

Proceedings of the Seventh International

Workshop on Unique Chips and Systems
UCAS‐7

UCAS 7

Held in conjunction with
The 18th International Symposium on
High Performance Computer Architecture (HPCA)

February 26, 2012
New Orleans, Louisiana, USA

 ii

UCAS-7 Organizing Committee

General Chairs

Byeong Kil Lee, The University of Texas at San Antonio
Dhireesha Kudithipudi, Rochester Institute of Technology
Tor Aamodt, University of British Columbia

Technical Program Committee

Nak Woong Eum, ETRI
Xin Fu, University of Kansas
Paul Gratz, Texas A&M Univ, College Station
Jie Han, University of Alberta
Jaehyuk Huh, KAIST
Ali Irturk, UCSD
Canturk Isci, IBM TJ Watson
Eugene John, UTSA
Dimitris Kaseridis, ARM
Tejas Karkhanis, IBM TJ Watson
Omer Khan, Univ of Massachusetts Lowell
Yong Bin Kim, Northeastern University
Shigeru Kusakabe, Kyushu University
Erik Lindholm, Nvidia
Chen Liu, FIU
Ingyu Lee, Troy University
Mike O'Connor, AMD
Resit Sendag, University of Rhode Island
Michael Shebanow, Nvidia
Abbas Sheibanyrad, TIMA Laboratory, France
Lei Wang, University of Connecticut

 iii

Table of Contents

9:00 AM- 9:15 AM Opening
9:15 AM- 10:15 AM Keynote (Dr. Daniel Jimenez, UTSA)

Session I: High Performance Computer Architecture
Time: 10:45 AM- 12:00 PM (25 minutes- Full paper, 15 minutes-WIP)

Integrated Security for System-on-Chip Architectures……………………………… 1
Stanley Bak (University of Illinois -Urbana Champagne),
Jonathan Heiner (United States Air Force Research Laboratory, AFRL-RI)

Parallelizing Electroencephalogram Processing on a Many-Core Platform for the
Detection of High Frequency Oscillations………………………………………….…. 9
Gildo Torres (Florida International University),
Paul McCall (Florida International University),
Chen Liu (Florida International University),
Mercedes Cabrerizo (Florida International University),
Malek Adjouadi (Florida International University)

[WIP] A Study of CUDA Acceleration and Impact of Data Transfer Overhead in
Heterogeneous Environment………………………………………………………...…16
Fahian Ahmed (Univ of Texas at San Antonio),
Saddam Quirem, (Univ of Texas at San Antonio),
Byeong Kil Lee(Univ of Texas at San Antonio),
Bum Joo Shin (Pusan National University),
Duk Joo Son (ETRI),
Young Choon Woo (ETRI),
Wan Choi (ETRI)

Session II: VLSI Design
Time: 1:30 PM- 2:50PM (25 minutes- Full paper, 15 minutes-WIP)

The Impact of Technology Scaling in the SpiNNaker Chip Multiprocessor…...….. 20
Eustace Painkras (University of Manchester),
Steve Furber (University of Manchester)

 iv

A Unique Design methodology to generate reconfigurable Analog ICs with
simplified Design Cycle ……………………………………………………………….. 28
G. Kapur (Dayalbagh Educational Institute),
S. Mittal (Dayalbagh Educational Institute),
C.M.Markan (Dayalbagh Educational Institute),
V.P.Pyara (Dayalbagh Educational Institute)

An automated design approach of dependable VLSI using improved
Canary FF………………….…………………………………………………………. 34
Ken Yano (Fukuoka University),
Takahito Yoshiki (Fukuoka University),
Takanori Hayashida (Fukuoka University),
Toshinori Sato (Fukuoka University)

Session III: Computer Architecture
Time: 3:20 PM- 4:40 PM (25 minutes- Full paper, 15 minutes-WIP)

Modified AVR Coding for Test Data Compression………………………….……… 40
Sruthi.P.R (Amrita Vishwa Vidyapeetham),
M.Nirmala Devi (Amrita Vishwa Vidyapeetham)

