEG processing on the SCC platform. Processing 
of more electrode data will be an interesting avenue for 
future work 

IV. HFO – EEG ALGORITHM 

HFOs have been defined as spontaneous patterns in the 

range of 80 – 500 Hz that consists of at least 4 oscillations 

which can be distinguished from the background. However, 

this is not a quantitative definition, thus making accurate 

detection of HFOs is both difficult and subjective. HFOs 

can be visually marked, but this process tends to be highly 

time consuming, on the order of hours for the analysis of a 

few minutes of data [15]. Research has suggested that HFOs 

are possibly related with epileptogenesis [16]. Electrodes of 

interest, which correspond to the SOZ, have higher relative 

ripple counts when compared with electrodes that are 

associated with other cortex regions of normal neuronal 

activity [17, 18].   

The definition used in this paper for the HFO detector is 

listed below and illustrated in Figure 3. 

 

• HFOs are within the 80 – 250 Hz frequency band, 

• A global threshold based on standard deviation of a 

selected electrode is determined, 

• Three or more crossings of the global threshold within 

a 250 ms window will count as a HFO. 
 

 
Figure 3. HFO Detection Program Executed on SCC 

 

Raw EEG data, acquired at a sampling rate of 2 kHz, is 

passed into the SCC program, parsed up and distributed to 

the appropriate cores. Upon receiving the data, each core 

implements a 10th-order Butterworth IIR filter using 

cascaded Second Order Direct Form II sections. Once the 

filtering process is completed, a global maximum value is 

taken across all electrode signals. This electrode-max value 

is used to normalize the entire set of electrode readings. A 

sample segment of data is shown in Figure 4 after filtering 

and normalization. 

After normalization, a standard deviation calculation is 

performed on the electrode signal that produced the 

electrode-max value. The global threshold defined for the 

program is calculated as a multiple of this standard 
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deviation value. This threshold parameter shows that even 

for the simplest EEG algorithms, such as a rudimentary 

HFO detector, there exists a fundamental need to efficiently 

process and pass data between cores while the program is 

analyzing the data. 

 

 
Figure 4. Filtered and Normalized Data 

 

After the electrode data is normalized, the data is 

compared point-to-point with our global threshold, which is 

determined as three times the aforementioned standard 

deviation value. Threshold crossings are highlighted and 

stored as possible spikes. If three or more threshold 

crossings occur within any 250 ms window, that window is 

determined to include one high frequency oscillation. The 

program then moves to the end of the window and continues 

to examine the data for threshold crossings. 

V. RESULTS 

This work acts to demonstrate the feasibility of the HFO 

algorithm implementation for EEG analysis on the SCC 

platform. In order to verify the correctness of our 

implementation, relative HFO counts per electrode were 

compared with the findings previously validated by 

neurologists at Miami Children‟s Hospital and found to 

match, with all electrode signals of interest being identified. 

The results were further validated when electrode locations 

with higher HFO counts from the algorithm were compared 

with 3-D source localization using interictal spikes. This 

analysis was performed for 10-minute segments of data with 

all simulations taking less than 40-second of processing 

time. It is worth noting that when a replica of our algorithm 

is ran on Matlab, removing all Matlab optimized function 

calls, the processing time exceed thirty minutes for the same 

amount of data. When the program was executed including 

Matlab optimized function calls, the load region took in 

excess of 42 seconds, while the execute region took over 9 

seconds. These results were obtained on a PC with an Intel 

core i5 processor running at 2.30 GHz and 8 GB of RAM. 

As shown in Figure 3, the program is classified into the 

load region and the execution region. The load region 

includes the section of the program where the data file is 

being loaded and split by the master core. The data is then 

distributed to each processing core. This region was 

classified as a communication-intensive region, because the 

code spends most of the time accessing memory or 

transmitting information to other cores. Therefore a high 

processing frequency is not required. 

The execution region, explained in the previous section, 

is where the ripple-detection algorithm is executed. We 

classified this region as a computation-intensive region, 

where a high processing frequency is required. 

 

Gear Voltage Frequency 

HIGH 1.1 V 800 MHz 

LOW 0.8 V 533 MHz 

MIX 0.8/1.1 V 533/800 MHz 

XIM 1.1/0.8 V 800/533 MHz 
Table 1. Voltage - Frequency Gears 

 

We tested different setups of the SCC platform where 

the number of cores employed varied while four Frequency-

Voltage configurations were used, as shown in Table 1. The 

frequency-voltage schemes tested were HIGH gear (800 

MHz and 1.1V), LOW gear (533 MHz and 0.8V), the third 

and fourth ones were mixed approaches, where the low gear 

was applied to the load region and the high gear to the 

execution region in the third configuration that we called 

MIX, and for the fourth one the high gear was applied first 

to the load region and then low gear to the execution region, 

for what we called the XIM gear. For both mixed gears we 

dynamically changed the voltage and frequency values 

during the transition between regions. The numbers of cores 

tested were 1, 2, 4, 8, 16, and 32.  

The elapsed time when switching between different 

levels of voltage and frequency is not significant compared 

to the time consumed by each region, therefore it has no 

impact on the timing results associated with either region or 

the total execution.   

 

 
Figure 5. Performance Graph 

 

It can be seen that total processing time for all simulation 

runs does not exceed 40 seconds. While this is a major 

improvement over serial Matlab implementation, it does not 

directly demonstrate the need for the parallel platform. This 

is because our proposed method is not specifically aimed at 

this algorithm implementation. The HFO algorithm is a 

simple computation task for the SCC, and immediate 

benefits appear in the DVFS and message-passing abilities 
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of the system. However, as the execution region becomes 

more burdensome, the benefits of parallelizing the program 

can be easily seen. We can anticipate that processing 

benefits associated with the SCC-based EEG analysis will 

become more substantial when running more complex 

algorithms on the platform. 

From Figure 5 we can observe how significant the 

communication region is when compared to the total time 

for the simulations, with the exception of the simulations 

completed with one core where no communication overhead 

exists because all the data manipulation is local to one core. 

The results show the HFO detection program spends most 

of its execution time in communicating and transferring data 

among the cores. We can see as the number of cores 

increases, the communication overhead increases, and the 

time for completing the execution region decreases. Here 

the communication overhead has more weight than the 

computation overhead. Therefore, “the more the merrier” 

seems not work here. The implementation of the MIX gear 

tries to match the communication-intensive region with low 

power dissipation gear and the computation-intensive region 

with a high processing frequency in order to improve the 

power-energy efficiency without sacrificing performance. 

Based on the nature of the specific program we are running, 

we decided to try the XIM gear where we executed the 

communication-intensive region with high frequency and 

the computation-intensive region with the low frequency 

gear. We discuss our findings below. 

 

 
Figure 6. Power Graph 

 

As we can see, the XIM gear provides a better 

performance than the MIX gear except the one-core case. 

The reason is for the parallel computing case, the 

communication overhead is so high when compared with 

computation time. Even though the XIM gear slows down 

the execution region a little bit, it reduces the time spent in 

load region significantly, thus having an advantage over the 

MIX gear overall. This is not the case for single core 

configuration because executing with one core is the only 

case where the load and the execution region performances 

are in similar order. This happens because in this case we 

avoid the overhead of data transmission and because of the 

prolonged time it takes for the execution region to be 

completed. Overall, for optimal performance, we see that 

the best configuration for the SCC is having 8 cores running 

with the HIGH gear. 

Differences in power consumption for both regions of the 

program are demonstrated in Figure 6. HIGH gear always 

consumes more power than LOW gear due to higher 

frequency and voltage. In the MIX gear mode, the execution 

region consumes similar power as HIGH gear mode, while 

load region consumes similar power as LOW gear mode, 

due to the dynamic change of operating frequency. The 

opposite happens for the XIM gear. From this graph we can 

observe that the execution region always consumes more 

power than the load region, as more computation is 

required. As we increase the number of cores, there is a 

resulting increase in power consumption associated with 

both the HIGH and the LOW gear. If optimal power is 

required, either 1 or 2 cores running with the LOW gear 

might be the right choice. 

 

 
Figure 7. Energy Graph 

 

The energy consumed by each region, as well as the total 

energy consumption for each simulation, is shown in Figure 

7. This graph reaffirms that the energy consumed by a 

system is dependent on the balance between performance 

and power, not simply processor speed or power dissipation 

alone. From this graph we can conclude that for energy 

considerations, the HIGH gear running with 1 and 2 cores is 

the most energy-efficient one across all configurations. 

Because the communication overhead and power 

consumption are low at low core count, it is worth to run at 

highest frequency and still be energy-efficient. When 

running with 4-core or above, LOW gear and MIX gear 

always provide better energy readings. This is because in 

our HFO application, when we increase the core count, the 

program spends a large portion of its execution time in 

communicating and transferring data among the cores. As 

we saw from Figures 5 and 6, the communication overhead 

and hence the time required for completing the load region 

increases, as well as power consumption for more cores if 

they want to run at higher frequency. 
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The metric for measuring power-performance is very 

common. From the system point of view, minimizing the 

execution time may usually be the first priority. However, 

even if the total energy is minimized, the user may not be 

satisfied with extended system response time [19-20]. In 

Figure 8 we present the energy-delay product (EDP) for 

each used configuration. EDP metric takes into 

consideration both energy and execution time. This graph 

shows how both mixed gears generally have an EDP 

between the HIGH and the LOW gear as we anticipated. 

One thing worth mentioning is that in this case, similarly to 

the energy analysis, the HIGH gear running with 1 and 2 

cores provides the best of both worlds, user experience and 

energy consumption. 

 

 
Figure 8. Energy-Delay Product Graph 

 

From observing the presented performance, power, and 

energy results, we can observe how in most of the cases, 

mix gears offer varied results between the HIGH gear and 

the LOW gear when comparing the same number of cores.  

VI. CONCLUSIONS AND FUTURE WORK 

The performance benefits of utilizing the SCC platform 

for HFO detection are substantial. The SCC can process 

data while implementing complex algorithms in short 

periods of time. In the area of HFO detection alone this is a 

remarkable advance. This would allow HFO analysis to be 

performed on extended durations of recordings, hours of 

data instead of minutes. This increase in data processing 

capability will act as an analysis tool for neurosurgeons and 

neuroscientists in order to define the SOZ with higher 

resolution and confidence. 

The advantages associated with EEG processing on the 

SCC platform can be employed on a myriad of EEG signal 

processing algorithms. The SCC proves to be an ideal 

platform on which to process multiple electrode recordings 

in an energy-efficient manner, while increasing the 

performance of analysis as a whole. The DVFS capabilities 

of the SCC allow the user to have full control of energy 

usage, which can lead to total system energy savings when 

the code can be broken up into communication-intensive 

and computation-intensive segments and run with the 

appropriate voltage-frequency gears. The message-passing 

architecture, both at the hardware and software level of the 

SCC, allow for user-defined inter-core and therefore inter-

electrode communication, which has been shown to be 

essential for EEG algorithms. 

All blocks pertaining to the HFO-EEG algorithm are 

implemented and running on the SCC platform. This 

algorithm is not computationally burdensome to the SCC 

and is handled in a very efficient manner. As for future 

work, we expect to implement a program which is able to 

process 65 electrodes overall and more than 32 at a time. 

Further research can be done implementing more complex 

EEG-based detection algorithms. Other areas of interest 

would be systems and EEG algorithms that incorporate 

more message-passing or electrode-dependencies than are 

currently present in the HFO algorithm. The SCC platform 

allows for the development and implementation of more 

complex, data-dependent algorithms in which further 

neuronal phenomena can be examined. A system approach 

in which multiple algorithms are executed in parallel on the 

SCC would be beneficial to the field of neuroscience and 

epilepsy research as well. 
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Abstract—Along with the introduction of many-core GPUs, 
there is widespread interest in using GPUs to accelerate 
non-graphics applications such as energy, bioinformatics, 
finance and several research areas. With a wide range of 
data sizes where the CPU has greater performance, it would 
be important that CUDA enabled programs properly select 
when to and not to utilize the GPU for acceleration. 
Algorithms that use dynamic programming like P7Viterbi 
algorithm of HMMER 3.0 (genetic application) show high 
parallelism in its code. Based on performance hotspot 
analysis, these parallel features were exploited through the 
use of CUDA and a GPGPU. The CUDA implementation of 
this algorithm being performed on the Tesla C1060 enabled 
a 10-15X speedup depending on the number of queries. In 
this paper, we focus on accelerating HMMER 3.0 - one of 
the genetic applications with GPUs as co-processors. Also 
we investigate the potential performance bottleneck in 
GPU-CPU environment with blowfish - a security 
application. Based on workload characterization and 
bottleneck analysis, we provide optimization methodologies 
to remove the bottleneck. 
 
Keywords - CUDA, GPGPU, Hotspot analysis, HMMER 3.0, 
Database, Viterbi Algorithm, blowfish, CUDA profiling. 
 

I.    INTRODUCTION 
 

Along with the advance of integration technology, multi-
core processors have provided a technical breakthrough to 
the computing community. This includes both general-
purpose processor and application- specific processor 
domain. In addition to multi -core trend, the demand of high 
quality of graphics have the programmable GPUs (Graphics 
Processing Units) evolving into a highly parallel, 
multithreaded many-core processors. Even with powerful 
and massively parallel GPUs, it is difficult to achieve peak 
performance without the knowledge of graphics or graphics 
dedicated APIs (Application Programming Interface). 
However, with the introduction of new programming models 
such    as    Nvidia’s    CUDA   (Compute    Unified   Device  
Architecture) that abstracts the GPU hardware, non-graphics 
users can easily map wide range of applications into many-
core GPUs without having deep knowledge of graphics and 
GPU architecture [1][2].  

The GPGPU (General-purpose computing on graphics 
processing unit) is a technique of using a GPU, which has 
high data-parallel processing capability and typically handles 
computation only for computer graphics, to perform the 
computation in general-purpose applications traditionally 
handled by general-purpose CPU. With the introduction of 
many-core GPUs, there is widespread interest in using GPUs 
to accelerate non-graphics applications such as                                                                
f 

 
bioinformatics, energy, finance and several research areas 
[1]. 

CUDA makes use of the massively parallel nature of 
NVIDIA’s graphics processing units to accelerate both 
graphics computation and general purpose computations that 
can be performed in parallel. The Tesla series of GPUs 
represents the NVIDIA’s line of HPC (High Performance  
Computing) oriented graphics processors, or GPGPUs. Each 
graphics processor on a Tesla card contains several graphics 
processing clusters (GPCs), which in turn contain multiple 
streaming multiprocessors (SMs), which contain dozens of 
CUDA cores. Each SM can simultaneously execute 
thousands of threads. This highly parallel environment can 
effectively reduce the cost of achieving higher levels of 
computational speed.  

Here, we architecturally characterize some basic kernels 
and genetic applications and investigate performance hotspot 
function in HMMER 3.0 and blowfish. HMMER [3] is an 
application whose main use is ―searching sequence 
databases for homologs of protein sequences.  It is among 
many bioinformatics applications whose algorithms can be 
easily accelerated on a GPU.  

Even though the GPUs provide highly parallel processing 
capability, the interface between CPU and GPU could be a 
performance bottleneck due to heavy data transfer. In this 
case, if data transfer time is overwhelming the computation 
time on GPU, it would be better keep the computation on 
CPU instead of using GPUs. Thus, we aim to observe the 
borderline between CPU vs. GPU performance as well as the 
effects of using different types of memory. For this 
observation we use a security application name blowfish 
with different input size. The Security application includes 
several common algorithms for data encryption, decryption 
and hashing. Among others blowfish [4] is one of the 
popular security applications.  

The rest of paper is organized as follows: section II 
describes related works. The workload characterization 
including hotspot analysis is explained in section III. Section 
IV shows CUDA implementation, and section V describes 
results and analysis. Finally, concluding remarks and future 
works are presented in the last section. 
 

II.    RELATED WORK 
 

Major genetic applications known to make use of the 
GPU include Gromacs, NAMD, HMMER and most notably 
Folding@home.  NVIDIA  GPUs  account  for  over  35% of           
Folding@home’s native TFLOPS. HMMER itself is a 
database search application, and like many similar 
applications, GPUs have been applied for acceleration.  Peter 
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Bakkum and Kevin Skandron of the University of Virginia 
have previously ported SQLite to CUDA resulting in at least 
20x speedups in query time. For HMMER application, 
various types of coprocessors were utilized for acceleration. 
Perhaps most interesting acceleration is done with the FPGA 
by Steve Derrie and Patrice Quinton [5]. This is where the 
P7Viterbi algorithm was implemented in hardware as a set of 
MUXs and LUTs. This FPGA implementation achieved a 
50x speedup in one case. A CUDA implementation of 
HMMER is also present. Walters et al accelerated HMMER 
by focusing on the P7Viterbi algorithm at the core of the 
application. Using a single Tesla GPGPU, GPU-HMMER 
was capable of a 30x speedup with a large HMM size 
(number of states).  Likewise,  an  earlier  implementation  of  

 
simplescalar. As variable resources, we use instruction fetch 
queue, load store queue, and decode width, issue width, 
number of ALU, number of multiplier and memory width. 
We see the direct performance improvement in terms of the 
number of functional units. The width of fetch, decode and 
issue also affect the IPC because those components are 
aligned on the processor pipeline. Compared to the result 
(leftmost graph) with the smallest resource, the rightmost 
graph with the largest resource shows 63% improvement in 
IPC. Based on this simulation, we observe that the 
performance of namd application can be scalable with the 
number of functional units and the number of other 
resources. 

 
HMMER utilizing streaming processors (which includes 
NVIDIA GPUs), known as ClawHMMER, took a similar 
approach by targeting the P7Viterbi algorithm [6]. While all 
the   previous   implementations   are   with   old   version   of                  

 
 
2 

 
IPC 

(configurations‐ifetchq:decode:issue:alu:mult:mem_width) 
 
HMMER,   we  focus   on  newer  version of  HMMER  with 
different memory allocation schemes.  

A number of researchers have discussed bandwidth 
troubles that can arise with frequent or poorly managed data 
movement between devices. Schaa and Kaeli [7] examine 
multiple GPU systems and acknowledge that unless a full 
working set of data can fit into the memory on a GPU; the 
PCI Express will be a bottleneck. Owens et al. [8] express 
similar concerns. For this observation we use a security 
application name blowfish with different input size. 

 
III. WORKLOAD CHARACTERIZATION   

3.1 Scalability and bottleneck Analysis   
We choose two kernels from CUDA SDK and three 

bioinformatics applications from SPEC CPU 2006, and 
characterize them on CPU only and CPU-GPU 
computational environment. The description of each 
benchmark is shown in Table 1.  

 Table 1: Benchmarks and description
 

Type  Benchmark Description 
 

  Matrix Two dimensional matrix multiplication
 

  multiply with multiply-accumulation functions
 

Kernels   an image processing algorithm that
 

 

Histogram combines a stream of pixel light values  

   

  into a series of bins that represent the  

    

   distribution of light across an image
 

   [SPEC 2006 FP] Simulates large
 

  Namd biomolecular systems. The test case has
 

   92,224 atoms of apolipoprotein A-I.
 

Applicatio 
  [Mibench] Blowfish is an encryption

 

 
Blowfish algorithm. It is a symmetric block cipher

 

ns  that uses a variable-length key from 32  

   

   bits to 448 bits. 
 

   [SPEC 2006 INT] Protein sequence
 

  Hmmer analysis using profile hidden Markov
 

   models 
  

In general, matrix multiply and histogram kernels consist of 
large amount of ALU computations, and computation of 
those applications can be accelerated with more parallel 
functional units. We tried to explore the namd, one of 
bioinformatics applications, that it shows proportional 
performance impacts on the variation of hardware 
configurations. Figure 1 shows IPC (Instruction per Cycle) a 
performance   metric,   for    multiple   configurations    using-                                                                                                                      

    
  

 
1.5 

 
1 

 
0.5 

 
0  

4:8:2:2:2:2:8       4:8:16:16:8:8:8       8:8:8:8:8:4:8      16:16:16:8:8:4:8  16:16:16:8:8:4:16 
 
 
Figure 1: Impact on IPC (Instruction Per Cycle) with 
hardware variations (namd) 
 
Data transfer time investigation: We investigate the 
memory transfer overhead costs for CPU/GPU performance 
comparisons. Our results show that data transfer time can be 
as significant as main kernel runtime if data size is big 
enough. Also, if the number of CUDA cores is increased and 
GPU dedicated memory size is increased; the data transfer 
overhead will be more critical to overall performance. Two 
CUDA SDK kernels are used for this matter. Nvidia CUDA 
profiler (cudaprof) is used for characterizing and breaking 
down the GPU time. Normally, GPU time consists of major 
kernel computation time and data transfer time. In CUDA 
profiler, data transfer time is divided into two components: 
memcpyDtoH and memcpyHtoD. The memcpyDtoH means 
Device to Host (data transfer from the GPU) and 
memcpyHtoD means Host to Device (data transfer to the 
GPU).  

Figure 2 shows the experiment on Nvidia GTX 460. It 
shows that kernel computation time is major time-
consuming part, and data transfer time is around 10% of the 
total GPU time for both Matrix multiply and Histogram. It is 
interesting to note that Matrix multiply shows more data 
transfer time from the GPU and Histogram shows more data 
transfer time from the CPU. The reason is coming from each 
kernel’s algorithmic characteristics. The results from the 
Matrix multiply on GPU will be slightly bigger data size 
than the original data from the CPU, while the results from 
the Histogram on GPU will be smaller data size than the 
original data from the CPU.  
3.2 Hotspot Analysis  

The Intel VTune Performance Analyzer provides 
information on the performance of code. The VTune 
analyzer shows the performance issues, enabling to focus 
tuning effort and get the best performance boost in the least                      
s 
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amount of time. The Hotspots analysis helps understand the 
application flow and identify sections of code that took a 
long time to execute (hotspots). A large number of samples 
collected at a specific process, thread, or module can imply 
high processor utilization and potential performance 
bottlenecks. With the help of some performance analyzer 
software like Vtune, we can figure out the hotspot. 
According to the specific hotspot modules, we can modify 
some modules for performance acceleration. This 
acceleration and flexibility of an application on GPU can be 
achieved by applying high level GPU programming 
languages such as CUDA. 

There are several sub-programs in HMMER application 
like phmmer, jackhammer, hmmbuild, hmmsearch, 
hmmscan, smmaligh, etc. Each sub-program shows similar 
hotspot results, but here we only discuss about jackhammer. 
The Jackhmmer program is for searching a single sequence 
query iteratively against a sequence database. VTune 
Analyzer creates and run an activity that collects 
performance data of the application. An activity means 
lunching application onto Vtune profiler. Figure 3 shows the 
sampling summary view of the Jackhmmer. 

 
 
 
 
 
 
 
 
 
 
 

(a) Matrix Multiply 
 
 
 
 
 
 
 
 
 

(b) Histogram  
Figure 2: GPU Time comparison of main computation and data transfer between CPU and GPU. Experiment is on 

Nvidia GTX 460 (336 cuda cores, 1GB GPU memory, 256-bit memory I/O) 
 

Figure 3: Hotspot analysis: the percentage of CPU clock 
for active functions (Jackhmmer) 
 

IV.   RESULTS AND ANALYSIS  
4.1 CUDA Parallelization of p7Viterbi  
    With each implementation of the HMMER’s P7Viterbi 
algorithm timers were utilized in order to properly compare 
results. For the CPU version, the elapsed time was simply 
measured between the start of the function and after the 
completion of the function. The GPU implementations 
utilize two timers that measure the total time taken to 
allocate memory storage and transfer memory onto  the GPU 
 

  

 
and back, and the kernel execution time. The second timer 
simply measures the time taken to execute the CUDA 
kernels.  

The P7Viterbi algorithm iterates through every 
observation, from 1 to L, and determines a score for each 
state from 1 to M. It is not possible to calculate the scores for 
each observation in parallel, because the scores of the next 
row of the dynamic programming matrix depend on the 
previous row. However, it is possible to calculate each 
column (query), independent of the other.  

Figure 4 shows the path of the Viterbi algorithm through 
the dynamic programming matrix and what cells were 
computed in parallel. A set of kernels were written to 
properly convert the all the functionality of the P7Viterbi 
function. Because the data was already moved to the GPU, 
the initialization of the data was executed as a single-
threaded kernel.  
4.2 Accelerating Application with GPU  

Based on our experiments, the CUDA implementation of 
the P7Viterbi algorithm showed an over 14x speedup over 
the original implementation of the P7Viterbi function, as 
shown in Figure 5. The speedup increased exponentially as 
the number of threads launched (number of queries) 
doubled. No more than 16,384 queries were tested due to the 
limitations of the GPU memory. The total speedup (CPU                  
j 
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Time/GPU Time), the increase in speed was significantly 
reduced. 

  
     Figure 4: Viterbi Algorithm Executed in Parallel 

 
Figure 5: Total Time Speedup represented as CPU Time 
over GPU Time 

 
Table 2: GPU time for three different input size  

Method GPU time(us) GPU time (us) GPU time(us)
 Large data set Large data set Large data set
 (3.1 MB) (12 MB) (120 MB)

BF_encrypt 104441 107406.1 200857
BF_cfb64_encrypt 52406.1 60189 98277.84
main 3854.3 4030.66 5814.89
memcpyHtoD 21102.7 37041.7 87981.46
memcpyDtoH 504.608 681.37 1945.3

 
  4.3 Effect on Memory Transfer Overhead  

Blowfish has two types of data set - large and small. For 
the experiment issue we modified large data set into three set 
so that we can get the clear picture of data transfer overhead. 
And then using Vtune we got the hotspot zone and improved 
the zone by converting source code to CUDA. Hotspot 
module name is BF_encrypt(). It uses a special function 
name BF_ENC() which is the main spot for higher number 
of clock ticks. Since Vtune only shows the CPU clock time 
so the improvement on GPU never reflects in Vtune. So we 
used CUDA profiler to get the GPU- CPU time and also the 
data transfer overhead. For three different large data sets 
summary table is given in Table 2. 

From the Figure 6 graph (GPU time), we realize that as 
the data set increases both kernel execution and data transfer 
overhead increases. But data transfer from Host (CPU) to 
device (GPU) increases significantly. When data set 
increases from 12MB to 120MB, kernel execution time 
(GPU time) increases 2 times but data transfer time 
increases almost 4 times. 

 

 
          Figure 6: GPU time for three different data sets 
 

V.   CONCLUSION  
A single application includes many kernels or functions, 

and some of them are heavily used for entire computation. 
Based on kernel’s algorithmic characteristics, some 
functions show higher data transfer time than kernel 
computations on GPU, but others are not. Therefore, full 
CUDA modeling could not be an ideal solution. However, 
the amount of overhead can vary drastically depending on 
how a GPU kernel will be used in an application, or by a 
scheduler. Future work will include using this information to 
inform scheduling decisions about whether to run kernels on 
a GPU or on the CPU. 
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Abstract—This paper focuses on technology scaling of the
SpiNNaker Chip Multiprocessor (CMP). A detailed character-
ization of the SpiNNaker Processor Node has been carried out in
130nm and 90nm semiconductor processes with many variants of
the process libraries exploring the area, power and performance
aspects. Experimental results of processor node performance,
power dissipation and silicon area are presented and have been
used to predict the best technology for a future SpiNNaker CMP
for high-performance computing.

I. I NTRODUCTION

CMOS technology has seen continuous and systematic rise
in transistor density and processing performance for the last
few decades in accordance with the self-fulfilling prophesy
of Gordon Moore [1] and the scaling theory proposed by
Dennard et al. [2]. Other consequences of technology scaling
are increased power per unit area, due to transistor size
scaling faster than the power per transistor, and lower die
cost [3]. The aggressive scaling-down of transistor dimen-
sions in technology generations has enabled designers to
integrate a great many processor cores in a single die, thus
building Chip Multiprocessors. The focus of this paper is
the technology scaling aspects of the SpiNNaker CMP so
that the SpiNNaker system can be scaled to a large-scale
high-performance computing platform taking advantage of the
process technology enhancements. For this, the impact of the
underlying parameters and the trade-offs involving area, power
and performance on SpiNNaker CMP are studied.

An exploration of the impact of technology scaling at
130nm and 90nm technology nodes for a chip multiprocessor
is carried out to understand how embedded microprocessor
CMPs are affected by technology scaling. In particular, this is a
case study of the system-level performance/power analysis in a
CMP with many embedded ARM968 cores [4]. The evaluation
results pertaining to the technological options and design cost
form the design basis for a future SpiNNaker CMP scaled to
the appropriate technology node.

This paper is structured as follows. Related work in tech-
nology scaling, cortical simulators and CMPs is presented in
Section II. Section III reviews the design of SpiNNaker and
its components. We also describe the multi-core SpiNNaker
chip, the on-chip and off-chip communication mechanisms
and the connection of multiple chips to form a large-scale
SpiNNaker system. Section IV is devoted to describe in detail
the technology scaling experiments we have carried out on

the SpiNNaker CMP with the associated results and analysis.
After that, we focus on the major design considerations for
the current and future SpiNNaker CMPs in Section V. The
paper is concluded with pointers to what the future may hold
for the SpiNNaker chip in Section VI.

II. RELATED WORK

Huang et al. [5] apply analytical models, derived from
the technology-scaling predictions of ITRS [3], to commodity
processors of relatively large die sizes. Chung et al. [6] also use
the ITRS road map to construct their scaling model. Our work,
in comparison, uses experimental results to evaluate many-core
design considerations and zero-in on the best choice of process
technology for a future SpiNNaker CMP.

Most large-scale neural simulations [7], [8] utilize super-
computers. The Blue Brain project [7] uses BlueGene/P su-
percomputer [9] to simulate cortical columns. The BlueGene/P
is not a custom architecture, but a general purpose massively
parallel system. Ananthanarayanan et al. [8] also report using
the Blue Gene/P machine for cat cortical column simulation as
part of DARPA’s Systems of Neuromorphic Adaptive Plastic
Scalable Electronics (SyNAPSE) program.

In the CMP arena, quite a few many-core chips have been
reported in literature which differ in a host of parameters like
die size, process technology, number and type of processors,
power consumption, operating frequency, flops etc. making
comparison difficult. However, a few notable CMPs are men-
tioned below.

The Blue Gene/Q chip, the basic processing element for
IBMs latest offering - the Blue Gene/Q massively-parallel
scientific computer - employs 18 PowerA2 processor cores
with floating-point units occupying a silicon real-estate of
359.5mm2 with 1.47 billion transistors fabricated in a 45nm
SOI CMOS process. Peak performance for the chip was
specified at 204.8 GFLOPS with 55W power dissipation when
operated at 1.6GHz with a 0.8V supply [10].

Truong et al. [11] have presented a 167-processor computa-
tional platform suited for DSP and multimedia applications
built from simple programmable processors. Implemented
in 65nm low-leakage ST Microelectronics CMOS process,
the chip has 55 million transistors occupying a die area of
39.44mm2. The power consumption is 47.5mW when operat-
ing at a clock frequency of 1.07GHz.
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Intel’s 80-core TeraFLOPS processor [12] consists of 80
tiles arranged as an 8x10 array and is designed to operate
at 4GHz. Fabricated in a 65-nm 8-metal CMOS process, it
occupies an area of 275mm2, has 100 million transistors and
achieves over 1.0TFLOPS while dissipating 97W at 4.27GHz.

Tilera’s TILE64 processor [13], with 64 tile processors
arranged in an 8x8 array, fabricated in a 9-layer 90nm triple-
Vt CMOS process consumed 10.8W core power when running
a deep-packet inspection application at 750MHz. Their latest
TILE-Gx family [14] of 40nm many-core processors, designed
for cloud computing datacentres, come with up to a hundred
64-bit cores operating at frequencies up to 1.5GHz. The 100-
core version with 32MB of on-chip memory has a power
consumption of 20W.

Compared to the above chips, the SpiNNaker CMP, with
100 million transistors in a 101.64mm2 die, peak performance
of 3.96GIPS and a power consumption of 1W at 1.2V when
all the processor cores are functioning at 180MHz, is a
customized architecture which is much more energy-efficient.

III. OVERVIEW OF SPINNAKER

SpiNNaker [15] is a biologically-inspired, massively parallel
computing architecture designed to facilitate the modelling and
simulation of large-scale spiking neural network systems of
up to a billion neurons and a trillion synapses in biological
real-time. It is a generic and programmable platform for
neuroscientists, psychologists and brain researchers to explore
brain functions with software neuronal models. The architec-
ture scales from a single chip with 18 processor cores in
its smallest configuration to a system of 65,536 chips with
1,179,648 processors in a fully-fledged machine, delivering
peak processing power of over 235 Dhrystone TeraIPS.

Fig. 1. SpiNNaker Machine

A. SpiNNaker System Architecture

The SpiNNaker machine is designed as a very large array
of up to 216 nodes, each node containing a CMP die and a
128MB SDRAM die, stacked and housed in a single 300-pin
BGA package. Each CMP contains 18 processing cores, each
capable of simulating up to 1000 spiking neurons. Instead of
many large and fast processors, this design takes advantage of
one of the most important features of embedded processor
cores - their low power consumption - to deploy a low-
power, massively-parallel architecture with many simple cores.

Special emphasis is also placed on its fault-tolerance features.
Fig.1 shows the connection of multiple chips to form a
SpiNNaker machine and also the manner in which this system
connects to the outside world.
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Fig. 2. SpiNNaker chip organization showing the CMP and the SDRAM

B. SpiNNaker CMP

The basic building block of the SpiNNaker machine is
the SpiNNaker chip with the CMP and the SDRAM. The
SpiNNaker CMP, shown in Fig.2, is a Globally Asynchronous
Locally Synchronous (GALS) multi-processor SoC [16] with
ARM968ES processing nodes residing in synchronous islands
surrounded by a packet-switched asynchronous communica-
tions infrastructure. The GALS architecture not only simplifies
timing closure in the SoC design [17] but also facilitates isola-
tion of faulty processor nodes. Self-timed delay-insensitive on-
chip interconnects based on CHAIN technology [18] are the
backbone for on-chip and off-chip communications. System-
wide communication is handled by the two separate hardware
communications channels - theComms NoCand theSystem
NoC. The Comms NoC implements inter-processor commu-
nications between any processor to any other processor in
the system. The off-chip communication is handled through
a bespoke multicast router with its routing tables and six full-
duplex links withTransmitandReceiveinterfaces connecting
to neighbouring chips in the north, south, east, west, north-
east and south-west directions forming a 2D toroidal triangular
mesh. The System NoC provisions the chip-wide sharing of
system resources, viz. 32KB System RAM, 32KB System
ROM, System Controller, Watchdog Timer and Ethernet Con-
troller Interface. It also provides access through a memory
controller to 128MB off-die SDRAM, private to each CMP
but global to its processors, housed in the same package. The
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sharedSystem ROM and RAM are used for loading and wave-
pipelining the boot/application code and for inter-processor
communication as a mailbox, when needed. Each CMP can
communicate with the external world through a 100-Mbit
Ethernet interface.

The System NoC implements Silistix’s custom protocol
with AMBA AXI adapters [19] whereas the Comms NoC has
2-of-7 NRZ for off-chip links and 3-of-6 RTZ for on-chip
links. As opposed to typical synchronous bus interconnect, the
asynchronous NoCs with their packet-switched fabric deliver
scalable, high-bandwidth, power-efficient, multicast and low-
latency communications [20].

C. SpiNNaker Processor Node

The internals of the SpiNNaker Processor Node are shown
in Fig.3. The processor selected for the SpiNNaker machine is
the 32-bit ARM968E-S processor which is a power-efficient,
small-footprint core designed for low-power, data-intensive ap-
plications with a Dhrystone performance of 1.1 DMIPS/MHz
[4]. The core is fully synthesizable, so it can be ported
quickly and efficiently to different process technologies. The
processor node performs both computation and communica-
tion functions. On-chip, each processor node has an ARM968
core, private, directly-connected 32KB Instruction Tightly
Coupled Memory (ITCM) and dual-banked (for interleaved
word access) 64KB Data TCM (DTCM) and peripherals such
as the Timer, Vectored Interrupt Controller (VIC), Communi-
cations Controller (CC) and Direct Memory Access Controller
(DMAC). The Timer generates simulation time step intervals
for the neuronal models. The CC handles the packet-based
traffic at the processing end. The custom-designed DMAC
shares access to the TCMs with the processor core through a
dedicated AMBA AHB-lite slave interface. Its main function
is to offload communication tasks from the processor and
provide transparent access to other system resources such as
the System RAM, System ROM and SDRAM through the
System NoC. The VIC handles up to 32 interrupt requests
with programmable priority from the node peripherals as well
as system resources and generates IRQ and FIQ interrupts to
the processing core. A IEEE 1149.1-compliant JTAG port is
also available for debugging purposes.

IV. T ECHNOLOGY SCALING

In every process generation, the minimum channel length
of the transistor is roughly scaled by a factor S = 1/

√
2. In

practice, a combination of both Constant Field Scaling and
Constant Voltage Scaling is used to scale CMOS devices.
Compared to the previous process generation, same-size die
can now accommodate twice the number of transistors. Thus,
the major benefit of scaling is the increased density of transis-
tors thereby enhancing the capability to integrate more devices
in the same area or added functionality. The side-effects are
the ever-increasing power-density and the associated difficul-
ties to dissipate the increased power. Therefore, to harness
the benefits of Moore’s law and deliver increased compute-
power and performance while simultaneously keeping power
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Fig. 3. Details of a SpiNNaker Processor Node

to a minimum is onerous. Also, the leakage power increases
dramatically below the 130nm technology generation.

A. Process Libraries

Wafer fabs and independent foundries offer several process
technology library variants at different technology nodes, each
optimized for performance, power, supply voltage or threshold
voltage. This selection of libraries enables the CMP designer
to carry out design exploration from the power/speed tradeoff
viewpoint and to incorporate power-management considera-
tions throughout the design flow. For example, the choice
could be between a high-speed high-leakage library or a low-
speed low-leakage library. To reduce the leakage power in
finer geometries, the threshold voltage (Vt) of the transistors
is raised, but this results in a corresponding decrease in the
transistor operating frequency. In the SpiNNaker CMP design,
multiple-threshold libraries have been used in a concerted
effort to meet the performance of timing-critical circuits and
minimize the leakage power in non-timing-critical paths.

B. Framework, Tools & Metrics

We use the SpiNNaker CMP as the experimental platform
for our research. The Synopsys Galaxy Design Platform, with
tools for RTL simulation, logic synthesis, physical implemen-
tation, timing and power analysis, such as Design Compiler,
IC Compiler, PrimeTime and PrimeRail, is used for the design
and implementation tasks. Faraday standard cell libraries for
UMC process technology at 130nm and 90nm nodes - acces-
sible to universities for academic and research purposes - have
been used for the experiments. System-level metrics envisaged
are the area/design cost, throughput and power efficiency. The
experimental results are analyzed and discussed below with a
view of comparison in terms of area, power and performance.

22



100 120 140 160 180 200 220 240 260
2.85

2.9

2.95

3

3.05

3.1

3.15

3.2
P

ro
ce

ss
or

 N
od

e 
A

re
a 

(s
q.

m
m

)

Maximum Frequency (MHz)

 

 
130nm SP
130nm LL
130nm HS
130nm SP−LL combination

150 200 250 300 350 400 450 500
1.72

1.73

1.74

1.75

1.76

1.77

1.78

1.79

P
ro

ce
ss

or
 N

od
e 

A
re

a 
(s

q.
m

m
)

Maximum Frequency (MHz)

 

 
90nm SP
90nm LL

(a) Area in 130nm technology (d) Area in 90nm technology

100 120 140 160 180 200 220 240 260
5

10

15

20

25

30

35

40

D
yn

am
ic

 P
ow

er
 (

m
W

)

Maximum Frequency (MHz)
150 200 250 300 350 400 450 500
5

10

15

20

25

30

35

40

45

50

D
yn

am
ic

 P
ow

er
 (

m
W

)

Maximum Frequency (MHz)

(b) Dynamic Power in 130nm technology (e) Dynamic Power in 90nm technology

100 120 140 160 180 200 220 240 260
0

200

400

600

800

1000

1200

1400

1600

1800

Le
ak

ag
e 

P
ow

er
 (µ

W
)

Maximum Frequency (MHz)
150 200 250 300 350 400 450 500
0

500

1000

1500

2000

2500

3000

3500

Le
ak

ag
e 

P
ow

er
 (µ

W
)

Maximum Frequency (MHz)

(c) Leakage Power in 130nm technology (f) Leakage Power in 90nm technology

Fig. 4. Area, Dynamic Power and Leakage Power of SpiNNaker Processor Node for 130nm (SP, LL and HS libraries) and 90nm (SP and LL libraries)
process technologies with the current implementation also highlighted with the pentagram

C. Experiments on Technology Scaling of the SpiNNaker Pro-
cessor Node

Experiments on the physical implementation of the SpiN-
Naker Processor Node are carried out in 130nm and 90nm
technology nodes with Faraday standard cell libraries. The sil-

icon area, highest frequency attained and power-consumption
figures are measured from these experiments. These figures
may be extrapolated for future technology nodes or form the
basis for system model creation for a typical CMP.

To get a comprehensive perspective of technology scaling
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from 130nm to 90nm, we have evaluated three different
standard cell library variants (High Speed (HS), Standard Per-
formance (SP), Low Leakage (LL)) at the 130nm technology
node and two variants (SP and LL) for the 90nm node. Not
just the standard cells, but the RAMs also specifically designed
for these library variants have been utilized in our experi-
ments. The HS library cells are targeted for implementations
where achieving highest possible performance is paramount.
The SP library is characterized for general-purpose standard-
performance implementations. The LL library has cells with
high threshold voltage and therefore has low leakage-power
dissipation.

It is worthwhile noting here that the experimental results
presented below, for the sake of a deeper understanding of the
key building block of the CMP and for carrying out design
exploration on a small-scale problem, pertain to the Processor
Node alone and not the entire CMP. The SpiNNaker Processor
Node is synthesized with its operating frequency as the main
design constraint for target frequencies ranging from 100 to
500MHz in numerous iterations and measurements taken of
the worst critical path delay, maximum frequency achieved,
dynamic power, leakage power and area. Only the synchronous
portion of the processor node was subjected to the following
experimentation as the asynchronous network interface part
was hand-crafted to safeguard the timing assumptions. This is
the reason that the processor node area in 130nm technology
mentioned in the following section is about 3.0mm2 whereas
the fabricated processor node area is 3.75mm2.

D. Experimental Results for 130nm Process Technology

Operating Frequency: As can be seen from Figs.4(a)-(c),
depending on the library variant chosen, the frequency at
which the processor node can be operated varies from a
maximum of 260MHz with the HS library to a minimum
of 110MHz with the LL library in 130nm technology. This
corresponds to a critical path length of 3.85ns/9.05ns at the
worst-case process corner of the respective libraries. The
design targeted towards the SP library can achieve almost the
same performance as the HS library in the lower range of
the desired frequencies whereas the higher-end of the range
is achievable only with the HS library with considerable
overhead on the dynamic and leakage power as explained
below. So, depending on the operating frequency desired, one
of these libraries or combinations of up to two libraries (for
e.g. SP-LL, HS-SP) may be chosen by the designer as the
target library for implementation.

Silicon Area: Fig.4(a) shows the silicon area for the proces-
sor node in a 130nm process. The area ranges from 2.88mm2

with the HS library to 3.13mm2 with the LL library. This
anomaly in standard cell area, wherein the HS design is much
more compact than the LL design, can be directly attributed
to the number of standard cells utilized in the design: 46,709
for HS as opposed to 66,886 for the LL design. Comparison
between the same type of standard cell with the same drive
strength, for e.g. NANDX8, from LL and HS libraries shows
that the intrinsic delay for the LL-type standard cell is twice

that for the HS-type cell. Therefore, in an attempt to meet the
target frequency (design constraint), the tools introduce more
cells in the slower paths to extract greater parallelism. The end-
result is larger area for a much slower design. The SP design,
as expected, is a medium-sized design with performance
comparable to the HS design at the lower end of the operating
frequencies achieved. It makes more sense to make use of
the SP library for designs where the achievable operating
frequency is not the main criterion, as the area overhead is
very little (about 0.18mm2).