[WIP] A Study on Performance Impact of Network Delay in Chip Multi
Processors…………………………………………………………………………….... 47
Monobrata Debnath (Univ of Texas at San Antonio),
Ankil Patel (Univ of Texas at San Antonio),
Byeong Kil Lee (Univ of Texas at San Antonio)

Potential of Dynamic Binary Parallelization………………………………………… 51
Jing Yang (University of Virginia),
Kevin Skadron (University of Virginia),
Mary Lou Soffa (University of Virginia),
Kamin Whitehouse (University of Virginia)

[WIP] CRQ-based Fair Scheduling on Composable Multicore
Architectures………………………………………………………………...………… 59
Tao Sun (University of Science and Technology of China),
Hong An (University of Science and Technology of China),
Tao Wang (University of Science and Technology of China),
Haibo Zhang (University of Science and Technology of China),
Gu Liu (University of Science and Technology of China),
Mengjie Mao (University of Science and Technology of China)

Session I: High Performance
Computer Architecture

Integrated Security for
System-on-Chip Architectures

Stanley Bak
Department of Computer Science

University of Illinois at Urbana-Champaign
sbak2@illinois.edu

Jonathan Heiner
Computing Architectures Branch

United States Air Force Research Laboratory (AFRL-RI)
jonathan.heiner@rl.af.mil

Abstract—Managing access to information inside computer
systems is vital to permit authorized sharing of hardware, without
inadvertently permitting unauthorized sharing of data. Current
approaches to managed information sharing, such as Multiple
Independent Levels of Security (MILS), leverage on processor
virtualization to provide information security. However, system-
on-chip (SoC) architectures, which have multiple processing cores
and other, non-processor computing elements, can not properly
enforce security policies with processor virtualization alone.

In this paper, we propose extending this virtualization property
to other processing elements in the SoC architecture, so each one
appears as though it is dedicated, but is actually shared over
time. We develop the design of the Coarse-Grained Security
Tagged Architecture (CG-STA), which uses this approach to
reliably enforce information disclosure policies. A 16-core CG-
STA prototype system, which includes shared, non-processor
hardware elements, is implemented on a Xilinx ML501 FPGA
Evaluation Platform. The prototype demonstrates the feasibility
of the design, the security features it allows, and the trade-offs
with the approach.

I. INTRODUCTION

Due to multitasking requirements, modern computers must
share hardware resources among various computational pro-
cesses, making them vulnerable to unauthorized information
disclosure. Multitasking allows tasks and users with different
security considerations or principles to perform computations
on a single system through the sharing of the system’s com-
putational and storage resources. This sharing is essential to
keep costs down, as each user does not need to buy a fully
isolated computer. However, it is also potentially dangerous as
information may be transferred, on purpose or inadvertently,
in violation of the security policy. One crucial challenge
is, therefore, to properly manage information access inside
computer systems, so that authorized sharing of hardware is
permitted, but unauthorized data disclosure is impossible.

In this paper, we consider embedded systems which incor-
porate a system-on-chip (SoC) design, where several cooper-
ating processing elements, not restricted to a single CPU, are
placed on the same physical chip. The need for SoC designs
is driven by hardware/software co-design, reconfigurable com-
puting, and the rapid adaptation of multicore technology.

Since SoC systems can also be shared among various se-
curity principals, approaches to properly manage information
access are required. For example, a government-issued cell

phone can reasonably be expected to process information flows
of varying sensitivity on multiple processing elements within
a single device. However, traditional information-security so-
lutions often focus solely on information flows within a single
logical CPU, creating a need for novel solutions to controlled
information disclosure in embedded SoC architectures.

To address this need, we propose the Coarse-Grained
Security Tagged Architecture (CG-STA). In this architecture,
shown in Figure 1, each hardware component, such as a
processor core, DSP, or memory unit, is associated with a tag
manager. Dataflows leaving components are tagged with the
current security mode of the underlying component. Incoming
flows are then filtered to only permit components to receive
data when allowed by the system-wide security policy. The
security policy can, in this way, dictate and restrict the
rights of each component to observe and communicate with
other components. With an isolation-based security policy,
for example, not only the processor appears as a dedicated
resource that is actually shared over time (as with traditional
virtualization), but every active component in the system
also has this same property. By working only on input and
output dataflows, our approach does not require a fine-grained
understanding and verification of the dataflows through the
internals of every hardware component, but can still provide
useful control of information sharing.