Dynamic Power Consumption: Fig.4(b) shows the dynamic
power consumption predicted by the tools for the processor
node in a 130nm process. The range over which the dynamic-
power consumed by the design varies within a single target-
library is strikingly wide. For the HS design, the processor
node consumes about 7mW @ 145MHzvs40mW @ 255MHz.
This huge variation can be explained by the increase in
the standard cell count of the design at 255MHz (60,735)
compared to the lower frequency (46,709). As stated in the
above paragraph, the implementation tools try to match the
design constraint set by the designer as closely as possible,
which in turn leads to a bloated design at the extreme case
scenario. Therefore, it is not advisable to use the HS library if
the power budget is limited. The SP and LL designs, naturally,
consume less power as they operate at lower frequencies in
comparison to the HS design. However, there is an overlapping
central region in the graph where the dynamic power is
comparable for HS and SP designs. In this specific region,
other metrics such as the area and leakage power come into
play while evaluating the trade-offs involved. If total power
was the overriding constraint, we would choose the LL library
for the design implementation and our experimental results
lend support to this.

Leakage Power Consumption: Fig.4(c) plots the static leak-
age power for 130nm designs at the various operating fre-
quencies. As can clearly be seen, the LL library consumes
the least (around 50µW) whereas the HS design has the
highest leakage power (around 1600µW), with the SP design
falling in the middle (around 385µW). The SP design has
75% less leakage power in comparison with the HS design
over the central region of the graph with approximately the
same dynamic power consumption. It is important to note that
as the cells in the LL library are designed with the intention
of keeping leakage power to the minimum, this observation
validates our design. Also, leakage power accounts for about
10% of the total power consumed under full-load conditions.
This constitutes a major drain on the power resources for
systems in which portions of the circuitry have to be put in
sleep-mode for a considerable amount of time.

E. Experimental Results for 90nm Process Technology

We had to make do with the two variants of the standard cell
libraries and SRAMs that were available for the 90nm process:
SP and LL. For the sake of completeness, the experiments
should have included 90nm HS library. This was unavailable
and therefore, could not be included in the evaluation.
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Operating Frequency: A noticeable difference in operating
frequency is inferred from Figs.4(d)-(f) - the SP design at
about 465MHz is twice as fast as the LL design at 238MHz.
Compared to the 130nm design, it is to be noted that the
operating frequency attained by the 90nm LL design is almost
the same as that achieved by 130nm SP and HS designs.
Overall, the 90nm LL library is a much better option for a
future design, if the aim is to operate at around 230MHz, as it
comes with added benefits of smaller area, lower dynamic and
leakage power, compared to the 130nm HS library. Albeit, if
the specification is to operate at around 400MHz, the 90nm
SP library is the way forward.

Silicon Area: The area for 90nm SP and LL designs are
plotted in Fig.4(d). For the processor node, the area ranges
from 1.72mm2 to 1.75mm2 with the SP library and from
1.74mm2 to 1.78mm2 with the LL library. We can infer
from this metric that there is not much difference in the area
irrespective of the library variants - the maximum variation is
only about 3% - and therefore insignificant at 90nm. However,
progressing from 130nm to the finer 90nm technology allows
the integration of roughly double the function on a similarly
sized chip. This can be confirmed by the fact that the silicon
area has shrunk by 43% from approximately 3mm2 in 130nm
to about 1.7mm2 in 90nm. It is to be noted that the RAM
area, which forms 80% of the Processor node area, has itself
reduced from 0.8mm2 to 0.47mm2, a 60% shrink. So, it can
be inferred that the scaling to the next technology generation,
at least in this particular technology, affects both the RAM
macros and the standard cells uniformly.

Dynamic Power Consumption: Fig.4(e) is an interesting
plot in that it shows that the dynamic power consumed by
the 90nm SP design varies from 15.62mW @ 367MHz to
49.97mW @ 465MHz. This is too drastic a variation, a three-
fold increase, which proves that this library is only to be
used if we are pushing for the highest operating frequency
and are not bothered by the power consumed, which might
be wasteful when the operating costs are factored in. How-
ever, if the specification calls for approximately 360MHz, the
90nm SP design is indeed useful as the dynamic power is
comparable to most of the other library designs, disregarding
the leakage power at this point. 90nm LL design is favorable
in the 200-250MHz region due to the reasonable value for
the dynamic power consumed. The dynamic power variation
at 90nm is quite similar to that at 130nm. The dynamic
power consumption of 90nm SP design is slightly higher than
130nm SP design with improvement in operating frequency
from 250MHz to 450MHz. By capitalizing on the higher
operating frequency of 90nm SP design, higher performance
may be achieved at smaller technology scale but with a slight
power overhead. Comparing the 130nm and 90nm LL designs,
Figs.4(b)&4(e), the enhanced throughput that can be garnered
with the increased operating frequency while maintaining the
same power envelope makes the power savings that can be
made by migrating to 90nm even more evident.

Leakage Power Consumption: Fig.4(f) also shows a marked
difference between the leakage power for 90nm LL (about

70µW) and SP (about 3mW) library designs. This in itself
could be a deciding factor when faced with the choice of these
libraries. In comparison with the 130nm library variants, the
leakage power has almost doubled in the 90nm generation.
This further reinforces the fact that the leakage power which
was negligible in technology nodes 130nm and higher has
become a significant factor in the 90nm node.

The above experimental results confirm that scaling down
from a technology node results in a higher integration level,
which, in turn, translates to more functionality in a similarly-
sized chip or a smaller footprint for the same design. It boils
down to making an informed decision based on how the area
savings and performance gain are to be balanced against power
savings. Considerable power savings translate to an overall
reduction in the total cost of ownership over the lifetime of the
system, which is significant for high-performance computing
systems as the running cost matches, or even surpasses, the
acquisition cost.

F. Power Efficiency

In this section, we embark on evaluating the processor
node designs based on another metric, their power efficiency.
We have used Dhrystone MIPS divided by the total power,
which is the sum of dynamic and leakage power, to calculate
this metric. The higher the value of DMIPS/mW, the more
power efficient the design is. It can be inferred from Fig.5
that the 90nm LL library stands out from the rest in terms
of power efficiency. This is a direct consequence of the low
dynamic power and very low leakage power consumption of
the 90nm LL design while operating at a reasonable frequency
of 200MHz. In the current SpiNNaker CMP, quite a lot of
effort has been put in to optimize the processor node to
deliver a good computational rate per Watt. The 130nm SP-
LL combination has been used to fix this figure in the central
region of the plot. When moving to the 90nm technology
node, disregarding cost aspects, 90nm LL seems the most
appropriate (greenest) choice of design library so that the
machine itself can be limited to a strict power budget. On
the other hand, the 90nm SP library design achieves power
efficiency comparable to that of the current 130nm design.
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Fig. 5. Power Efficiency of SpiNNaker Processor Node
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G. Performance Density

Yet another metric we have used for evaluation is the Per-
formance Density of the various designs. This metric relates to
the throughput in relation to the silicon area. We have added 2
more scenarios in this experiment where in the 90nm library
designs the Data TCM sizes have been doubled to 128KB.
The reasoning behind that is that, at the increased frequency
of operation in the 90nm node, the processor should be able
to achieve higher throughput, but requires a larger RAM in
proportion to this throughput. Fig.6 plots the experimental
results of this phase of design exploration. It can be seen from
the plot that the added RAMs have lowered the performance
density figures with little effect on the maximum frequency
achieved. To explore this further, we need to take into account
System NoC bandwidth and latency, which we have not done
at this stage. Still, the 90nm LL library design is quite
attractive in terms of area, performance and power, if we
decide to migrate to the 90nm node.
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V. DESIGN CONSIDERATIONS

A. Balancing Area, Performance, and Power

High-performance and low-power devices are often consid-
ered to be at opposite ends of the design spectrum. Finding a
balance is a challenge, but several fundamental features helped
SpiNNaker achieve the goal of reducing size and also sav-
ing significant power while achieving adequate performance.
Speed/power/area trade-off analysis with the results of the
experiments described above ensured that the design balances
throughput with attractive area and power. For coordinated
power saving, both the leakage as well as dynamic power
dissipation need to be kept within limits. Concurrently, it is
desirable to achieve a good-enough performance with minimal
area overhead. In our evaluation, we have experimented with
implementing the Processor Node with the target libraries
individually and based on the results, made a judicious choice
for the Processor Node design implemented in the fabricated
CMP. So, for the fabricated 130nm SpiNNaker CMP design,
a combination of cells from SP (57%) and LL (43%) libraries
have been chosen for an area-efficient, low-power design.

The ensuing processor node design is highlighted in the
Figs.4(a)-(c) with the pentagram. It occupies about 3.75mm2

of silicon area and functions at about 180MHz with a power
consumption of about 20mW.

B. Power Optimization

To optimize the competing goals of throughput and power
efficiency, trade-offs are needed. In order to minimize the
operating costs of the SpiNNaker machine, the main strategy
employed is to reduce the power consumption. The SpiNNaker
system is built out of low-power embedded processors and
mobile DDR SDRAMs. Rather than employing large high-
performance power-hungry processing cores, small cores have
been chosen for the system, amortizing the area cost across
multiple cores. The SpiNNaker processor nodes operate at a
relatively low frequency of about 200MHz. Therefore, they
consume much less area and power and it is possible to
pack 18 of these processors in a single CMP. The ARM968
processors implement 32-bit fixed-point arithmetic as opposed
to the floating-point operations available in general-purpose
processors, thereby sacrificing performance for the sake of
an energy-efficient architecture. In addition, mechanisms have
been built in to power-off idle nodes of the machine, put
the processors intosleepmode when they are not used for
computation andwakethem up when the need arises.
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Fig. 7. Plot of the SpiNNaker CMP

C. CMP-Memory Packaging

The SpiNNaker chip is packaged, using wafer-stacking
technology, by stacking the SDRAM die on top of the CMP
die as seen in Fig.8. Each die is implemented individu-
ally: the 128MB SDRAM die is acquired from the memory
manufacturer as a Known Good Die and the CMP die is
manufactured using a conventional 2D IC process. Coarse
integration stacks these two dies in a 300-pin BGA package.
The ensuing advantages are improved system performance,
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reducedinterconnect power dissipation due to smaller parasitic
RC than that of conventional on-board (off-chip) wiring, cost-
effective packaging/PCB due to integration within the same
package and, in particular, reuse of the 2D CMP design with
the latest commercially available, possibly higher capacity
and speed, SDRAM dies. In future, with the emerging Wide
I/O JEDEC standard, a highly parallelized Wide I/O interface
with a relatively low memory frequency may be utilized to
connect the logic die with the memory die with Through-
Silicon Vias. This 3D integration will bring about a dramatic
reduction in I/O power, lowering the power consumption of
the SpiNNaker CMP still further. Also in tandem with the
progress in the DRAM market, a higher capacity SDRAM
die, possibly 1GB, may be incorporated into the chip for a
higher memory bandwidth to cater for the increased number
of faster processor cores that can be crammed in a smaller
geometry process in a die of similar size.

Fig. 8. SpiNNaker chip package substrate with SDRAM

D. Fabricated SpiNNaker CMP

The Processor Node is implemented in two variants consis-
tently tuning to achieve the best performance/power figures.
The variants are then replicated nine times each to achieve a
fairly regular layout. Fig.7 is a layout picture of the SpiNNaker
CMP with its major components highlighted. The standard
cell libraries have been augmented with custom-designed
asynchronous logic cells and macros. The CMP is fabricated
in UMC 130nm L130E process technology and has over 100
million transistors and a power consumption of 1W at 1.2V
when all the processor cores are operating at 180MHz. The
CMP achieves a peak performance of 3.96 GIPS.

VI. CONCLUSION AND FUTURE WORK

Based on the above results, a combination of cells from SP
and LL libraries have been chosen for the fabricated 130nm
SpiNNaker CMP. By scaling the SpiNNaker CMP down to
90nm, power efficiency is enhanced while maintaining its
performance at reduced die size. On the other hand, 130nm
process continues to be competitive in terms of manufacturing
and implementation cost compared to 90nm. The experimental
methods and results presented in this paper, though for a
proprietary CMP, are easily extensible to other CMPs, thereby
giving valuable insight before making implementation tech-
nology decisions. With a view to extending the current design
exploration, future research will concentrate on aspects such

as memory requirement and bandwidth limitations, design cost
and technological options for a future SpiNNaker CMP scaled
to an even finer process geometry (possibly 65nm, 45nm and
32nm). The impact of process variability and the resulting
reliability issues in finer technology nodes is another possible
avenue of research.

Though SpiNNaker is an application-specific architecture,
it can still be used for running applications such as ray-
tracing, protein folding etc. which are outside the purview of
neuroscience applications. For the neural applications, major
advantage is gained in the flexibility afforded by the software
implementation of neural models in the processor core and the
asynchronous communications infrastructure.
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Abstract: We propose a new design methodology, which 

simplifies the analog design cycle and introduces 

reconfigurable and accurate prototype of any analog IC. A 

comprehensive design methodology is being developed that it 

makes Analog IC customizable and adaptable by a field 

user. For example we have considered a most fundamental 

analog element, the operational amplifier (op-amp). The 

basic design of a two-stage compensated op-amp is firstly 

analyzed to estimate the basic circuit configuration which 

verifies its functionality. Secondly using its small signal 

equivalent model, specifications are being derived in terms 

of threshold voltage of transistors, present in the circuit. 

Indeed, with the help of floating gate transistors, which has a 

feature of post fabrication programmability of its threshold 

voltage, an accurate and reconfigurable prototype of a 

design can be obtained. The circuit is simulated using 

BSIM3 level49 MOSFET models in T-Spice 0.35µm CMOS 

process. Specifications such as slew rate, gain, CMRR, 

PSRR, gain bandwidth, input range and offsets are being 

derived and estimated their sensitivity with respect to 

threshold voltage of respective floating-gate transistors. The 

simulated results demonstrate that by programming 

threshold voltages, fine tuning of specifications with wide 

spectrum can be achieved. The designs fabricated using our 

methodology can be adaptive to any desired value of 

specification with very high precision (about 13bit 

programming precision can be attain). It can also make 

Analog ICs immune to most drawbacks like processes 

variations, device degradation by introducing new 

possibilities such as self correction and adaptability. 

  

Keywords: Accuracy, Floating-gates, Field Programmable 

analog array, Operational Amplifier, Reconfigurable, 

Specifications, Threshold voltage. 

 

I. INTRODUCTION 

NALOG circuits from long time are getting 

overshadowed by digital designs however real world 

consists of analog, all electronic systems ultimately 

have to interface at input and output with the analog 

signals. The portable electronic devices also require 

higher level of integration with lower power consumption, 

which pervades the need of analog. Moreover, with 

analog devices there would be no use of huge 

ADCs/DACs, decision box (filters) and can have easy 

interfacing with real world.  But still analog devices are 

less preferred because analog circuits are not easy and 

well defined like digital as there is no unique answer. 

Moreover, there is a knowledge mismatch between books 

and industrial training kits for analog circuit designs 

because teaching courses focus on analysis of analog 

circuits rather than on their designing. Design is actually 

reverse of analysis. As in industry one start with the 

answer, which are the specifications, and one has to work 

 
 

back to what circuit configuration to begin with and what 

component values to use. This mismatch of knowledge in 

books and industry create problems to fresh design 

graduates in industry. Dr. R.D.Middlebrook, Prof. of 

Electrical Engineering, California Institute of 

Technology, Pasadena, also states that “I believe design 

can be integrated into analysis at a much fundamental and 

detailed level” [1]. Indeed analog design cycle consists of 

many iterative steps. Analog designers have to maintain a 

tradeoff between fabrication time and costs. Designers 

also have to maintain a tradeoff between accurate and 

optimized prototype of a design. Thus any analog design 

turnaround time is about three months.  As well as, each 

new derivative (i.e. the same design with new value of 

specification) requires going through the complete design 

cycle again. Such limitations with analog IC design can 

be outshined by introducing adaptability and reconfigure 

ability in the designs. Recent efforts have introduced a 

fair degree of design automation and field 

programmability in the form of Field Programmable 

Analog Arrays (FPAA) [2, 3, 4 and 5]. These FPAAs 

have an array of analog components over a range of 

specifications that can be switched in/out of a design on 

the same lines as digital devices are in a FPGA. These 

chips can be programmed very close to desired 

functionality; besides the inbuilt device redundancy also 

helps to make it fault tolerant to a certain extent.  

Despite the phenomenal progress a basic question still 

eludes analog ASIC designers. Can we build generic 

analog devices that can be customized to desired 

specification by the user in a field programmable manner? 

Therefore we would like to propose a design methodology 

for analog ICs which integrate designing and analysis at a 

very fundamental level. As, we start designing any circuit 

at very basic level that is, start with a simple equivalent 

small signal model and some basic quantitative 

relationships that can establish the required functionality 

of the design with the help of sequence of steps. On the 

basis of design functionality, specifications of the design 

will be derived in terms of threshold voltage of the 

respective transistors used in the design. The design with 

the basic details of sizing and biasing condition can be 

fabricated. Moreover with the help of post fabrication 

programmability of transistor’s threshold voltage in 

floating gate transistors, we can produce accurate 

prototype of the design which are customizable to desired 

specification by a field user [6, 7 and 8].  Prof. Keith 

Hipel, a system designer said, “Any new methodology is 

required to solve application and application in turn is 

used to prove the proposed methodology. Therefore to 

prove our methodology we have considered an 

Operational amplifier, a fundamental building block in 

analog integrated circuit design. Various programmable 

op-amps with programming circuitry exists [9, 10 and 
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11], however, we proposes a methodology to develop a 

field programmable, reconfigurable and adaptive op

Using our design cycle we have analyzed, designed 

estimated the circuit functionality with basic circuit 

configuration and its specifications in terms of threshold 

voltages of respective floating-gate transistors.

Furthermore these specifications can adapt with high 

precision to any desired value by field user. Next section 

will illustrate our proposed design cycle with br

description of field programming of floating

transistor. Consequently with an example of op

basic design, we propose a design methodology for op

amp designing in the section III, followed by its 

simulation results.  

 

II. NEW DESIGN METHODOLOGY

The new design methodology to introduce field 

programmability, reconfigure ability and ad

analog circuit designs, using concept of floating gate 

transistors leads to a new and simpler analog design cycle. 

The flow chart of the new design cycle is shown in Figure 

1. Algorithm of the design flow is being illustrated in next 

section, however field and indirect programmability of

floating gate transistor is demonstrated in 

section.  

 

A. Proposed New Analog Design Cycle

    The usual design flow for analog designs consists of 

many iterative steps and verification tools. For desired 

specification, designing starts from first cut design using 

classroom equations. To optimize the circuit and t

optimized W/Ls for individual transistors before the

circuit is ready for fabrication sophisticated simulation 

tools with accurate yet complex simulation device models 

are required. Wherein, analog designers have to sustain a 

tradeoff between the prescribed design specifications with 

design sizing and biasing conditions while maintaining its 

functionality. Time and cost are very important gradient 

in such tradeoff, especially in determining the accurate 

and optimized prototype of a design. 

propose an alternative paradigm in design of analog 

devices wherein focus would be to reduce the 

overdependence on determining accurate W/L of 

individual transistors prior to fabrication. 

design cycle starts with the designing analog circuits from 

fundamental level, defining circuit specifications 

of threshold voltage of the transistors and programming it 

after fabrication to develop an accurate and stable 

prototype. Hence it proves to pave a way of analog

friendly environment in fundamental teaching, graduate 

level and at industry level. Algorithm of the proposed 

design cycle is as follows: 

 

Steps: 

1. Analyze circuit with the help of block diagram to 

establish desired functionality. 

2. Simulate the circuit to check its functionality 

with basic sizing and biasing conditions.

3. Design the equivalent small-signal model of the 

circuit. 

4. Derive specifications in terms of threshold 

voltage of transistors. 

], however, we proposes a methodology to develop a 

field programmable, reconfigurable and adaptive op-amp. 

e have analyzed, designed and 

with basic circuit 

in terms of threshold 

gate transistors. 

Furthermore these specifications can adapt with high 

precision to any desired value by field user. Next section 

will illustrate our proposed design cycle with brief 

description of field programming of floating-gate 

transistor. Consequently with an example of op-amp’s 

basic design, we propose a design methodology for op-

amp designing in the section III, followed by its 
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Simulate the circuit to check its functionality 
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signal model of the 

Derive specifications in terms of threshold 

5. Analyze sensitivity of each specification with 

respect to respective thresholds.

6. Simulate the circuit to check the sensitivity of 

each specification. 

7. Layout creation and verification

with basic sizing and biasing conditions.

8. Then after testing and extraction, fabricate the 

design. 

9. Program the transistor’s thresholds to adjust the 

desired specifications with huge accuracy

 

Figure 1: Proposed Analog Design Flowchart

 

B. Floating-gate Transistor

    Floating-gate MOS transistors are conventional MOS 

transistors wherein memory is stored in the form of 

charge trapped on floating-gate, affecting its threshold 

voltage. Two antagonistic quantum mec

processes, viz. injection and tunneling, alter the trapped 

charge on a floating gate. As these processes can occur 

during normal operation (indirect programming [13]), it 

leads additional attributes to the FGMOS transistors such 

as non volatile analog memory storage on floating

locally computed bidirectional memory updates and 

memory modification during normal transistor operation. 

Figure 2: Symbolic representation of a normal MOS with indirectly 

programmable floating gate using in

Figure 3: Pictorial representation of non-volatile, high precision, indirect 

and on-chip programming of Floating
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Tunneling 

   Charge is added to the floating gate by removing 

electron from it by means of Fowler-Nordheim tunneling 

across oxide capacitor. This shifts the curve (Figure 4) to 

the right or in other words threshold voltage of the 

transistor increases.  

Injection 

   Charge is removed from the floating-gate by adding 

electron on it by impact-ionized hot electron injection 

from the channel to the floating gate across the thin gate 

oxide. This shifts the curve (Figure 4) to the left or in 

other words threshold voltage of the transistor decreases. 

  

 
Figure 4: Output Characteristics of FGMOS transistor 

 

With such simpler design cycle and field programmability 

feature of FGMOS, any analog circuit can be designed 

and customized at the field user end. It can reduce design 

time and reconfigurable designs reduce costs of 

fabrication. Optimization of the design can be performed 

at the layout creation as only basic design is to be 

fabricated. Moreover, accurate prototype of the design 

can be obtained after fabrication. Hence it can produce 

highly accurate and optimized designs without any 

compromise. Indeed using our proposed design cycle, a 

design methodology can be developed for any analog 

circuit, i.e. which specification is most sensitive to which 

FGMOS threshold programming. Consequently such 

derived and estimated design methodology for any circuit 

can be used to generate accurate as well as reconfigurable 

prototypes of the design. To verify our design cycle we 

have designed various applications. For simplicity we are 

representing the design flow on the most fundamental 

analog element and demonstrated its derived design 

methodology.    

III. APPLICATION 

A. Analyses of Basic Op-amp Design 

Operational amplifier is a fundamental building block in 

analog integrated circuit design. A diagram of the two 

stage compensated op-amp with output buffer is shown in 

Figure 5, where first stage of an op-amp is a differential 

amplifier. This is followed by another gain stage, such as 

a common source stage, and finally an output buffer. The 

open loop gain of an op-amp is infinite so a compensating 

feedback loop which can make gain of op-amp finite and 

easily controlled by the resistance is used in the feedback 

path of op-amp and current biasing of differential 

amplifier is done to reduce the common mode gain and 

improves the CMMR ratio of op-amp. Op-amp is a 

voltage controlled voltage source in which output voltage 

depends upon the voltage difference in between inverting 

pin and non-inverting pins of an op-amp and with the help 

of op-amp various applications can be developed. To 

verify our proposed design cycle we have analyzed the 

op-amp circuit design with basic circuit configuration 

(sizing and biasing conditions) for desired basic 

functionality using simulation results as shown in Figure 

6. It shows voltage gain equals to 34db and 3db 

bandwidth equals to 30 kHz (represented by red curve in 

Figure 6). Subsequently the circuit is designed using its 

equivalent small signal model. 

 
Figure 5: Proposed Op-amp Circuit using FGMOS 

 

 
Figure 6: Plot representing voltage gain of proposed op-amp which 

shows programmability with FGMOS M7 (Vt7, M7 threshold voltage)   

 

B. Design of Proposed Op-amp Specifications 

Designing of proposed op-amp is demonstrated with the 

help of its equivalent small signal model. The circuit 

consists of a differential pair (M1 and M2), current mirror 

(M3 and M4) for biasing and a biasing MOS M5 along 

with output buffer (M6 and M7). From small signal 

equivalent model on applying nodal analysis, voltage gain 

is derived in terms of MOS transconductances and output 

resistances, which in turn can be substituted to generate 

gain in terms of MOS threshold voltages (Vt1 and Vt7). 

The voltage gain is given by: 
��
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Transconductances in equation 1 can be expressed in 

terms of square root of their respective saturation drain 

currents:�� �  ��
� � �⁄
2  � !"

��� 2⁄ � �⁄  )                                    (2) 

However the slew rate is given by: 
!#5
��  �  

%�5�&'
5	&(52
2��                                                         (3) 

This shows direct dependency of slew rate on Vt5 i.e. 

threshold voltage of FGMOS M5. Moreover, the common 

mode rejection ratio is the differential gain by common 

mode gain which is derived as: 

�)�� �  �*+,*+-
�*./0*.,*.1                 (4) 

Indeed these transconductances can be substituted in 

terms of the respective threshold voltages. Hence CMRR 

shows dependency on Vt1, Vt2 and Vt5. The PSRR can be 

written as  

2
�� � 34�56678
366�59:78                                  (5) 

However for positive PSRR two stage op-amp is 

connected in the unity-gain mode with an ac ripple of Vdd 

on the positive power supply. It is given by: 

�;< 2
�� �  �*+-*+/*+=
�*.-0*.>��*+/*.?@*+=*.1                       (6) 

Similarly negative PSRR depends on where the voltage 

Vbias is connected and is given by: 

	;<2
�� � *+-*+=
�*.-0*.>*.=                                   (7) 

The 3db bandwidth or gain bandwidth of the circuit is 

given by:  

A3"C �  ��1�;��                                                                    (8) 

Poles of gain: 

2� � @�
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Zero of gain: 

G �  *+?�D                                     (10) 

Output impedance form the model is being derived and is 

given by: 

HIJK �  �2�1��1
��1���
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��2�2����2��1�1����1�1
                  (11)  

 

C. Derive Sensitivity of each Specification 

The design of proposed op-amp using floating gate 

transistors is shown in Figure 5. To introduce field 

programmability in the design, all transistors in design are 

being replaced by indirectly programmable floating gate 

transistors as represented symbolically in the Figure 3 and 

represented symbolically in Figure 4. However basic 

characteristics of the design, mentioned in last section, 

can be expressed in terms of threshold voltage by 

replacing transconductance of the respective transistors 

with their threshold voltages. As the threshold voltage of 

these floating-gate transistors can be programmed on-chip 

after fabrication (as illustrated in section II), hence basic 

characteristics of the design can be adjusted after 

fabrication. Thus, such design methodology save several 

simulation steps and can produce accurate prototype of 

the op-amp design with specific characteristics. To obtain 

its design methodology, sensitivity of each specification 

with respect to respective threshold voltages is derived. 

Using equation (1) voltage gain shows dependence on Vt5 

and Vt7. Sensitivity of voltage gain with respect to 

threshold voltage of FGMOS M1 is given by: 
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Sensitivity of gain w.r.t Vt7 is given by: 
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Sensitivity of pole P1 of voltage gain with respect to Vt7:- 


&K721 �  �2&(7%7
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Sensitivity of pole P2 of voltage gain with respect to Vt7:- 


&K722 �  	&(7
&'
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Sensitivity of zero Z of voltage gain with respect toVt7:- 
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The Figure 6 illustrate that the gain can be programmed 

using FGMOS M7 as plot demonstrates that the gain 

varies at different M7 threshold voltage, Vt7. With 

decrease in threshold voltage, Vt7, gain of the proposed 

op-amp increases. Similarly rest of the important 

specifications like slew rate, CMRR, offsets have been 

derived in terms of threshold voltage of the respective 

FGMOSs and sensitivity of each will be analyzed. The 

output impedance from equation (11) is now considered 

and re-derived with respect thresholds and derives 

sensitivity w.r.t Vt7 and is given by: 
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Sensitivity of Slew rate with respect to Vt5 is given by: 
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Similarly sensitivity of CMRR with respect to Vt1 is given 

by: 
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And sensitivity of CMRR with respect to Vt3 is given by: 
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Moreover sensitivity of 3-dB Bandwidth with respect to 

Vt1 is given by: 
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Sensitivity of negative PSRR with respect to Vt2 is given 

by: 
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Similarly sensitivity of negative PSRR with respect to Vt6 

is given by: 
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And sensitivity of positive PSRR with respect to Vt2 is 

given by: 
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Therefore the derived specifications of the proposed op-

amp design can be programmed using floating gate 

transistors after fabrication. Simulation results illustrating 

such programming or sensitivity of respective 

specification while considering each FGMOS 

individually. The plots in Figure 7, 8, 9 and 10 represent 

the effect of each threshold voltage on all considered op-

amp specifications. Figure 7 represents sensitivity of 

specifications with respect to Vt1 and Figure 8 represent 

sensitivity of specifications with respect to Vt3. Moreover, 

Figure 9 represent sensitivity of specifications with 

respect to Vt5 and Figure 10 represent sensitivity of 

specifications with respect to Vt7. Similarly sensitivity of 

specifications with respect to each FGMOS threshold can 

be obtained using simulation results. From such plots a 

design methodology (steps for on-chip programming) for 

the design can be developed which illustrate that which 

specification can be adjusted with which FGMOS 

threshold. Or in other words design methodology states 

that the most sensitivity pair of each specification with 

respective FGMOS threshold. The most sensitive pairs 

along with compensation of rest of the FGMOS 

thresholds determine the steps to program a specific op-

amp specification after fabrication. 

 

 
Figure 7: Plot representing sensitivity of all specification with respect to 

Vt1 

 

 
Figure 8: Plot representing sensitivity of all specification with respect to 

Vt3 

 
Figure 9: Plot representing sensitivity of all specification with respect to 

Vt5 

 

 
Figure 10: Plot representing sensitivity of all specification with respect 

to Vt7. 

 

D. Proposed Op-amp Design Methodology  

With the help of sensitivity equations as illustrated in last 

section and sensitivity plots with respect to each FGMOS, 

a design methodology for proposed op-amp have been 

developed. It is observed that each specification shows 

dependency on more than one FGMOS threshold. So with 

some design modification as well as iterative simulations 

each specification can be estimated with respect to only 

one FGMOS threshold, compensating rest all the FGMOS 

thresholds. Like voltage gain is sensitive to Vt5 and Vt7 

however most sensitive to Vt7 while compensating Vt5. 

However slew rate shows most sensitivity with Vt5. 

Similarly with analyzing sensitivity of each specification 

a design methodology for the proposed op-amp is 

developed. The design methodology is as shown below: 

 

Identified VT - Spec (most sensitive) pairs 

� Gain          - VT7 

� Slew Rate  - VT5  

� Poles and zeros of gain - VT7 

� CMRR            - VT1 

� Output impedance  - VT7 

� PSRR             - VT2 

� Input Range Vi(min) - VT1  

� Input Range Vi(max) - VT3  
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� Offset voltage      - VT2  

� Output Range      - VT6 

The most sensitive pair of specification with respective 

FGMOS threshold keeping sensitivity of rest of the 

FGMOS threshold’s constant, a specification can be 

programmed after fabrication. Thus the proposed op-amp 

design using FGMOSs can be fabricated with basic circuit 

configuration. And its specifications can be adjusted to 

desired value with accuracy of about 13 bit programming 

resolution (as claimed in [12]). In addition to it, any op-

amp design with new values of specification can be 

reconfigurable on the same design. Moreover, design 

variations due to noise, temperature change, parasitic, etc. 

can also be adjusted adaptively in the design after 

fabrication.    

 

IV. CONCLUSION 

The proposed op-amp design using indirectly 

programmable floating gate transistors is simulated using 

BSIM3 level49 MOSFET models in T-Spice, 0.35µm 

CMOS process. Using small signal analysis of the design, 

voltage gain, poles and zeros of voltage gain, 3-db 

bandwidth, offset voltages, output resistances, CMMR, 

slew rate, output voltage range are derived. Sensitivity of 

each characteristic with respect to threshold voltage of the 

respective transistors is derived, while considering each 

one individually. The specifications are obtained from 

simulations and verified with theoretical results. The 

graphs showing programming for voltage gain, poles and 

zeros, 3-db bandwidth, output resistance, offset voltage, 

slew rate, CMRR with respect to respective dominant 

floating gate transistor programming have been generated. 

Sensitivity analysis for each characteristic has been 

illustrated with the help of graphs. Hence, characteristics 

of our proposed Op-amp design can be tuned after 

fabrication in small range but with very high precision 

(about 13bit programming resolution can be obtained 

using floating gate transistors). An accurate and 

reconfigurable op-amp design can be fabricated with less 

design time and costs and without any additional 

programming circuitry. Moreover, this methodology to 

introduce field programmability can be extended to 

various analog circuit designs. Instead of multiple steps of 

simulations, testing and verification, accurate prototype 

design can be obtained by tuning the specifications after 

fabrication with the help of floating-gate transistors. 

However, there is some limitation of range of tuning but 

still such systematic approach can bring drastic revolution 

in analog circuit design. 
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Abstract— The demand of power saving and highly efficient 

LSI has increased by the miniaturization of semiconductor 

technology and the spread of portable device such as a mobile 

phone. We propose an automated design approach of 

dependable VLSI that address the timing error caused by the 

variation in the element characteristic in a deep submicron 

domain, aging and soft error. The improved canary FF 

described in this paper reduces about 8% of power 

consumption compared with the original canary FF. Using the 

existing standard cell library, the canary FF is mapped 

automatically to gate cells and its influence on chip area and 

power consumption is investigated.  

 

Keywords-Flip-flops, timing error, dependable system, design 

automation 

 

I.  INTRODUCTION  

Due to the miniaturization of semiconductor technology 

and the spread of portable devices such as a mobile phone, 

further improvement of speed and power-saving LSI has 

come to be called for. The design method which takes the 

worst case scenario makes the design margin too large 

because of the parameter variation of the elements in the 

deep submicron domain has bad influence for performance 

and power consumption. Moreover aging and soft error 

would cause the timing error which is not assumed in the 

design phase and it has become one of the main factors of 

malfunction of an integrated circuit. 

 In this paper, the design technique of dependable VLSI 

which uses canary FF (CFF) by concentrating on the typical 

case is proposed. First, the technique of limiting the 

positions where to replace conventional DFF with CFF by 

considering the timing error information acquired from the 

worst case design is described. The proposed method is 

evaluated on two sample microprocessors. We also propose 

improved canary FF (iCFF) which is power saving and 

requires smaller area is introduced by optimizing transistor 

level circuit design. It is evaluated that the improved canary 

FF can decrease power consumption by about 8% that of 

canary FF. This paper further examines area and power 

overhead by canary FF by introducing a novel cell mapping 

technique to implement canary FF. Note that the improved 

canary FF is not used for the analysis of are and power 

overhead since the cell layout is under development. Canary 

FF can be used for reducing power dissipation in 

combination with DVS (Dynamic Voltage Scaling) [2] or 

for timing error detection like Razor FF[4] or for soft error 

protection. It is studied that in nanoscale CMOS domain, 

soft error will just not impact SRAMs but latches/flip-flops 

and combinational logic as well [7]. 

  After introducing the related research of timing error 

detecting FF in Section II, Section III describes the 

transistor level circuit structure of improved canary FF. 

Detailed implementation method of canary FF is described 

in Section IV and in Section V the area and power overhead 

by canary FF are examined. Lastly further works and 

direction of possible studies are described. 

  In the following discussion, we use “CFF” for canary FF 

and “iCFF” for improved canary FF when the meaning is 

not ambiguous from the context. 

 

II. TIMING ERROR DETECTING FLIP FLOP 

Many researches have been done for detecting a timing 

error of integrated circuit. There are mainly two methods in 

order to improve the reliability of a circuit, one uses spatial 

redundancy and the other uses time redundancy. This paper 

describes a design approach for detection of timing error 

using CFF which adopts spatial redundancy and the method 

to integrate dependable LSI by utilizing it. We have so far 

reported the technique of reducing design margins by the 

variation of the element on LSI by using canary FF[2]. In 

recent years the degree of complexity of semiconductor 

process is increased and highly efficient and low power 

consumption LSI is demanded. The problem of variation in 

the device characteristic on a chip is emerging and the 

1 CREST, Japan Science and Technology Agency 
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design method which takes the variation into consideration 

is indispensable.  The change of the device characteristic by 

aged deterioration which is difficult to measure in the design 

phase and soft error are also serious issues. Flip-flops which 

detect a timing error such as Razor Flip-Flops (RazorFF) [4],  

RazorII [3], Phase-adjustable Error Detection Flip-Flop 

(PEDFF), and Delay-Compensation Flip-Flops (DCFF) have 

been proposed. Moreover against soft error, redundant FF 

such as Built-In Soft Error Resilience (BISER) [7] and 

Bistable Cross-coupled Dual Modular Redundancy [5] are 

proposed. There are problems when using redundant FF, 

such as the increase of the power consumption and the cell 

area. It has been reported that the timing error detecting FF 

requires two to  three times cell area compared with the 

conventional FF because it consists of shadow FF(Latch), a 

delay element and an error judging circuit in addition to 

main FF. On the other hand, there is a proposal to reduce the 

power consumption of the whole chip by utilizing the timing 

error detecting FF in combination with DVS[2]. 

 

III. IMPROVED CANARY FLIP FLOP 

Canary FF has been proposed for detecting timing error 

and its circuit block is shown in Fig.1. In this paper, in order 

to consider implementation of LSI using canary FF, the 

transistor level circuit of CFF and cell mapping of CFF are 

examined. As evaluation, ROHM 0.18µm Kyoto University 

version standard cell library [1] is used. The cell library 

generated using three design corners by varying temperature 

and supply voltage: Max(also called worst), Typ(also called 

typical), and Min(also called best). The three different 

process corners are shown in Table I.  The propagation 

delay of cell is longest at “Max” condition and shortest at 

Min “condition”.  

 Fig.1 shows the circuit level schematic of CFF. CFF 

consists of main FF and shadow FF and delay buffer and 

XOR gate to detect a timing error.  Phase synchronized 

clock is provided to the main and shadow FFs. Delay buffer 

is inserted at the input of shadow FF, hence the timing 

requirement of  the shadow FF is severer than the main FF.   

Timing error is detected by comparing the outputs of two 

FFs. If two values are equal, system is safe and can scale 

down supply voltage or scale up frequency. If the two 

values are different, system is unsafe and about to fail to 

meet timing condition, so error signal is asserted to alert the 

error. Then the system might scale up supply voltage or 

scale down frequency. Fig.2 describes the conceptual timing 

diagrams of CFF showing timing error detection. From 

Fig.1, it is expected easily that it requires large cell area and 

the power consumption will be more than doubled since two 

equivalent FFs are needed in addition to the delay buffer and 

error detection logic. In order to reduce the area and power 

overhead, we try to optimize its transistor-level circuit 

design. When a timing error occurs, it is possible to detector 

the error at the timing when the data has been latched by 

master latch of the master and the shadow FF, hence the 

slave latch of shadow FF can be removed. The proposed 

circuit of iCFF is shown in Fig. 3. 

Power analysis by HPICE simulation of three FFs: 

 
Fig. 1.  Canary FF 

TABLE II 

Power analysis of DFF,CFF and iCFF 

(Clock cycle: 20ns) 

 DFF CFF iCFF 

Avg.PWR[mW] 0.025 0.068 0.063 

Max.PWR[mW] 5.0 5.3 4.9 

 

TABLE I 

Rohm0.18 micron standard cell library 

Vdd Temp. Process 

1.6V 85 Max 

1.8V 25 Typ 

2.0V -40 Min 

 

 

 
Fig. 3.  Improved Canary FF circuit 

 

 
Fig. 2. Conceptual timing diagrams showing timing 

error detection 
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DFF,CFF and iCFF, is shown in Table.II. As expected, the 

average power of CFF is more than doubled than DFF. It is 

confirmed that the iCFF can save 7.8% of average power 

consumption and 7.6% of maximum power consumption of 

CFF.  

 

A. Strategy of replacing with improved canary FF 

If only high reliability is pursued, it is possible to replace 

all the FFs with iCFF, but the conventional microprocessors 

use thousands to tens of thousands number of FFs, it is not a 

practical technique when considering the area and power 

overhead by iCFF. Moreover, it would become serious issue 

how to collect timing error signal reported from all iCFFs. 

Hence, we have proposed that only a small number of DFF 

which has a small timing margin should be replaced with 

CFF [8]. We follow almost same approach for the selective 

replacement method described in [8].  Selective replacing 

method also used in [3] to replace DFFs of critical paths to 

Razor FF, however the detailed criteria and its 

implementation are not described in both studies. Hence in 

this paper we try to show our replacing method and its 

implementation in more detail. For the evaluation of the 

proposed method, we use RTL of Toshiba MeP processor 

[9] and miniMips processor [10].  

 The detail of selective replacement method is as follows:  

First, the RTL description is synthesized into the structured 

netlist by using Synopsys Design Compiler (D-2010.03-

SP5). Then the delays of critical paths are analyzed. The 

minimum clock cycle is measured by using “Typ” condition 

of cell library. The minimum clock cycle is obtained by 

varying the clock length so that under such clock cycle no 

paths barely reports timing errors. 

 It must be confirmed that when setting the clock cycle to 

the measured minimum value with the process condition of 

cell library either with “Typ” or with “Min”, no timing 

errors are ported. On the other hand, setting the same clock 

cycle length and using the library of process condition with 

“Max”, some of the circuit paths must be ported as timing 

errors. This is because the “Max” process condition is the 

worst case of the three and the propagation delay of each 

cell is longest. 

In Table. III, the number of DFF reported as timing error 

is shown. It turns out that 1.6% out of the whole DFF for the 

MeP and 11.6% out of the whole DFF for the miniMips are 

estimated to cause timing errors. Although the number of 

path reported as timing error is dependent on the clock cycle 

length, we set the smallest clock cycle under which there is 

no timing error is chosen when the process condition is 

“Typ” as described before, and select the DFFs at the end of 

paths reported error for replacement when using library with 

process condition “Max”. That means, under that minimum 

cycle length timing errors will not occur in normal operating 

condition, however the possibility that timing errors will 

occur rise in change of environmental conditions such as 

sudden voltage drop, aging deterioration etc. By carrying 

out this strategy, it becomes possible to limit the number of 

DFFs which need to be replaced with CFF significantly. 

 

B. Replacement Automation of Canary FF 

The detailed procedure of replacement of DFF to iCFF is 

shown in Fig.4. First the logic synthesis is performed by 

setting process condition to “Typ” and decides the smallest 

clock cycle length {clk_typ} from the critical path. Note 

  
Fig. 4.  Canary FF replacement procedure 

 

TABLE  III 

# of FF at the end of timing error path 

RTL # of FF # of FF 

Timing err. 

Per. 

MeP 3732 60 1.6% 

miniMips 1967 228 11.6% 

 

 

 
Fig. 5.  Example of original netlist(top) and netlist(bottom) 

after  some DFFs are replaced with iCFF. 
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that this is an iterative process until the smallest clock cycle 

{clk_typ} is detected under which no timing errors are 

reported. 

  The generated netlist is saved as {Netlist_org}. Next the 

logic synthesis is performed again by setting process 

condition to “Max” and uses {clk_type} as the clock cycle. 

By analyzing the report from the synthesis tool, the timing 

error paths are extracted and the FF at the end of each path 

is saved in {FF_rep} for later process. After the analysis is 

done, the FF replacement script reads {Netlist_org} and 

{FF_rep} as input files and then replaces the DFF cell to 

iCFF cell when the instance of DFF is found in {FF_rep}. 

When all DFFs which might cause timing errors are 

replaced to iCFF, the converted netlist is outputted as 

{Netlist_chg}.   

 Fig.5 shows the example of original netlist and modified 

netlist after some DFFs are replaced with CFF. In this 

example, the DFF instances reg_1 and reg_5 are replaced to 

the iCFF since these DFFs are registered in {FF_rep}. As 

for the selective replacement method just proposed, we 

assume that iCFF is registered in the standard cell library as 

a custom cell and is ready for synthesis and placement & 

routing. However, this is not the case when the cell library is 

provided from third party and it is not permitted to modify 

or customize the library. In such cases, the iCFF has to be 

implemented by utilizing existing standard cells.  Moreover 

the implementation of iCFF still underway, we propose our 

implementation method of CFF using existing standard cells 

in the next section. 

IV. IMPLEMENTAION  OF CANARY FF 

The previous section explained the method of 

transforming a netlist on the assumption that we already 

have the cell library of iCFF. Since it is under development 

and the cell library is not always modifiable, we describe the 

implement method of CFF using existing standard cells.  

The same technique can be using when the iCFF is build 

using existing standard cells. Here the CFF is implemented 

using the existing standard cell and placement and routing 

are performed. 

 

A. Cell mapping of canary FF 

 To help understanding following discussion, original circuit 

block and netlist are shown in Fig.6. Here we consider 

changing reg_1 which is an instance of DFF into CFF. The 

instance name and the signal name are changed into the 

intelligible name for explanation, and as for net_a, net_b, 

 
 

Fig. 6.  DFF and netlist  

(Before replacing to canary FF) 

 
Fig. 7.  canary FF and netlist 

(After replacing to canary FF) 

 

 
Fig. 8.  Netlist after  1

st
 parsing(top) and after 2

nd
 

parsing(bottom) 

37



net_C, it is necessary to extract the actual signal name used 

by each FF which needs to be replaced to CFF in the FF 

replacement script. Although FF replacement script to be 

used is almost the same as that of what was explained in 

Section 3, it is not simply to replace DFF to CFF, but to 

replace it by the cell group which constitutes the CFF. The 

details are stated following. 

The circuit block and netlist after transformation is shown 

in Fig. 7. Since INV and EXOR cells are already registered 

into the standard cell library currently used, each gate is 

mapped to those cells. All the cells to be used adopt those of 

the minimum drive capability. UU_1, UU_2, UU_3, and 

UU_4 are the added instance name of the generated cells 

and net_D, net_E, net_F, and net_G are the added signal 

names.  In order to avoid the duplication of name which are 

used by the original netlist, it is necessary to create these 

unique added names by combining a suitable prefix name 

and consecutive numbers. Since these names must be unique 

only within each module definition, consecutive numbers 

are reset when FF replacement script analyzes the syntax of 

the start part of a module definition, and they are 

incremented whenever a new name is generated. About the 

newly added signal name, it needs to be declared in the 

definition part of the module for which it is used. However, 

in the stage in which FF replacement script parses the 

module definition part, since it is not clear which signal 

names should be declared, it is decided to make a signal 

declaration by using a double parsing system. By the first 

parsing, while performing the processing which replaces 

applicable DFF to a CFF, the place holder  {@wire_decl@} 

is described as a mark into the portion which makes a signal 

declaration in the head portion of module declaration as 

explained in Fig.8. The place holder is replaced by the 

declaration of the added signal names by the 2nd 

parsing.  The added signal names are managed using the 

associative array referred to from the module name to which 

it is scheduled to be declared by the first parsing.  

 

V. POWER AND AREA OVERHEAD BY CANARY FF 

  In this section, power and area overhead by CFF is 

investigated. Placement and routing (P&R) are performed 

using  Synopsys  IC Compiler (D-2010.03-ICC-SP2-1).  

Note that the layout of iCFF is not implemented yet, so the 

original CFF circuit is used and the netlist is generated by 

the method described in section IV. We use four different 

sets of configuration to estimate the overhead by CFF.  Each 

configuration is described as follows, 

 

(1) T :  P&R is performed using cell library ( “Typ” case) 

and  no DFFs are replaced by CFFs 

(2) TC: P&R is performed using cell library (“Typ” case) 

and  some DFFs are replaced by CFFs using selective 

replacement method 

(3) M : P&R is performed using cell library (“Max” case) 

and  no DFFs are replaced by CFFs,  

(4) TCA : P&R is performed using cell library (“Typ” case) 

and  all DFFs are replaced by CFFs  

 

Cell area and power estimates are obtained from the result 

of P&R by IC Compiler.  Fig.9 and Fig.10 show power and 

area overhead for minimips and MeP processor respectively.  

Area is normalized based on config. (M) for both cases. For 

minimips, power of config. (TC) is 19.11[mW], which is 

increased by 26% from config. (M) and by 9.8% from 

config. (T). It turns out that power overhead by CFF is 

relatively large. In case of config. (TCA), power is 

estimated to 34.18[mW] which is 2.25 times larger than that 

of config. (M). Hence the selective replacement of CFF is 

deemed an effective method to decrease the power overhead 

by CFF. The power of config.(T) is larger than that of 

config.(M). This might be because in cell library “Typ”, the 

supply voltage is defined as 1.8V and in cell library “Max”, 

it is defined as 1.6V, hence the net total power consumption 

of config.(T) is slightly larger than that of config.(M).  

  On the other hand, the area of config.(TC) is decreased by 

23% from config. (M) and increased by 3.6% from config. 

(T). This means that area overhead by CFF is much less than 

the cell area estimated by considering worst case “Max” 

 
Fig. 9. miniMips 

(Power and area overhead by CFF) 

 
Fig. 10.  MeP 

(Power and area overhead by CFF) 
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condition. The cell area of config.(M) is relatively larger 

than that of config.(T). This is because in case of config.(M),  

gate cells with bigger drive strength, so larger cell area, are 

selected to compensate for longer propagation delay. Hence 

the area overhead by canary FF is deemed very small.  

  As for MeP, area overhead by CFF are very small since the 

chip area is mostly occupied by instruction and data caches. 

Instruction and data caches are implemented as hard macros 

using library with “Typ” condition. Actually the area of 

config.(TC) is decreased by 0.3% from that of config.(M) 

and increased by 0.1%  from that of config.(T).  Increase 

rate of area of config.(TCA) is relatively larger compared 

with minimips case.  This might be because the number of 

DFFs is much larger than minimips.  The power of 

config.(TC) is decreased by 20% from config.(M) and is 

increased by 0.1 % from config.(T).  The power of 

config.(M) is much larger than config.(T). This might be 

since the chip area of MeP is occupied with large cache area, 

so the power consumed by cache is not negligible. 

 The difference of the two results comes from different 

architecture of the two microprocessors. MeP is an off the 

shelf commercial processor and uses state-of-art technology 

and contains large cache area to increase the performance 

(IPC); however the minimips is an open architecture 

processor and contains no cache. The chip area of Mep is 

about 7 times larger than minimips and the power 

consumption is about 1.25 times larger than minimips.  

  CFF can be used not only for microprocessor but also any 

sequential circuits which require timing error detection 

mechanism. The area and power overhead by CFF can be 

suppressed low by selecting DFFs for replacement by 

analyzing the critical paths under system timing requirement. 

 

VI. CONCLUSION AND FUTURE WORKS 

  By miniaturization of semiconductor technology, the 

timing error caused by process variation of within-die or 

intra-die and aging deterioration is considered serious issue 

especially in deep submicron domain. The importance of the 

technique avoiding the defect of LSI during operation is 

increasing. In this paper, an automatic design method of 

reliable LSIs with canary FF is proposed which concentrates 

on typical case to ease the design margins incurred by worst 

case analysis.  We show that by selectively replacing DFFs 

with canary FFs, the area and power overhead by canary 

FFs can be suppressed very small. The selection of DFFs is 

done by analyzing critical paths from worst case based on 

the results of typical case. 

 The future remaining studies regarding canary FF are as 

follows. First, we have to build the cell library of the 

improved canary FF. Since the CMOS circuit is complicated, 

it will be designed as double height cell. When the library is 

built, power and area overhead by iCFF can be measured in 

more detail and the comparison with CFF can be discussed. 

It also necessary to consider the method of collecting error 

signals when timing error is detected from CFFs and 

utilization of that signal. If there is N CFFs and when the 

collection of error signals is constituted from OR gates of 

two ports, an error signal will travel log2N piece of OR gate. 

Then the wiring delay of error signal cannot be disregarded. 

The error signal could be used to trigger DVS or DVFS to 

control the supply voltage and the clock frequency. 

Moreover, it is also necessary to examine the amount of 

delay buffer inserted at the shadow latch. When the amount 

of delay buffer estimates to be large excessively, timing 

error information occurs more than needed, and it will affect 

the performance. Conversely, when it is estimated too small, 

the possibility of overlooking timing errors becomes high 

and system reliability falls down. Furthermore, testing and 

verification of proposed method are not yet done and needs 

to be addressed more.    
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Abstract: One of the major challenges in testing a System-

on-a-Chip (SOC) is dealing with the large test data size. 

Several test data compression techniques have been proposed 

to reduce the volume of test data. This paper presents a test 

data compression approach, which reduces the test data 

volume by encoding runs of both 1’s and 0’s as many other 

codes, but here both runs share the same code word for the 

same run-length Further an extension to this code 

considering the relationship between two consecutive runs is 

proposed. The proposed approach is based on the use of 

alternating variable run-length (AVR) codes. The AVR codes 

can efficiently compress the data composed of both runs 0s 

and 1s. The decompression architecture is also presented in 

the paper. Experimental results were performed on 

ISCAS’89 benchmark circuits showed that the proposed 

method greatly improved the compression ratio.  

Key words :  Automatic test equipment (ATE), encoding, 

AVR codes, EFDR codes. 

I. INTRODUCTION 

Due to the advancements in process 

technology, the emphasis on placing larger and more 

complex devices in smaller areas is becoming more 
prominent. With the increase in integration density, testing has 

become a critical part of design process. The testing of devices 

after fabrication has become a major problem for both 

designers and test engineers. A major challenge in testing the 

complex designs is dealing with the enormous test data 

volume. In pattern storage testing, all the test vectors and test 

responses are stored on an external tester like automatic test 

equipment (ATE). But the cost of ATE grows significantly 

with the operating frequency, channel capacity and memory 

size. The amount of time taken to test a particular chip 

depends on the amount of data that can be transferred on to the 
chip and speed at which the data can be transferred known as 

the test data bandwidth. The test data bandwidth between the 

conventional testers and the chip is relatively small and hence 

is a bottleneck in testing a chip [1].   

Several approaches were addressed in past to 

overcome the problems in external testing. Most of them are 
either a) external only approaches or b) internal only 

approaches. The external approaches include test data 

compaction techniques [2]. Though this method reduces the 

test data volume effectively, it does not overcome the 

bandwidth limitations of ATE. The internal methods are based 

on built-in-self test (BIST) [3]. BIST eliminates the need for 

external tester storage. This is very useful in performing self-

test in the field when there is no access to a tester. But, these 

do not provide high fault coverage due to the presence of 

random pattern resistance faults. To increase the fault 

coverage in these cases, techniques such as test point insertion 
are required [4]. This involves modifying the functional logic 

which can degrade the system performance. Some other 

techniques modify the test pattern generator, but this tends to 

result in large silicon area. 

A solution to the ATE problem that does not 

introduce any performance penalties is test data compression 

which is a test resource partitioning variant. This arises as a 

possible solution to reducing the speed, channel capacity and 
memory requirements of ATE.  By introducing an on-chip 

decompressor it reduces the load on the ATE and therefore 

simplifies the channel capacity and speed requirements. Test 

data compression compresses test data losslessly and hence 

preserves the fault coverage unlike other techniques [5].  

The three test data compression environment (TDCE) 

parameters are area overhead, test application time and 
compression ratio. Satisfying all these parameters 

simultaneously is found to be a difficult task. The existing 

approaches trade off some of these parameters against others. 

In this paper, a new test data compression scheme is 

formulated. The compression scheme is based on code based 

compression which achieves sufficient compression ratio 

leading to a reduction in chip area and hence an overall 

reduction in test cost [6].  

The compression scheme reduces the test data 

volume by encoding runs of both 1’s and 0’s as many other 
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codes, but here both runs share the same code word for the 

same run-length Further an extension to this code considering 

the relationship between two consecutive runs is proposed. 
The proposed approach is based on the use of alternating 

variable run-length (AVR) codes. The AVR codes can 

efficiently compress the data composed of both runs 0s and 1s.  

The rest of the paper is organized as follows. We 

present an analysis on the existing run-length codes, the EFDR 

(extended frequency directed) code and the AVR code in 

Section 2.  In Section 3, the modified AVR test architecture 

for data compression procedure, and the decompression 
architecture is presented. Experimental results for the large 

ISCAS’89 benchmark circuits in Section 4. Section5 

summarizes the paper.  

II. PRELIMINARY 

 

A. EFDR CODES  

The EFDR code is a data compression code that maps 

variable length runs of 0s or variable length runs of 1s to a 

variable length code word. The don’t-cares in test vectors are 

mapped to either 0 or 1 before coding. For example consider a 

run of seven 1s (0s). The run belongs to group A3 and it is 

mapped to the code word 1110000 (0110000). A detailed 

discussion for EFDR code is given in [7]. These codes were 

found to have better compression ratio than frequency directed 

(FDR) codes though an extra bit is used to indicate the type of 
run. Fig.1  shows an example of encoding using  FDR and 

EFDR codes. 

Illustration: 

TD = {000000111111111110111000111111100000001} 
(40bits) 

TFDR = {110000 00 00 00 00 00 00 00 00 00 00 00 00 1001 

110001 00 00 00 00 1001} (52 bits) 

 
TEFDR= {01011 1110101 11000 001 11011 01011} (30 bits)  

Fig.1 An example showing encoding using FDR and EFDR 

codes 

In Fig.1, TD is the input data stream and TE is the 

encoded data. The input data contains both runs of 0s and 1s. 

In FDR coding it can be seen that the size of the encoded test 
set is larger than the size of uncompressed test set. Hence, 

FDR codes are inefficient for data streams that are composed 

of both 0s and 1s. It can be observed that the compression 

ratio increases by using EFDR codes. During the analysis it is 

observed that the compression ratio of s35932 has increased 

from 19.359% to 57.6530% after using EFDR code based 

compression. It can be noted that there exists a scope of 

reducing the code-word length in these codes which will 

further increase the compression ratio. This was exploited in 

Alternating Variable Run-length codes (AVR codes).  

 

B. AVR CODES 

 

AVR code is a variable-to-variable length code. This 
code helps in reducing the code word length by including two 

parts – the group prefix and the tail. Fig.2  shows an example 

of encoding using AVR codes for the same input sequence 

which was earlier used for EFDR codes. It can be seen that the 

compression ratio has improved further as the encoded bits has 

reduced further to 26 bits. 

 

Illustration: 

TD ={0000001 1111111111110 1110 001 1111110 0000001} 

(40bits) 

TAVR= {00100 11011 100 011  00101 00101} (26 bits)     

   α= 0    α=1  α=1 α=0  α=1   α=0  

                          

Fig.2  An example showing encoding using AVR codes 

 

A detailed discussion for AVR codes  is given in [8]. 

The AVR code consists of two parts – the group prefix and 

the tail. The prefix identifies the group in which the run-

length lies and the tail identifies the member within the 

group. The presence of these two parts distinguishes AVR 

code from other run-length codes. Table I illustrates the 

encoding for the AVR code. 

 
TABLE.I EXAMPLE OF ALTERNATING VARIABLE RUN-
LENGTH (AVR) CODE. 

 

 

A1, A2, A3….AK represents the different groups, 
where k is the longest run-length L as in [8]. Group Aj is 

calculated using (1). 
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j = log  2)4(log2 L
              (1) 

 

Existing AVR codes can be further improved if 

relationship between two consecutive runs can be 

incorporated. It can be observed that if two consecutive runs 

have the same run-length, then the second run can be encoded 
using a small code word. This is done in this paper, where a 

code that efficiently compresses both runs of 0s and 1s after 

considering a relationship between two consecutive runs is 

proposed. This code is discussed in detail in the next section. 

III. MODIFIED AVR CODE   
 

As stated earlier, modified AVR codes exploits the 
relationship between two consecutive runs.  It can be observed 

that if two consecutive runs have the same run-length, then the 

second run can be encoded using a small code word. If the 

second run is runs of 0 then it is encoded as 000 else encoded 

as 101. If there are more number of consecutive runs having 

the same run then a combination of the previous codes can be 

used. Fig. 3 shows an example of encoding using modified 

AVR codes. Table II shows an analysis of modified AVR 

codes. In this section we describe in detail the compression 

procedure and the decompression architecture. 

 

A. ENCODING PHASE 
 

The overall flow of the encoding phase is depicted 

using a flow chart in Fig. 4. After obtaining the fully specified 

test set, the encoding stage is performed. For this, the run 

length of the original bits is to be counted from the beginning. 

0 run is defined as number of 0s followed by 1 and 1 run is 

defined as number of 1s followed by 0. Initially the run-

length, cnt is assumed to be 0. For each occurrence of the 

same bit as the previous, this count, cnt is incremented until 

the occurrence of the opposite bit. For example, if the first 

occurring bit in the sequence is 0 (1), the next bit is checked 
then, if both the bits are found the same 0 (1), the count is 

incremented by 1. This is continued until the bit 1 (0) is seen.  

After this the next consecutive run-length is checked. 

If both the run-lengths are same (cnt = pre_cnt) then the run 

type is noted, if it is runs of 0 then it is coded using 000 else it 

is coded as 101 (Type 2). In situations where the run-lengths 

are not same, then a normal AVR encoding (Type 1) is done. 

This can be explained using an example. 

Illustration: 

T = {0xx0xx1 111xxxxxxxxx0 11x0 001 xxxxx10 
xx0xxx1} (40 bits) 

TD ={0000001 1111111111110 1110 001 1111110 

0000001} (40bits)     
TMAVR = {00100 11011 100 011 00101 000} (24 bits)  

     α= 0     α=1    α=1   α=0    α=1     α=0 
 
Fig.3 Example showing the modified AVR encoding technique 

  

 

 It can be observed from the example that the last two runs 

of the original set TD have the same run-length and hence they 

can be encoded using the Type 2 coding technique. Since the 
second run-length is runs of 0 it is encoded as 000.  The other 

run-lengths are not found to have any similarity with the 

previous bits and hence they are encoded using Type 1 coding. 

It can be observed that the amount of compression achieved 

has been improved when compared to the other existing 

techniques. 

 
 
Fig.4 Flowchart showing the encoding procedure 

 

B. DECOMPRESSING PHASE 

 This is carried out on-chip with the help of an on-

chip decoder. It decompresses the encoded test set TE and 

produces the primary set TD. The decoder architecture for the  

modified AVR code is shown in Fig. 5. The decompressor 

architecture is simple and it is independent of the pre-

computed test set and the CUT. This decompressor 

architecture is slightly modified from conventional AVR 

coding [8] after considering the relationship between two 

consecutive runs. For this, an extra counter in included in the 
architecture to keep an account of the previous run-length. 

 

  If the previous run-length was found equal to the 

present run-length, then the output is directly fed as 000 or 

101 according to the run type. Though the architecture was 

modified with the inclusion of an extra counter, this does not 

add much to the area overhead and hence is  acceptable. If 

Lmax is the longest run of 0s or 1s, then k is given by (2). 
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                   k=  2)4(log max2 L
   (2) 

The decoder consists of a (k+1)-bit counter, a log2 

(k+1)-bit counter a finite-state machine (FSM), a T flip-flop 

and an exclusive OR gate. 

 

 bit_in is the input to the FSM and en is the enable signal 

used to control the input encoded data when the decoder 
was ready. 

 shift signal is used to control the prefix and the tail of the 

code word to the (k+1)-bit counter. dec1 and rs1 are the 

decrement and reset pins respectively. rs1 indicates the 

reset state of the counter. 

 A log2 (k+1)-bit counter was used to count the length of 

the prefix and the tail which helps in identifying which 

group it belongs to. inc and dec2 are used to increment 

and decrement the counter respectively. rs2 is another 

signal which indicates whether the counter has finished 

counting. 

 A T-flipflop is included which is controlled by the out 
signal of the FSM. Signal v is indicated when the output 

was valid. This is used to control the scan clock signal 

scan_clk. 

The operation of the decoder can be explained as below: 

Step1: In the initial state, the T flip-flop was reset and v was 

reset to 0. Signal en became high to indicate the readiness of 

the decoder to receive bit_in. 

Step 2:  The FSM fed the prefix to the (k+1)-bit counter. The 

end of the prefix is indicated by a separator 0 or 1 according to 

the type of the codeword. The signals en, shift, and inc were 

kept high until the separator was received. The signal out 
gives out 0 until the rs1 signal goes high. This occurs when 

the prefix is fully read into the (k+1)-bit counter. 

 

Fig.5 The decoder architecture of modified AVR code 

Step3: The 0s given out by out signal is xor-ed with the α bit 

to produce the first part of the original set. Now, the en signal 

goes high and the (k+1) bit counter receives the bits until the 

rs2 signal of the log2 (k+1)-bit counter goes high. This is when 

the value of dec2 becomes 1 less than the prefix count. 

The FSM for AVR code has 8 states. The S0-S1-S2-

S3 process was related to the prefix decoding with “0….01” 

and S0-S6-S7-S3 was related to the prefix decoding of the 

codeword with prefix “1…10”.  The states S0-S1-S3 and S0-

S6-S3 processes were related to the prefix decoding with “01” 

and “10”, respectively. The S4-S5 process was related to the 

tail decoding. Fig. 6 shows the state diagram of the FSM. 

 

      Fig.6 State diagram of the FSM 

IV. POWER CONSUMPTION ANALYSIS 

 

 

The impact of test set encoding on power 

consumption during scan testing is examined. For CMOS 

circuits, power consumption can be classified as either static 

or dynamic. Static power consumption, which is caused by 
leakage current is negligible and therefore ignored. Dynamic 

power constitutes the predominant fraction of CMOS power 

consumption.    

  

  For scan vectors, the dynamic power consumption 

during testing depends on the number of transitions that occur 

in the scan chain as well as on the number of circuit elements 

that switch during the scan in and scan out operations. Power 

estimation models based on the switching activity of the 

circuits have been presented in [10][11]. Weighted transition 

metric (WTM) introduced in [11] is used to estimate the 

power consumption during scan vectors. 
 The WTM models the fact that the scan in power for a given 

vector depends not only on the number of transitions in it but 

also on their relative positions. Consider a scan chain of 

length l and a scan vector tj=tj,1,tj,2,….tj,l ,with tj,1 scanned in 

before tj,2 and so on. The weighted transition metric for tj, 

denoted WTMj, is given by (3).   

 

      
)(*)( 1,

1

1 , 




 ij

l

i ij ttilWTM                    (3) 

 
If TD contains n  vectors t1,t2….tn  then the average scan in 

power Pavg and peak scan in power Ppeak are estimated using 
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(4) and (5) respectively. 
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V. EXPERIMENTAL RESULTS 

  

To validate the efficiency of the proposed method, 

experiments were performed on ISCAS’89 benchmark 

circuits. The test sets used in these set of experiments were 

obtained using MinTest ATPG. The experiments were 
performed on Intel ® core i5 2.30 GHz workstation with 4.00 

GB RAM. FDR [9], EFDR [7], AVR [8] and the proposed 

modified AVR were implemented in C.  First the proposed 

compression method is analyzed from the point of view of 

compression ratio. It should be noted that all the proposed 

schemes were applied on the same test set after performing 

mapping as proposed.     

 

Fig.7 shows an analysis of the number of runs in a 

test set. The number of 1s in a test set is as equally important 

as the number of 0s in the test set. This can be clearly 
visualized from the figure. In circuits like s35932, the 

number of runs of 1s exceeds the number of runs of 0s and 

this is the main reason for a low compression ratio obtained 

in these circuits when only 1s coding or 0s coding alone was 

done. 

               

 

Fig. 7  Distribution of the runs both 0s and 1s in various sequential 
circuits  

 

Fig.8 Comparison between Modified AVR coding and other existing  
code based schemes 

 

TABLE. II. COMPARISON BETWEEN AVR CODES AND 
MODIFIED AVR CODES. 

 
 

 Table. II shows an analysis of modified AVR codes. 

The decompressor architecture for the modified AVR code 

contains an FSM, a (k+1)-bit counter, log2(k+1) bit register, a 

T-flip-flop, and an extra register. The FSM was coded in 

verilog HDL using Model Sim 6.2c and was synthesized in 

Quartus II.  

 

 It can be clearly observed that there exists an increase 

in compression ratio after considering the relationship between 

two consecutive runs. AVR (A) represents the AVR encoding 
with α parameter is not included and AVR (B) the parameter α 

is included. The compression ratio obtained after including α 

is found less than the coding where α is not included. But, the 
compression ratio in both the cases is more than the existing 

encoding techniques. 
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 TABLE III COMPARISON AVERAGE  POWER (mW) 

 
TABLE IV COMPARISON PEAK  POWER (mW) 

 
 

 Fig.8 shows a comparison between the modified AVR 

code with other compression schemes. The achieved 

compression ratio is maximum for modified AVR codes. A 
comparison of the peak power and average power obtained 

using the different coding schemes is shown in Table III and 

Table IV. It can be observed that there exists sufficient amount 

of reduction in some circuits like s13207,s38584etc. 
 

VI   FUTURE WORK 

  The  timing calculations for the proposed scheme is to 

be analysed. The proposed scheme will be feasible only if it 

consumes less power and also does not add to the testing time. 

The power calculations for this scheme is found to be similar 

to or has only a marginal increase for some circuits like 

s13207 etc. Therefore techniques such as reordering of test 

vectors can be applied to reduce the power consumption 
further. These two parameters of the test data compression 

environment (TDCE) has to be analysed in detail. 

 

VII CONCLUSIONS 

  An efficient code based compression scheme is 

presented which is found to have a higher compression ratio 

than any other existing schemes. Decoder architecture for the 

modified scheme has been proposed. Experiments were 

performed on all sequential circuits - ISCAS’89 benchmark 

circuits and are found to have an increase in compression 

ratio. 
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Abstract—Next generation CMPs are expected of having 

hundreds of cores per chip. As the number of cores increases, 

performance dependency of CMPs also varies. Cache Miss is 

always being crucial on the overall performance of both multi 

core and unicore systems. But with the growing number of cores 

per chip, future CMPs will face new performance challenges. One 

of such challenges is on chip communication. Network on chip or 

NoC is an emerging and efficient way of solving on chip 

communication for future CMPs. But its network delay and 

power consumption remains crucial so far. In this paper, we 

observe that the domination on overall performance of CMPs will 

gradually shift from cache miss to NoC delay with the growing 

number of cores.  

I. INTRODUCTION  

With the growing transistor count per chip, computer 
architects have been given the opportunity to explore new 
design paradigm chip multiprocessing (CMP). Performance of 
CMPs in terms of speed and power consumption is also 
satisfactory and this has lead computing industry to move 
towards increasing cores for future computing devices The 
Network on Chip (NoC) has gained enormous popularity in the 
recent years and has shown the potential to be an efficient 
alternative  for CMPs [1][2][3]. Despite of NoC being very 
promising, current design aspects of NOC still prevents CMPs 
from reaching its maximum potential. The recent study 
[3][4][5] encourages multi module last level memory systems 
for large number of core CMPs  (Figure1). Unfortunately, the 
multi module memory system also uplifts traffic congestion in 
the NOC significantly. As the number of cores expected to go 
higher and higher in the near future, NOC will be emerging as 
a major performance bottleneck in the multi module memory 
architecture. Kim et. al performed in [6] address this issue of 
network congestion in CMPs. But researchers miss the fact that 
there exists a correlation between the network latency and 
memory controller (or the cache coherency protocol) when the 
number of cores goes high [7][8][11]. This correlation becomes 
stronger as the number of cores increases. In this study, we 
observe that the lower order performance trend strongly 
follows L1 cache miss and loosely follows L2 miss and 
network latency. There has been very little work done to 
propose any integrated and mutually supporting solution to 
control the network congestion treating memory coherency 
protocols and network parameters inter-reliant of each other. 
We also notice that the network latency becomes more 
dominant on the overall performance of the CMP, as the 

number of cores increases. We have simulated 4, 8 and 16 core 
CMPs with the state of the art MOESI token and directory 
based protocols and  three different network topologies namely 
point-to-point, torus2D and hierarchical switches.   

 
The current state of the art widely used coherency protocols 

are simply migrated from lower order CMPs to higher order 
CMPs. The nature and the density of network congestion vary 
from one CMP to another if number of cores increases. The 
coherency protocol adopted for higher cores may show almost 
no issue in terms of scalability but fails to control the network 
congestion and hence results in performance degradation and 
excess power consumption. This happens due to the fact that at 
any point of time the cache controller receives no information 
about network congestion. In this paper, we see that the overall 
performance would be dominated by NoC delay, if coherency 
protocols are adopted without necessary modification from a 
lower order CMP. This may dilute the effects of the advance 
features of each core and state of the art memory architectures. 

 
 We proceed with our discussion by presenting the 

coherency protocol chosen for this study in section II, network 
topologies in section III, simulation environment and 
methodology in section IV. Section V describes the simulation 
results, and we conclude with section VI.  

 

 

 

 

II. CACHE COHERENCY PROTOCOL 
 

MOESI Coherency Protocol 
 
 

We choose MOESI [9] protocol for our experiment. 
MOESI Coherency Protocol was proposed by combining MESI 
[10] and MOSI protocols. We further divide MOESI as 

 

Figure1: Multi module memory Arrangement 
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directory based and token based. MOESI directory based 
protocols maintains a directory at the home node. Directory 
protocol sends all requests to its home node, which adds an 
indirection to critical path of cache-to-cache misses. In addition 
to that, it also escalates burden on NOC by sending redundant 
requests. On the other hand, token based coherency protocol 
[14] provides low-latency interconnection without indirection. 
But cache to cache miss prevention is not as efficient as 
directory based protocols. Wang H. et. al [13] have combined 
the benefits of directory based and token based protocols by 
using Sharing Relation Cache .This approach finds an 
intermediate way to retain the benefits of both directory and 
token based protocols.  

III. NETWORK TOPOLOGIES 

The on-chip network topology often adopted from off chip 
networks determines the physical layout and connections 
between nodes and channels in the network, the physical layout 
and connections between nodes and channels in the network 
[14]. A topology determines the number of hops (or routers) a 
message must traverse as well as the interconnect lengths 
between hops, thus influencing network latency significantly. 
In our experiment, we have considered three different 
topologies: (1) Hierarchical switch, (2) Torus 2D and (3) Point 
to Point. These topologies consist of a set of system 
components; each one being connected directly or indirectly to 
a processing element. A processing element could be a 
processor, cache or a cache controller. Each component usually 
has a switch (or router), which handles message 
communication among components. Each switch/router has 
direct connections to its neighbor one. If the connection 
between the routers to the processing element through a direct 
connection is called as direct topology else it is known as an 
indirect topology. Point-to-point and torus2D are direct 
topologies where as hierarchical switch is an example of 
indirect topology. 

 

Network topologies and cache coherency protocol 
 
The network topologies and cache coherency protocols are 

considered as individual independent entity. P. Foglia et. al 
[12]  have shown that if cache coherency protocols and 
network topologies combined wisely has positive impact on 
the overall L1 miss latency and cache misses and hence 
thereby on overall performance. In our study, we re-explore 
the characteristics of NoC topology and cache coherency 

protocol as a single entity and its impact on the overall 
performance when the number of cores increases. 

IV. SIMULATION ENVIRONMENT AND METHODOLOGY 

     We performed the full-system simulation using Simics 
[15]. We simulated 4, 8 and 16 CPU UltraSparc III plus CMP 
system with Sun Solaris 10 operating System, each CPU using 
in-order issue, running at 75 MHz .We also used GEMS [15] 
in order to simulate the memory hierarchy and coherence 
protocols. For NoC measurement we applied Garnet [16] and 
Orion [17] for network power estimations. We conduct our 
simulation against complete set of Parsec 2.1 multithreaded 
benchmark suite [19] with native inputs. One billion 
instructions are executed with fast forwarding first 1 million 
instructions. The cache system is two levels with L1I and L1D 
as private caches to each core and L2 as a shared resourse. The 
cache architecture is a non uniform (NUCA). Size of L1 cache 
is 64 KB 4-way set associative with block size 64 Byte. L2 is 
16MB 4-way set associative with number of modules kept 
equals to number of processors. The cache replacement policy 
is Pseudo-LRU [21]. The router is a 5 stage pipelined with X-
Y routing algorithm and with 5 virtual channels and flit size is 
of 16 byte. 

V. SIMULATION RESULT  

     We have simulated at least 1 billion instructions for each of 
Parsec benchmark suite with three different topologies and two 
different coherency protocols. We choose Cycles Per 
Instruction (CPI) as the reference performance indicator. Also, 
L1, L2 misses per thousand (Kilo) instructions (MPKI), 
network latency and network power consumption as other 
indicators. Arithmetic Mean of L1 MPKI, L2 MPKI, network 
latency and CPI of all the thirteen Parsec benchmarks are used 
throughout this section. In addition to arithmetic mean we used 
logarithmic values (base 10) of network latency in the plots 
throughout this paper. 

As shown in Figure 2, it is clear that L1 miss per thousand 
instructions is correlated with CPI in 4-core CMP. On the other 
hand, when the number of cores is doubled from 4 cores to 8 
cores, CPI is now loosely following L1 miss trends. In case of 
MOESI Token and torus2D combination, this observed 
behavior is completely opposite. For an 8 core CMP, L1 miss 
has significantly less impact on CPI than that of 4 cores. But 
when the number of cores is quadrupled, the correlation is 
completely lost and behaves in a way opposite to that of 4 core 
CMPs.                                    

 

(a) (b) (c) 

Figure 2: Correlation between CPI and L1 miss in (a) 4-core (b) 8-core (c) 16-core CMPs 
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However, cache misses cannot improve performance hence 

it is well understood that with increasing number of cores the 
performance bottleneck is no longer L1 cache miss.  If L2 miss 
is the performance indicator when order of the CMP is more, 
then token coherency with point to point (token_pt_pt) 
combination would have been the slowest among all the six 
combinations. But as shown in Figure 3(c), it is clear that token 
pt_pt has the second least CPI Since the token based protocols 

has less network latency compared to directory based protocols 
even though the cache miss in token based protocol has more. 
So it is clear that L2 miss is not the only one where bottleneck 
exists. This indicates for a third possibility: network delay in 
higher order CMPs. Cache misses in a 16 core CMPs have very 
less significance on the overall performance than the network 
delay. It would be legitimate to assume that with the growing 
number of cores the network delay will be the most crucial. 
The network latency and CPI is shown in Figure 4. 
      

To further investigate the correlation between CPI and 

network latency we increase number of cores from 4 to 8 

(Figure 5). The CPI is following average network latency in 

way which is more profound than that of 4 cores. For 16 cores 

(Figure 6), CPI is following network latency. In 8 cores CMP 

CPI follows neither network latency nor L1 miss. L2 misses 

impaction on CPI is more in case of an 8 core CMP. For 4 core 

it is L1 miss rate and for 8 cores it is L2 miss which dominates 

the overall performance and network latency dominates the 

overall performance for 16 core CMP. 

 

 

Power Consumption 
 

Early stage estimation of NoC power has become crucially  
important in chip multiprocessing. We calculate total network 
power as the summation of router and link power. Figure 7, 8 
and 9 represents the total network power for 4, 8 and 16 core 
CMPs respectively. Point to point topology consumes more 
power than any other network topology in all three CMPs. The 
Vips consumes highest power in all 6 combinations for 4 and 
has highest number of L1, L2 misses and network delay in 16  
 

   

(a) (b) (c) 

Figure 3: Correlation between CPI and L2 miss in (a) 4-core (b) 8-core (c) 16-core CMPs 

 
 

 

Figure 4: CPI and N/W latency for 4 core 

 

Figure 5: CPI and N/W latency for 8 core 

 

Figure 6: CPI and N/W latency for 16 core 

 
Figure 7: Total Network Power (W) for 4 core CMP 
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core CMPs. The Vips is an image processing application and 
respective CMPs. But in the case of 8core, Dedup, a kernel 
application, consumes more power. It also has the highest L1, 
L2 miss and network delay. We see from the power statistics 
that the network delay and cache misses are the primary 
influences of network power consumption. 

 
VI. CONCLUSION 

 

     Performance of CMPs depends on the memory and its 

accessing capabilities. With large number of cores per chip 

future CMP’s dependence on the on chip communication 

would be very critical. With growing number of cores the 

critical factors to its performance changes from L1 miss to 

network delay. We simulated 4, 8 and 16 core CMPs to 

investigate the performance with widely used directory and 

token based MOESI coherency protocol combined with various 

network topologies. 

 

    Without a symbiotic relation being established between 

cache coherency and NoC parameters, future CMPs would not 

be able to handle the network congestion efficiently and hence 

network delay in future CMPs would be very crucial on the 

overall performance. We would like to investigate more on the 

network delay with more than 16 cores and improve the 

coherency protocols so that it considers the network 

congestion. Enhancing MOESI protocol with network 

congestion handling capability will be the future goal in the 

future. 
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Abstract

As core counts continue to grow in modern microarchi-

tectures, automatic parallelization technologies are becom-

ing increasingly important to fill the gap between hard-

ware that has increased parallelism and software that is

still designed for sequential execution. In previous research,

we have proposed a novel dynamic binary parallelization

scheme called T-DBP, which leverages hot traces to pro-

vide a large instruction window without introducing spu-

rious control and data dependencies. In this paper, we

conduct a limit study to estimate the maximum possible

performance of T-DBP on the SPEC CPU2000 benchmark

suite. Our results indicate an average speedup of 9.18x and

22.34x over sequential execution for the integer and floating

point benchmarks, respectively. We also explain this high

speed increase by quantitatively demonstrating that T-DBP

uses runtime information to overcome two key handicaps

of compile-time parallelization techniques. By artificially

emulating the effects of these handicaps in T-DBP, the av-

erage speedup shrinks to 4.51x (integer) and 9.36x (floating

point), respectively.

1 Introduction

With the number of cores increasing rapidly but the

performance per core increasing slowly at best, software

must be parallelized to maintain performance improvement.

Manual parallelization typically yields the best speedups,

because the programmer can choose new algorithms and

data structures that are more amenable to parallelism. How-

ever, manual parallelization is often prohibitively time-

consuming and error-prone, especially due to data races and

memory-consistency complexities. Furthermore, some por-

tions of code may simply be too difficult to understand or

refactor for parallelization. Code is only parallelized when

the return on investment is sufficient.

There has also been considerable research on automatic

parallelization. However, most existing automatic tech-

niques are performed statically at compile time and require

source code to be analyzed, suffering three serious prob-

lems. First, in many cases, some or all of the source code

and development tool chain has been lost or, in the case of

third-party software, was never available. During the Y2K

crisis, it was estimated that some companies were miss-

ing as much as 60 percent of their source code [6]. Sec-

ond, modern applications are assembled and defined at run

time, making use of shared libraries, virtual functions, plug-

ins, dynamically-generated code, and other dynamic mech-

anisms. Furthermore, some software includes components

that are written in different languages. All these aspects of

separate development and compilation prevent the compiler

from obtaining a holistic view of the program, leading to the

risk of incompatible parallelization techniques, subtle data

races, and resource over-subscription. Third, compile-time

analysis has to conservatively respect all control and data

dependencies that appear on the control flow graph (CFG).

This deters parallelization, since many of these dependen-

cies may not involve the execution path that is actually

taken. All the above considerations motivate binary code

parallelization at run time, which we call dynamic binary

parallelization (DBP). Without effective techniques that can

operate on binary code, a large fraction of software will be

left behind. And without the ability to parallelize at run

time, opportunities for parallelism are curtailed.

In previous research [23], we have proposed a novel

DBP scheme (T-DBP) based on the insight that programs

tend to frequently repeat sequences of instructions called

hot traces. T-DBP monitors a program at run time and dy-

namically identifies these hot traces, parallelizes them, and

caches them for later use so that the program can execute

in parallel every time a hot trace repeats. The paralleliza-

tion purpose, however, imposes two significant challenges

in trace construction, which have never been simultaneously

overcomed by state-of-the-art technologies [2, 3, 7, 14, 15,

19, 25, 16]. First, traces have to be as long as possible to

expose more distant parallelism. Second, traces have to be

logically atomic. They should have a single entry point and

exit point, and encapsulate only a single flow of control.
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Thus, analysis can ignore all control dependencies (as well

as derived data dependencies) among instructions within a

trace, enabling more aggressive parallelization. This atom-

icity property necessitates speculative execution to recover

program state when a trace deviates from the execution path

that is actually taken. The dilemma, however, is that the

longer a trace is, the more difficult it can be speculated ac-

curately. T-DBP exploits multi-path execution [1, 21] and

invents a holistic algorithm to balance trace length and spec-

ulation accuracy, which constructs the longest traces that

can be accurately speculated on the available number of

cores. Although our preliminary results have indicated an

average speedup of 1.96x (8-way parallelization) over se-

quential execution, we believe that T-DBP is able to achieve

much larger speed increases by improving on the initial pro-

totype implementation.

Thus, we conduct a limit study in this paper to estimate

the maximum possible performance of T-DBP, which can

act as the guidelines for future improvements. We perform

the experiments by appling T-DBP to the SPEC CPU2000

benchmark suite and compare the execution speed to se-

quential execution. Our results indicate an average speedup

of 9.18x and 22.34x for the integer and floating point bench-

marks, respectively. For all benchmarks, T-DBP is able to

achieve 1) long traces, 2) large trace coverage, and 3) high

speculation accuracy at the same time, indicating a large

room for further improvements from [23].

We also use this limit study to explain why T-DBP has

that performance. As described above, we hypothesize that

T-DBP has high performance because it overcomes two key

handicaps of compile-time parallelization techniques by:

1) parallelizing across boundaries between application and

library code, and 2) only respecting control and data depen-

dencies that appear in the actual execution path. We quan-

titatively test the hypothesis by repeating the experiments

while artificially applying each of the handicaps to T-DBP.

When both handicaps are applied, the average speed in-

crease shrinks to 4.51x (integer) and 9.36x (floating point),

respectively. These results support the hypothesis that T-

DBP is able to use runtime information to exploit paral-

lelism which compile-time techniques ignore.

2 Related Work

Existing DBP schemes are generally divided into two

main categories: parallelizing the raw dynamic instruction

stream (DIS) [9, 18, 20] and parallelizing the dynamically-

generated CFG [5, 8, 24]. DIS-based techniques use extra

hardware to combine multiple cores to work cooperatively

as a wider core. Focusing on exploiting instruction level

parallelism (ILP), this scheme has wide applicability, since

ILP typically exists throughout the entire program (with dif-

ferent amounts). Limited by branch prediction accuracy
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Figure 1. T-DBP uses one core for trace man-

agement plus sequential execution, and the
remaining cores for speculative execution of

parallelized candidate traces.

and instruction window size, however, this scheme gener-

ally fails to exploit distant or coarse-grained parallelism,

resulting in relatively mediocre speedups. On the other

hand, CFG-based techniques expose a global view of the

program and allow discovery of loop and thread level par-

allelism (LLP and TLP), which has the potential to produce

much larger speedups. However, analysis on the CFG has

to conservativly consider the large number of possible paths

of program execution, many of which are rarely executed in

a particular run. This requires the compiler to respect con-

trol and data dependencies that do not appear in the actual

execution path, inhibiting parallelism opportunities. When

source code is not available, this problem is exaggerated due

to the lack of high-level information (e.g., types, variables,

data structures), which is essential to achieve accurate alias

analysis. Thus, it is not surprising that existing CFG-based

techniques [5, 8, 24] have failed to parallelize at least half

of the selected benchmarks.

3 Overview of T-DBP

A conceptual overview of T-DBP is illustrated in Fig-

ure 1. Core 1 is instrumented with trace management func-

tionality and starts to execute the unmodified, sequential bi-

nary. Simultaneously, the trace constructor monitors the

instruction stream and identifies traces from frequently re-

peating instruction sequences. The traces are then pro-
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Exec. on Avg. Trace Mispred.

Benchmark Traces Leng. Rate Speedup

gzip 86.97 % 108 1.95 % 1.54

vpr 80.90 % 125 3.92 % 1.34

mcf 31.28 % 93 11.77 % 1.08

INT crafty 61.48 % 78 2.53 % 1.38

parser 32.99 % 101 4.30 % 1.15

eon 74.53 % 122 3.03 % 1.59

bzip2 61.31 % 112 7.61 % 1.45

adpcm-dec 95.69 % 73 1.53 % 1.20

adpcm-enc 97.10 % 83 0.42 % 1.08

epic-dec 89.08 % 136 7.63 % 1.50

epic-enc 96.52 % 862 8.11 % 4.63

g721-dec 86.64 % 103 5.37 % 1.70

MEDIA g721-enc 70.55 % 105 5.27 % 1.57

gsm-dec 97.93 % 1,098 8.06 % 1.43

gsm-enc 97.23 % 756 2.54 % 2.53

jpeg-dec 87.97 % 240 4.21 % 1.87

jpeg-enc 59.23 % 138 2.55 % 1.28

mpeg2-dec 91.31 % 175 2.17 % 2.01

mpeg2-enc 68.81 % 394 10.56 % 1.85

wupwise 99.12 % 2,179 2.24 % 2.50

swim 96.74 % 836 4.38 % 1.53

mgrid 99.85 % 7,890 0.19 % 3.73

applu 97.58 % 4,583. 0.96 % 3.94

FP mesa 98.06 % 567 0.52 % 2.41

art 99.07 % 3,986 0.76 % 3.01

equake 95.55 % 638 2.60 % 2.28

ammp 79.64 % 182 1.71 % 1.31

sixtrack 89.88 % 119 0.70 % 1.66

apsi 98.62 % 3,362 1.23 % 2.45

Table 1. This table shows 1) the percentage

of instructions (executed by the unmodified

program) that are covered by correctly pre-
dicted traces, 2) the average length of the

trace (in number of instructions) that com-
mits in each correct prediction, 3) the trace

misprediction rate, and 4) the speedup over

sequential execution by performing 8-way
parallelization and dispatching at most 32

candidate traces.

cessed by the trace parallelizer and stored in the trace

cache. This parallelization process is offloaded to spare

cores in order not to affect the sequential execution.

Thus, at every point during execution, the trace predictor

checks for candidate traces: parallelized traces in the trace

cache that 1) begin with the instruction that is about to be

executed by the sequential binary, and 2) have a high prob-

ability of running to completion. If any exist, it suspends

the sequential execution and launches them in the remain-

ing available cores (Cores 2 to 7). The speculated traces

operate on copies of the actual program state. If a trace devi-

ates from the execution path that is actually taken, it aborts

and its copy of program state is discarded. If any traces

run to completion, one of them is selected and its copy of

program state is committed to the suspended sequential ex-

ecution, which “skips forward” in time to the end of the

selected trace. Figure 1 illustrates three example scenarios.

First, the right trace aborts and the left trace succeeds, caus-

ing the sequential execution to skip forward. Second, both

traces abort and so the sequential binary continues running

from the last dispatch point. Third, both traces succeed and

the copy of program state from the left trace is selected to

commit. In the last case, one trace is the prefix of the other

trace, which happens infrequently in practice.

Table 1 summarizes the performance of T-DBP as im-

plemented in [23], which uses a combination of novel and

existing algorithms. One clear takeaway from this table is

that T-DBP performs best on floating point benchmarks,

followed by media benchmarks, and could only achieve

mediocre speedups on integer benchmarks. This is not sur-

prising since integer programs normally have more com-

plicated control flows that are hard to predict and pointer-

based memory accesses that are hard to disambiguate. The

current algorithms have encountered significant difficulties

to further increase trace coverage and trace length while

maintaining high speculation accuracy. Thus, it is impor-

tant and necessary to conduct a limit study to estimate the

maximum possible performance of T-DBP, which can act as

the guidelines for future improvements.

4 Limit Study Setup

We analyze the limits of T-DBP by making two ideal-

izations about the hardware and algorithms: 1) the program

runs on a many-core processor with an unbounded num-

ber of cores, and 2) the trace construction algorithm can

always identify the most frequently repeating patterns of

instructions. The first idealization not only assumes unlim-

ited computing resources, but also guarantees perfect spec-

ulation accuracy since all candidate traces can be executed

simultaneously. The second idealization maximizes trace

length to expose more distant parallelism.

To conduct this limit study, we performed a five step pro-

cess for each program in the SPEC CPU2000 benchmark

suite1: 1) record the complete execution sequence of the

program, 2) analyze the recording offline to identify the fre-

quently repeating traces, 3) create a new execution sequence

by replacing each trace in the original execution sequence

with a parallelized version, 4) analyze the parallel execu-

tion time of the new execution sequence using a model of

a shared-memory many-core processor, and 5) replay a lin-

earization of the new execution sequence on a real machine

and check correctness of the result: a successful replay im-

plies correct synchronizationswithin the parallelized traces.

All programs are executed using the test data sets as input to

maintain a reasonable amount of recorded data. In the next

five subsections, we describe in detail how we implemented

each of these steps.

1The perlbmk benchmark was omitted because it recursively calls

itself, starting multiple instances of our capture framework and exhausting

memory of the machine.
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Algorithm construct_trace : path

01 loop do

02     for each pair of adjacent symbols (s 1, s 2) i in path do

03 if check_pair (s 1, s 2) i then begin

04             num i ← occurrence number of (s 1, s 2) i

05         end

06     done

07 (s 1, s 2) m ← most frequent pair

08     freq m ← maximum occurrence number

09     if freq m > 1 then begin

10         A j ← create new symbol

11         replace all occurrences of (s 1, s 2) m with A j

12     end else begin

13         break

14  end

15 done

execution path            pair (max. num.)      new symbol

1      path → abcababc ab (3)                  A → ab

2      path → AcAAc Ac (2)                  B → Ac

3      path → BAB                          

(b) Example of Trace Construction.

(a) Idealized Trace Construction Algorithm.

Algorithm check_pair : (s 1, s 2) i

01 return true

(c) No Handicap.

Algorithm check_pair : (s 1, s 2) i

01 if (s 1 app && s 2 app) || (s 1 lib && s 2 lib) then begin

02 return true

03 end else begin

04     return false

05 end

∈ ∈ ∈ ∈

(d) Handicapped Algorithm that Cannot Parallelize across 

Boundaries between Application and Library Code.

Figure 2. The idealized trace construction algorithm finds the most frequently repeating patterns of
instructions in the entire execution sequence, as shown in the example. The handicapped version

does not construct traces across boundaries between application and library code.

Other studies have built systems to efficiently record

program execution [13, 26], and some can also replay the

recording by capturing non-deterministic events such as in-

terrupts, preemption, and user input [10, 22]. Our limit

study framework is unique in that we can modify the ex-

ecution sequence and replay the modified version to verify

that it is equivalent to the original execution.

4.1 Recording Execution Sequences

We record the original execution sequence of the pro-

gram by adding instrumentation code to the binary exe-

cutable. This is performed by employing translation-based

dynamic instrumentation to the program during its execu-

tion: whenever a new basic block is translated, instrumenta-

tion code is added to record the program counter whenever

the basic block executes. Instrumentation code is also added

to record the effective address of every load and store in-

struction, as well as the memory value of each load instruc-

tion. We record the actual memory values so that the pro-

gram can be deterministically replayed. Otherwise, back-

ground operating system processes could change the state of

certain system libraries, creating non-deterministic effects

during program playback. We record the effective addresses

of memory accesses to performmemory disambiguation, as

described below in Section 4.3.

Recording the complete execution sequence of the pro-

gram produces a large amount of information and so we

use double buffering to reduce the runtime overhead [27]

and apply the VPC3 algorithm to compress the collected

information [4]. This greatly increases execution speed

and reduces disk space requirements, although a typical

one second program still required three minutes and fifty

megabytes of disk space to record.

4.2 Analyzing Execution Sequences to
Construct Repeating Traces

Once the execution sequence has been recorded, we con-

struct traces by finding all frequently repeating patterns of

instructions. We do this using an offline dictionary-based

algorithm that is typically used for compression [12], illus-

trated in Figure 2(a). Initially every basic block is defined

to be a unique symbol. We then identify the two symbols

si and sj that are the most frequent pair of adjacent sym-

bols in the entire execution sequence (lines 2 to 8). If no

pair appears more than once, the algorithm stops (line 13).

Otherwise, we replace all occurrences of sisj with a new

symbol Aj (lines 10 to 11). The execution sequence now

has fewer symbols and the algorithm repeats to again find

the most frequent pair of adjacent symbols. When the al-

gorithm completes, all symbols remaining on the execution

sequence become the selected traces. Figure 2(b) shows an

example of how traces are constructed on an execution se-

quence of eight basic blocks (a, b, c, a, b, a, b, c). In the first
iteration, ab is found to occur most frequently (three times)
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and is replaced by a new symbol A. In the second itera-

tion, Ac occurs two times and is replaced by a new symbol

B. After that, no pair of adjacent symbols occurs more than

once and the algorithm completes, constructing two differ-

ent traces A (basic block sequence a, b) and B (basic block

sequence a, b, c).

We can modify the trace construction algorithm to hand-

icap T-DBP so that it cannot parallelize across boundaries

between application and library code. More specifically, we

replace the original check pair function (Figure 2(c)) in-

voked on line 3 of the trace construction algorithm with

an alternative version that only allows two adjacent basic

blocks to be combined into a single symbol if both of them

belong to application code or both of them belong to library

code. The pseudo code for this handicapped algorithm is

illustrated in Figures 2(d) and its effect on execution speed

will be analyzed in Section 5.

4.3 Parallelizing Execution Sequences

Once the repeating traces in the execution sequence are

identified, they are parallelized using a modified version of

the dynamic critical path scheduling algorithm [11], which

is derived from previous research on allocating task graphs

to fully-connected multiprocessors. This algorithm is se-

lected since it was experimentally demonstrated to produce

the minimum execution time among all comparable algo-

rithms. For the purpose of trace parallelization, we define

each instruction to be a separate task. The algorithm mainly

includes the following four steps:

1. Eliminate all anti and output register dependencies in

the trace through renaming. Identify all true dependen-

cies and build the dependency graph. Initialize the cur-

rent schedule to be an empty schedule. The effective

addresses of memory accesses recorded in Section 4.1

are used to perform memory disambiguation.

2. Calculate the absolute earliest start time (AEST) and

absolute latest start time (ALST) of each instruction

based on the current schedule. Let L be the group

of instructions with the smallest value of ALST −
AEST , and pick instruction i from L that does not

have predecessors in L.

3. Schedule instruction i on core j where 1) after inser-

tion, it does not delay the ALST of all instructions

already scheduled on that core, including itself, and

2) there are no violations of any true dependencies.

4. Go back to Step 2 if not all instructions are scheduled.

After all traces are parallelized, we replace their occur-

rences in the original execution sequence with the paral-

lelized versions. This new execution sequence represents

I2 : R0 = R1

I3 : R0 = R2 I5 : R2 = 2

I4 : R3 = R0

I3 : R0 = R2 I1 : R1 = R4

I4 : R3 = R0

3
 c
lo
c
k
 c
y
c
le
s

(b) Parallelization on the CFG.

I3 : R0 = R2 I1 : R1 = R4

I4 : R3 = R0

2
 c
lo
c
k
 c
y
c
le
s

(c) Parallelization on the Trace.(a) A Simple CFG. 

I1 : R1 = R4

I2 : R0 = R1

I2 : R0 = R1

Figure 3. Analysis of the trace (dashed arrow)

produces fewer true dependencies than anal-

ysis of the CFG, leading to improved parallel
performance.

the ideal execution sequence that T-DBP might produce in

the real world. Correctly replacing every single trace in the

original execution sequence with the parallelized version

corresponds to the idealized assumption of perfect specu-

lation accuracy in our limit study.

We can also modify the trace parallelization algorithm

to handicap T-DBP so that it has to respect all control and

data dependencies that appear on the CFG. For example,

Figure 3(a) illustrates the CFG of a small program snippet

containing five instructions: I1, I2, I3, I4, and I5. Analy-

sis of this CFG reveals three true dependencies: I1 → I2,

I3 → I4, and I2 → I4. The last dependency exists because

of the possible execution path through I5. The best possible

parallelization of the left branch (dashed arrow) in this CFG

that respects all of the three true dependencies is depicted

in Figure 3(b), with a parallel execution time of three clock

cycles. In contrast, if the path along the left branch is con-

verted into a trace at run time, an analysis of the trace would

not find a true dependency I2 → I4 because I3 produces the

freshest value of R0. A parallelization of this trace would

thus run the same instructions with a parallel execution time

of only two clock cycles, as depicted in Figure 3(c). The ef-

fect of this handicapped algorithm on execution speed will

be analyzed in Section 5.

4.4 Modeling Parallel Execution Time

To calculate the execution time of a sequence of instruc-

tions, we define each instruction to have an execution time

of one clock cycle because of pipelining. We define the

execution time of a parallelized trace to be the maximum

AEST of all instructions in the trace plus one, to account for

the execution of the last instruction. We require at least one

clock cycle to separate any two instructions with true depen-

dencies that execute on different cores, for inter-core com-
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Figure 4. The standard T-DBP achieves an average speedup of 9.18x and 22.34x over sequential

execution for the integer and floating point benchmarks, respectively. When all handicaps are artifi-

cially emulated, the average increase in execution speed shrinks to 4.51x (integer) and 9.36x (floating
point), respectively.

munication. Software-based synchronization mechanisms

such as locks, barriers, and monitors can cause more than

one clock cycle of runtime overhead due to the interactions

with the operating system, but special hardware such as the

synchronization array [17] provides efficient, non-memory-

based communication between different cores on the same

chip. This technique enables the production and consump-

tion of a single register value on different cores to be per-

formed in back-to-back cycles, as long as the communicat-

ing buffer between the two cores is not full.

4.5 Verifying Parallel Execution Se-
quences

In addition to calculating the execution time, we can also

execute the parallelized execution sequence to ensure cor-

rect synchronizations within the parallelized traces. To do

this, all basic blocks and traces in the final execution se-

quence are linked together into a single executable, loaded

into to its original address space, and replayed on a real

machine. For parallelized traces, a linearization is created

based on the final AEST of each instruction. This process

does not test all possible linearizations and thus does not

guarantee that the synchronization is one hundred percent

correct, but it does create a linearization that is substan-

tially different from the original execution sequence and

has allowed us to verify many programs with reasonable

confidence. During the replay, load instructions are not ac-

tually executed; the corresponding memory value that was

recorded in the original execution is provided to the target

register. This prevents background processes in the oper-

ating from producing non-deterministic values which can

cause segmentation faults.

5 Experimental Results

We used the limit study framework described in Sec-

tion 4 to analyze the performance of T-DBP on the SPEC

CPU2000 benchmark suite. We tested and compared three

different versions of the T-DBP implementation. The first

implementation is standard T-DBP with no handicaps ap-

plied. The other two implementations use handicapped ver-

sions of the trace construction (Section 4.2) and paralleliza-

tion (Section 4.3) algorithms, respectively. These three im-

plementations are named as follows:

• T-DBP: both trace construction and trace paralleliza-

tion are unconstrained.

• T-DBP−1: trace construction cannot cross boundaries

between application and library code.

• T-DBP−2: trace construction cannot cross boundaries

between application and library code; trace paralleliza-

tion has to respect all true dependencies that appear in

the CFG.

The performance of all three versions of the T-DBP im-

plementation is illustrated in Figure 4. For the standard

T-DBP that is unconstrained, the average speedup over se-

quential execution is 9.18x and 22.34x for the integer and

floating point benchmarks, respectively. The higher speed

increase for the floating point programs is likely due to the

fact that they contain a larger fraction of numerical code,

which introduces fewer true dependencies. When all hand-

icaps are artificially emulated, the average increase in exe-

cution speed shrinks to 4.51x (integer) and 9.36x (floating

point), respectively. These results support the hypothesis

that the ability of T-DBP to overcome these two handicaps
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Exec. on Avg. Trace. Exec. in

Benchmark Traces Leng. Libraries

gzip 100.00 % 90 4.83 %

vpr 99.99 % 50 4.06 %

gcc 99.99 % 102 15.91 %

mcf 100.00 % 106 41.82 %

crafty 99.99 % 80 7.80 %

INT parser 99.99 % 94 8.51 %

eon 99.97 % 126 6.60 %

gap 99.99 % 174 18.12 %

vortex 100.00 % 1,879 12.96 %

bzip2 100.00 % 118 0.18 %

twolf 99.98 % 100 6.59 %

wupwise 100.00 % 2,584 0.68 %

swim 100.00 % 10,800 52.28 %

mgrid 99.99 % 26,931 0.05 %

applu 99.93 % 2,003 2.22 %

mesa 100.00 % 4,503 70.62 %

galgel 99.99 % 967 0.13 %

FP art 99.99 % 1,465 6.67 %

equake 99.95 % 748 68.43 %

facerec 99.97 % 3,203 1.10 %

ammp 99.99 % 953 15.56 %

lucus 99.99 % 368 0.01 %

fma3d 100.00 % 58 14.45 %

sixtrack 100.00 % 2,081 8.31 %

apsi 99.98 % 7,238 10.21 %

Table 2. This table shows 1) the percentage
of basic blocks that are formed into traces,

2) the average number of basic blocks per

trace, and 3) the percentage of basic blocks
that belong to libraries.

accounts for its ability to explore a higher degree of paral-

lelism than compile-time techniques do.

5.1 Analysis of Trace Parallelization

The only difference between T-DBP−2 and T-DBP−1 is

that T-DBP−2 performs dependency analysis on the CFG

during the parallelization process while T-DBP−1 performs

dependency analysis directly on traces. Thus, the results of

these two versions of the T-DBP implementation indicate

the degree to which parallelism increases when using run-

time information to eliminate spurious dependencies. The

average speedup of T-DBP−1 over sequential execution

is 12.47x, outperforming that of T-DBP−2 by a factor of

1.72x. This result validates the hypothesis that dependency

analysis on the CFG is a significant handicap for compile-

time parallelization techniques.

5.2 Analysis of Trace Construction

The relative results of T-DBP−1 and T-DBP indicate that

parallelizing across boundaries between application and li-

brary code can improve the average speedup over sequen-

tial execution from 12.47x to 16.55x. Note that the speed

increase does not necessarily correspond to the percentage

of executed basic blocks that belong to libraries, which is

listed in the fifth column of Table 2. In fact, mcf executes

more library instructions than all other integer benchmarks

but almost shows the minimum improvement between T-

DBP−1 and T-DBP. Also note that the library instructions

are being parallelized in both versions of the T-DBP imple-

mentation; the handicapped version only eliminates paral-

lelization between application and library instructions. The

degree to which this handicap affects the speed increase is

related to the degree to which application instructions are

interleaved with library instructions. These results validate

the hypothesis that the inability to parallelize across bound-

aries between application and library code is a significant

handicap for compile-time parallelization techniques.

When all handicaps are removed, T-DBP constructs

very long traces. The fourth column of Table 2 lists the

average number of basic blocks within each constructed

trace, which can be as large as 1,879 for integer bench-

marks (vortex) and 26, 931 for floating point bench-

marks (mgrid). For all the programs, the average trace

length is at least an order of maganitude larger than that

was achieved in [23], indicating a large room for further

improvements. The third column of Table 2 lists the per-

centage of basic blocks in the entire execution sequence

that are formed into traces. This result shows that nearly

all basic blocks are combined to construct longer traces

and can be parallelized for later reuse. The singleton basic

blocks that do occur are primarily from the prologue and

epilogue of the program. Thus, a small number of traces

can cover nearly the entire execution sequence of a typi-

cal program, which suggests good trace predictability. In a

nutshell, an idealized system based on T-DBP can achieve

1) long traces, 2) large trace coverage, and 3) high specula-

tion accuracy at the same time.

6 Conclusions

In previous research [23], we have proposed a novel DBP

scheme (T-DBP) that leverages hot traces to provide a large

instruction window without introducing spurious control

and data dependencies. Although our preliminary results

have indicated an average speedup of 1.96x (8-way paral-

lelization) over sequential execution, we believe T-DBP is

able to achieve much larger speed increases by improving

on the initial prototype implementation. Thus, we conduct

a limit study in this paper to 1) estimate the maximum pos-

sible performance of T-DBP, and 2) explain why T-DBP has

that performance. Our results indicate an average speedup

of 9.18x and 22.34x over sequential execution for the in-

teger and floating point benchmarks, respectively. We ex-

plain this high speed increase by quantitatively demonstrat-

ing that T-DBP uses runtime information to overcome two

key handicaps of compile-time parallelization techniques:

1) not parallelizing across boundaries between application

and library code, and 2) conservatively respecting all con-
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trol and data dependencies that appear on the CFG. By

artificially emulating the effects of these handicaps in T-

DBP, the average speedup shrinks to 4.51x (integer) and

9.36x (floating point), respectively.

References

[1] P. Ahuja, K. Skadron, M. Martonosi, and D. Clark. Multi-

path Execution: Opportunities and Limits. In Proceedings

of the International Conference on Supercomputing, 1998.

[2] V. Bala, E. Duesterwald, and S. Banerjia. Dynamo: A Trans-

parent Dynamic Optimization System. In Proceedings of the

Conference on Programming Language Design and Imple-

mentation, 2000.

[3] D. Bruening, T. Garnett, and S. Amarasinghe. An Infrastruc-

ture for Adaptive Dynamic Optimization. In Proceedings of

the International Symposium on Code Generation and Opti-

mization, 2003.

[4] M. Burtscher. VPC3: A Fast and Effective Trace-

Compression Algorithm. In Proceedings of the Interna-

tional Conference on Measurement and Modeling of Com-

puter Systems, 2004.

[5] M. DeVuyst, D. Tullsen, and S.-W. Kim. Runtime Paral-

lelization of Legacy Code on a Transactional Memory Sys-

tem. In Proceedings of the International Conference on

High Performance and Embedded Architectures and Com-

pilers, 2011.

[6] L. Freeman. Recover Missing Source Code to Over-

come ”Leaky-Roof Syndrome”. Enterprise Systems Jour-

nal, 1997.

[7] R. Hank, S. Mahlke, R. Bringmann, J. Gyllenhaal, and W.-

M. Hwu. Superblock Formation Using Static Program Anal-

ysis. In Proceedings of the International Symposium on Mi-

croarchitecture, 1993.

[8] B. Hertzberg and K. Olukotun. Runtime Automatic Spec-

ulative Parallelization. In Proceedings of the International

Symposium on Code Generation and Optimization, 2011.

[9] E. Ipek, M. Kirman, N. Kirman, and J. Martinez. Core Fu-

sion: Accommodating Software Diversity in Chip Multipro-

cessors. In Proceedings of the International Symposium on

Computer Architecture, 2007.

[10] S. King, G. Dunlap, and P. Chen. Debugging Operating Sys-

tems with Time-Traveling Virtual Machines. In Proceedings

of the USENIX Annual Technical Conference, 2005.

[11] Y. Kwok and I. Ahmad. Dynamic Critical-Path Schedul-

ing: An Effective Technique for Allocating Task Graphs to

Multiprocessors. Transactions on Parallel and Distributed

Systems, 7(5), 1996.

[12] J. Larsson and A. Moffat. Offline Dictionary-Based Com-

pression. In Proceedings of the Conference on Data Com-

pression, 1999.

[13] J. Larus. Whole Program Paths. In Proceedings of the Con-

ference on Programming Language Design and Implemen-

tation, 1999.

[14] S. Mahlke, D. Lin, W. Chen, R. Hank, and R. Bringmann.

Effective Compiler Support for Predicated Execution using

the Hyperblock. In Proceedings of the International Sympo-

sium on Microarchitecture, 1992.

[15] M. Merten, A. Trick, E. Nystrom, R. Barnes, and W.-M.

Hwu. A Hardware Mechanism for Dynamic Extraction and

Relayout of Program Hot Spots. In Proceedings of the In-

ternational Symposium on Computer Architecture, 2000.

[16] S. Patel and S. Lumetta. rePLay: A Hardware Framework

for Dynamic Optimization. IEEE Transactions on Comput-

ers, 50(6), 2001.

[17] R. Rangan, N. Vachharajani, M. Vachharajani, and D. Au-

gust. Decoupled Software Pipelining with the Synchroniza-

tion Array. In Proceedings of the International Confer-

ence on Parallel Architectures and Compilation Techniques,

2004.

[18] R. Ranjan, F. Latorre, P. Marcuello, and A. Gonzalez. Fg-

STP: Fine-Grain Single Thread Partitioning on Multicores.

In Proceedings of the International Symposium on High Per-

formance Computer Architecture, 2011.

[19] K. Sankaralingam, R. Nagarajan, H. Liu, C. Kim, J. Huh,

D. Burger, S. Keckler, and C. Moore. Exploiting ILP, TLP,

and DLP with the Polymorphous TRIPS Architecture. In

Proceedings of the International Symposium on Computer

Architecture, 2003.

[20] D. Tarjan, M. Boyer, and K. Skadron. Federation: Repur-

posing Scalar Cores for Out-of-Order Instruction Issue. In

Proceedings of the Design Automation Conference, 2008.

[21] S. Wallace, B. Calder, and D. Tullsen. Threaded Multiple

Path Execution. In Proceedings of the International Sympo-

sium on Computer Architecture, 1998.

[22] M. Xu, R. Bodik, and M. Hill. A “Flight Data Recorde”

for Enabling Full-system Multiprocessor Deterministic Re-

play. In Proceedings of the International Symposium on

Computer Architecture, 2003.

[23] J. Yang, K. Skadron, M. L. Soffa, and K. Whitehouse. Fea-

sibility of Dynamic Binary Parallelization. In Proceedings

of the Workshop on Hot Topics in Parallelism, 2011.

[24] E. Yardimci and M. Franz. Dynamic Parallelization and

Mapping of Binary Executables on Hierarchical Platforms.

In Proceedings of the Conference On Computing Frontiers,

2006.

[25] W. Zhang, B. Calder, and D. Tullsen. An Event-Driven Mul-

tithreaded Dynamic Optimization Framework. In Proceed-

ings of the International Conference on Parallel Architec-

tures and Compilation Techniques, 2005.

[26] X. Zhang and R. Gupta. Whole Program Traces. In Proceed-

ings of the International Symposium on Microarchitecture,

2004.

[27] Q. Zhao, I. Cutcutache, and W. Wong. PiPA: Pipelined Pro-

filing and Analysis on Multi-Core Systems. In Proceedings

of the International Symposium on Code Generation and

Optimization, 2008.

58



CRQ-based Fair Scheduling                                  
on Composable Multicore Architectures 

 
Tao Sun, Hong An, Tao Wang, Haibo Zhang, Gu Liu, Mengjie Mao 

School of Computer Science and Technology 
University of Science and Technology of China 

Hefei, China, 
suntaos@mail.ustc.edu.cn, han@ustc.edu.cn,{tao36, kopcarl, gliu, mjmao}@mail.ustc.edu.cn 

 

 

Abstract— Emerging composable chip multiprocessors (CCMPs) 
allow system software to dynamically configure chip computing 
resources into different number and types of cores at runtime. 
However, such dynamic heterogeneity poses a significant chal-
lenge to making fair scheduling, since the operating system tradi-
tionally only assumes fixed number and types of cores. To ad-
dress the fair scheduling problem on CCMP, firstly, this paper 
introduces centralized run queue (CRQ) to capture the changing 
number of cores, and proposes a pipeline-like scheduling me-
chanism to hide the large scheduling decision overhead caused by 
the CRQ.  Secondly, an efficiency-based dynamic priority (EDP) 
algorithm is proposed to keep fair scheduling, which can not only 
provide same applications with performance proportional to 
their priorities, but also ensure equal-priority (different) applica-
tions to get equivalent performance slowdowns when running 
simultaneously. In our experiments, several multi-program work-
loads are used for fairness evaluation, and the CFS algorithm is 
also ported to CCMP for comparing with EDP. The simulation 
results demonstrate that, besides achieving the fairness targets on 
CCMP, EDP also outperforms CFS by as much as 10.6% in av-
erage turnaround time under heterogeneous workload. 

Keywords- composable multicore; scheduling; fairness; 
centralized run queue (CRQ) 

I.  INTRODUCTION 

An emerging family of performance-asymmetric multicore 
architectures, named composable chip multiprocessor (CCMP), 
has been proposed in recent years [1, 5, 6]. Instead of placing 
fixed heterogeneous cores at chip design time, CCMP consists 
of small homogenous physical cores, but provides dynamic 
heterogeneity at runtime by aggregating different number of 
physical cores into different sized logical cores. This enables 
CCMP to adapt the computing resources as the workload mix 
or application parallelism requirements changed. Figure 1 
shows a 16-physical core CCMP and its two possible dynamic 
configurations. For ease of description, we use the terminology 
P-N to refer to a logical core which is composed of N physical 
cores, and we say P-x and P-y at different type when x≠y. 
Typically, a logical core P-N will have N-times issue width, 
instruction window, and level-1 I/D cache capacity than P-1.  
The system software can dynamically configure different num-
ber and types of logical cores at runtime by calling the hard-
ware primitives (supported by CCMP micro-architecture). 

However, such dynamic heterogeneity poses a significant 
challenge to operating system in making fair scheduling on 
CCMP.  Firstly, schedulers on both symmetric-CMPs and fixed 
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Figure 1:  Example 16-physical core CCMP and its two dynamic configurations 
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Figure 2:  Gather/ Scatter operations caused by maintaining DRQs on CCMP 

 
Figure 3:  Speedups of different types of cores (P2/P4/P8) over P-1 running a 
subset of SPEC 2K and EEMBC applications. 

asymmetric-CMPs conventionally assume fixed number of 
cores, and build distributed run queues (DRQs) on each core 
for process scheduling. But in CCMP system, the number of 
logical cores is often changed to gain the benefits of dynamic 
heterogeneity, which makes the scheduler too expensive to 
maintain DRQs upon logical cores. As Figure 2 illustrates, 
when a logical core is being created or freed, the scheduler 
needs to gather or scatter plenty of processes simultaneously to 
maintain DRQs. Both operations are highly expensive. 

Secondly, maintaining priority-based fairness on CCMP is 
more challenging, as different applications (or different phases 
of an application) probably run on different types of logical 
cores, and the speedup-gains also vary widely across different 
applications even on same core type (shown in Figure 3). Here 
we define fairness in two features:  it provides same applica-
tions with performance proportional to their priorities; while it 
ensures equal-priority (different) applications to get equivalent 
performance slowdowns when running simultaneously, i.e. 
multi-program affects per-application performance equally if 
they have equal priorities. 

59



 

(Prioritized) Centralized Run Queue (CRQ)   

P‐2   

P‐2   

P‐8     

P‐4   Executing Queue (subset of CRQ) 

  Record who are running         

 
Figure 4: Example prioritized CRQ (can also be maintained as R-B tree in CFS). 
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Figure 5:  Pipeline-like scheduling mechanism.  The scheduling decision over-
head may vary but typically shorter than OS schedule-tick (0.5ms in this work). 

The rest of paper is organized as follows. Section II de-
scribes the centralized run queue (CRQ) based scheduling me-
chanism on CCMP. Section III firstly describes our efficiency-
based dynamic priority (EDP) algorithm, then discusses how 
EDP can achieve system-wide fairness. Section IV discusses 
the experimental results. Finally, Section V concludes. 

II. CRQ-BASED SCHEDULING MECHANISM ON CCMP 

A. Centralized Run Queue 

As discussed in Section I, maintaining per-core distributed 
run queues (DRQs) upon CCMP is highly expensive. Instead, 
as illustrated in Figure 4, using centralized run queue (CRQ), 
the scheduler can easily capture the changing number of logical 
cores by maintaining an additional executing queue, which is 
simply a subset of the CRQ but records the current running 
processes. Furthermore, the CRQ can also be implemented as 
the prioritized queue for fair scheduling.  

Besides the benefits, CRQ also brings larger scheduling  
decision overhead [7] and the scalability problem. In next sub-
section, we propose a pipeline-like scheduling mechanism to 
hide the decision overhead of scheduler. In this paper, we do 
not address the scalability in first place (we leave it for future 
work), but we would like to make a short discussion on it. 

Scalability of using CRQ. It is assumed that the future 
many-core OS is probably to divide the cores into clusters and 
provide a set of OS services for each individual cluster in paral-
lel [10]. Thus, the OS scheduling can be done at two levels: 
intra- and inter- clusters. In each cluster, the CRQ-based pipe-
line-like mechanism can be well used because of a limited 
number of cores (due to dividing). Between clusters, the CRQ 
of each cluster can be viewed as the per-cluster DRQ at cluster-
level to support load balancing and cluster-level scalability. 

B. Pipeline-like Scheduling Mechanism 

Overview of the scheduling procedure on CCMP.    
Figure 6 presents an overview of the scheduling procedure on 
CCMP with CRQ. A new process will be assigned the smallest 
core type (i.e. P-1) when created. At the beginning of every 
schedule-tick (0.5ms in this work), the OS scheduler collects 
the runtime information of each running process (shown by 
②), evaluates the execution efficiencies (defined in Eq.2) and 
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Figure 6:  Overview of the proposed scheduling procedure on CCMP. 

updates the core types (shown by ③ ); then, the scheduler 
switches processes based on scheduling decision and puts the 
selected ones to run on composable cores by calling the hard-
ware primitives create/free logical core (shown by ①&④). 
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 Pipeline-like scheduling mechanism. Also shown in 
Figure 6, OS services are running on separate cores. This pro-
vides an opportunity to “pipeline” OS scheduling decision 
with processes running on composable cores. Such pipeline-
like mechanism is based on two facts. First, since the core 
types of processes are unchanged between two adjacent OS 
schedule-ticks, once the scheduler finishes process-switching, 
it in fact accurately knows the core type of each running 
process in this schedule period and the remaining time slice 
after this period. Second, once the scheduler finishes process-
switching, the core running scheduler becomes idle. 

Thus, as shown in Figure 5, while processes running on 
composable cores, the scheduler can correctly pre-calculate the 
dynamic priority (or key in CFS [8]) of each process, and pre-
maintain the CRQ to be prioritized as the new-calculated 
priorities. When next schedule-tick arrives, since the CRQ has 
been properly pre-sorted, the scheduler only needs to update 
the core types of processes running in last period, and then 
simply put processes one by one to composable cores from the 
head of CRQ (if process-switching happens), until there is no 
enough resources to form the demanded core type. Therefore, 
the large scheduling decision overhead caused by the CRQ can 
be well hidden by such pipeline-like scheduling mechanism.  

It is worth mentioning that most of existing scheduling al-
gorithms, e.g. CFS [8], can be rebuilt on top of such pipeline-
like scheduling mechanism with moderate modifications. 

III. EDP FAIR SCHEDULING ON CCMP 

This paper proposes an efficiency-based dynamic priority 
(EDP) algorithm to make fair scheduling on CCMP, whose 
target is to provide same applications with performance propor- 

(Eq. 1) ,   IPCP-N  is task’s IPC collected on P-N 

(Eq. 2) 

60



 
Figure 7: Speedup (left Y-axis) and execution Efficiency (right Y-axis) of 
different types of cores (P-1/ P-2/ P-4/ P-8) running three typical applications. 
Three figures are aligned in right Y-axis (efficiency). 

tional to their priorities, as well as ensure equal-priority (differ-
ent) applications to get equivalent performance slowdowns 
when running simultaneously. 

EDP fair scheduling has two basic ideas: first, it keeps all 
applications running at efficiencies around a given threshold 
(typically given by OS scheduler); second, it consumes applica-
tions’ time slices in different speeds depending on their core 
types. Following two subsections discuss the two ideas in detail. 

A. Keep Applications Running at Similar Efficiencies 

A powerful characteristic of CCMP is its capability to dy-
namically configure computing resources (i.e. physical cores) 
into different number and types of logical cores. This provides 
an opportunity to keep different applications running at similar 
efficiencies by assigning them different types of logical cores.  

Figure 7 presents the speedups and efficiencies of three typ-
ically different applications running on different types of cores. 
We can see that, although each application commonly gets 
higher speedup at bigger core type, its execution efficiency 
continuously decreases. This suggests that if a system-wide 
efficiency threshold is given, different applications are able to 
achieve the threshold by running on different types of cores. 
E.g., mcf can reach the efficiency shown by the red line in Fig-
ure 7 when running on P-2, while applu on P-4 and fft on P-8. 

As execution efficiency decreases when core type increases, 
in this paper we modified the PDPA algorithm [4] to find the 
biggest core type for each application in each phase (depending 
on execution efficiency) when a lowest_efficiency_threshold is 
given. Due to space limitation, the details of modified algo-
rithm are not shown in paper. 

B. Efficiency-based Dynamic Priority (EDP) algorithm 

Figure 3 has shown that the speedup-gains vary widely 
across different applications. Thus, we argue that the fair 
scheduling on CCMP must consider per-application’s execu-
tion efficiency (recall Eq.2).  Based on this idea, this paper 
proposes an EDP algorithm, which takes the cores’ hetero-
geneity (i.e. core types), the tasks’ priorities and the execution 
efficiencies all into scheduling decision. 

EDP keeps track of all runnable processes (in CRQ) by 
two arrays, an active array and an expired array, like O(1) 
scheduler [9] does. Let’s say a new schedule round begins 
when the pointers of expired array and active array switched, 
i.e. the active array in last round becomes the expired array in 
current round and vice versa.  

EDP schedules with following features: 
① It uses the same algorithm as O(1) scheduler [9] to give 

each process a dynamic priority to avoid starvation. But it 
does not give any additional time slice when promoting the 
dynamic priority of one waiting process. 

② It always selects to execute the processes in active array 
with higher dynamic priorities, and schdules the equal dynam-
ic priority processes as first-in-first-out order in each round. 

③  It assigns each process proportional amount of time 
slice according to its static priority (100~139). 

④ It assigns each process different speed to consume its 
time slice, depending on its core type. For example, when a 
process runs on P-2, its time slice is reduced by 2 after one 
schedule-tick. But when it runs on P-4, its time slice is re-
duced by 4. Such a scheduling decision ensures equal-priority 
applications to get equal amounts of computing resources.  

⑤ When one process uses up its time slice in this round, 
EDP will reset its time slice and move it from active array to 
expired array. 

⑥ To avoid wasting of computing resources, when there 
are less than a pre-defined number (4 in this work) of  
processes in active array but the expired array is nonempty, 
EDP will add each remaining process in active array with its 
time slice in new round, promote its dynamic priority (10 in 
this work), and move it to expired array. Then the active and 
expired array are switched and new schedule round begins. 
This method may cause unfairness in each round, but fairness 
can be maintained among several rounds. 

C. Summarize the Fair Scheduling on CCMP with EDP 

EDP can ensure processes to get the proportional amounts 
of computing resources to their priorities. By employing the 
modified PDPA algorithm (discussed in subsection A), EDP 
can also keep different applications running at similar effi-
ciencies by setting a lowest_efficiency_threshold (set to 0.8 in 
this paper).  So EDP can provide the demanded fairness. 

IV. EXPERIMENTAL RESULTS 

A. Experimental Methodology 

Platform. We model a 32-physical core CCMP in the expe-
riments by using a cycle-accurate TFlex [1] simulator. The 
micro-architecture parameters are same as in [1]. Maximum 16 
logical cores can be formed simultaneously and four types are 
allowed(P-1, P-2, P-4, P-8). We assume the future CCMP chips 
can run at 1GHz, so 0.5ms is equal as 0.5M cycles in simulator. 

Overheads. The overheads of logical core reconfiguration 
and process-switching are all counted in final results. The hard-
cost of per-core reconfiguration (include saving/restoring regis-
ter and TLB states to/from memory, configuring a new logical 
core) is about 550 cycles; the soft-cost (include recreating 
branch predictor and L1 cache states on the new logical core) is 
counted into task’s execution time. The scheduling decision 
overhead does not affect results, since the decision overhead 
can be well hidden by the pipeline-like mechanism (Section II.B). 

Workloads. Nine of SPEC 2K and EEMBC applications are 
selected to build homogenous and heterogeneous workloads. 
They are shown in Fig. 3: mcf, tblook, cacheb (low speedups), 
canrdr, applu, matrix (medium speedups) and rspeed, mgrid, 
fft (high speedups). The simpoint tool is used for SEPC appli-
cations. Each task is chosen to be the length of 100M cycles of 
an application on P-1. Each workload consists of 30 tasks. 

Evaluation. All the 30 tasks in each workload become run-
nable at the same beginning time. Whenever a process exits, a 
new one is started to keep the system load unchanged. The 
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Figure 8: EDP scheduling on homogenous workloads.   Each workload consists of same applications, and the applications are shown under figures.  Tasks in (a) ~ (c) 
have same priority.  But half of tasks in (d)~(f) have high-priority (100), while the others have low-priority (120), the ideal performance of high : low should be 2:1. 

 

 
Figure 9: Fairness evaluation under heterogeneous workload, comparing between EDP and CFS scheduling on CCMP. Reconfig-overhead is too small to see in 
figures. The heterogeneous workload  consists of  2 mcf, 4 tblook, 4 cacheb, 4 canrdr, 2 applu, 4 matrix, 2 mgrid, 4 rspeed, and 4 fft (total 30 tasks).  

fairness is evaluated by the maximum deviation degree of the 
completion time (i.e. turnaround time) of each of 30 tasks. The 
average completion time is also used as the performance metric. 

B. Experimental Results 

Firstly, we evaluate if EDP can ensure priority-based fair-
ness for homogenous applications. Figure 8 (a) ~ (c) show the 
completion time of each task in three workloads, which are 
consists of 30 copies of tblook, canrdr, and fft, respectively. 
The tasks in each workload (a) ~ (c) will get the same comple-
tion time if an ideal fair scheduler is used. We can see that EDP 
can provide good fairness.  More precisely, the delta in the 
figure presents the degree of unfairness, which is calculated as: 

     delta  = maximum ( |mean – best|,  |mean – worst| ) 
The workloads in Figure 8 (d)~ (f) are similar with (a)~ (c), 

except that the tasks have different priorities. Half of the tasks 
have high_priority (100), and the others have low_priority (120). 
The high_prio tasks will get as twice performance as low_prio 
ones under an ideal fair scheduling. We can see that EDP again 
provides good priority-based fairness. 

Because CFS shares the similar scheduling decisions as EDP 
under the homogenous workloads, CFS results are not shown. 

Secondly, we evaluate if EDP can ensure equal-priority ap-
plications to be affected equally under multi-program execution. 
The heterogeneous workload (includes 9 different applications) 
is used for evaluation. Figure 9 (a) shows the completion time 
of each task under EDP scheduling, and Figure 9 (b) shows the 
CFS scheduling results for comparison. Since CFS does not 
consider the heterogeneity between logical cores and the execu-
tion efficiencies of applications, it fails to ensure equal-priority 
applications getting equivalent performance slowdowns under 
multi-program execution. The results show that EDP is able to 
provide such fairness. 

Finally, it is worth mentioning that the average completion 
time under EDP scheduling is 10.6% shorter than CFS when 
heterogeneous workload used (Figure 9), which means EDP 
provides better per-task performance than CFS in average. 

V. CONCLUSION AND FUTURE WORK 

To make fair scheduling on CCMP, firstly, this paper intro-
duced CRQ to capture the changing number of logical cores, 
then proposed a pipeline-like scheduling mechanism to hide the 
larger scheduling decision overhead caused by the CRQ.    Se-
condly, this paper proposed an EDP algorithm, which can pro-
vide priority-based fairness under both homogenous and hete-
rogeneous workloads. The experimental results also showed 
that EDP outperforms CFS by as much as 10.6% in average 
turnaround time under heterogeneous workload on CCMP. 

We see two main areas of focus in next work. First, we will 
evaluate how much benefit can be brought by the composabili-
ty through comparing several system metrics between symme-
tric-, asymmetric-CMPs (e.g. [3]) and CCMP. Second, we will 
address and evaluate the scalability of using CRQ on CCMP. 
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