The main contributions of this paper are:

• An SoC template architecture, the Coarse-Grained Secu-
rity Tagged Architecture, which permits authorized shar-
ing of hardware, but makes unauthorized data disclosure
impossible;

• Analysis of the CG-STA in terms of added design com-
plexity, flexibility, and trusted computing base require-
ments;

• The implementation of a 16-core hardware prototype
CG-STA system, along with discussion of the challenges
and limitations of our design.

This paper is organized in two main parts. After reviewing
related work in Section II, Section III outlines the design and
justification of the proposed CG-STA, starting from a clean-

1

Bus

Encryption Engine

Tag Manager

Digital Signal Processor
(DSP)

Tag Manager

Processor
Core #1

Tag Manager

Processor
Core #2

Tag Manager
Untagged
Dataflow

Untagged
Dataflow

Tagged
Dataflow

Tag Check
Passed

Dataflow
Tagged with
DSP Mode

Fig. 1. A dataflow from the DSP to Processor Core #2 is transparently tagged
and filtered by the Tag Managers to comply with the system-wide information
disclosure policy.

slate design of a secure, multi-processing-element system. This
is followed by the second part of the paper, Section IV, which
describes the FPGA-based implementation of a 16-core CG-
STA prototype. Challenges unique to CG-STA computing are
presented and the future course for the research is then laid
out. The paper finishes with conclusions in Section V.

II. RELATED WORK

Classical approaches for information security focus primar-
ily on securing data flows on processors, and do not extend
easily to SoC architectures with multiple shared processing
elements. For example, virtual machines [1] can be used to
provide Multiple Independent Levels of Security (MILS) [2],
which isolate computations of different security levels by using
a minimalistic separation kernel.

In SoC systems, however, peripherals and other processing
elements play a much larger role in the computation, and
therefore must be correctly and efficiently shared. There are
two common approaches to virtualize non-processor elements
in a VMs: software device emulation, and hardware virtualiza-
tion support. In software device emulation, device functions
and access is controlled either within the hypervisor [3],
or in an isolated VM (the approach taken by MILS). In
addition to inflating the trusted computing base, this approach
incurs significant overhead since it must emulate, in software,
interfaces to processing elements. The second approach, hard-
ware virtualization support, involves modifying the hardware
of the components themselves to support virtualization [4].
Such modifications are likely to be extensive, device-specific,
and must be correct for information security to be enforced.
The proposed CG-STA, on the other hand, demands only a
small hardware component called the Sterilize Mechanism
to be information-secure, which incurs less overhead during
operation than software device emulation, while being simpler
and therefore easier to verify than hardware component virtual-
ization. The complexity of the Sterilize Mechanism is further
discussed in the context of our hardware implementation in
Section IV-B.

A related approach for embedded systems is TrustZone [5]
from ARM. In this approach, a single bit is used to partition

the system into secure and nonsecure components. The CG-
STA’s tagging mechanism offers more flexibility than this
approach and can therefore permit more complex security
policies, as discussed in Section III-B.

The CG-STA is related to tagged architectures. In a tagged
architecture, data is coupled with metadata called tags which
describe the logical type or security classification of the
associated data. In traditional tagged architectures [6], [7],
[8], which we consider fine-grained tagged architectures, cou-
ple data flowing through a processor with meta-data about
its type or security level, which is then tracked and used
to either enforce information-flow policies or execute type-
specific instructions within the processor. For example, adding
two integers with a high-security classification produces a
result with a high-security clearance, which, later, can not
be loaded by the processor while a low-security clearance
process is running. However, when extending this approach
to systems with multiple processing elements, two drawbacks
become apparent. First, correct design requires an in-depth
understanding of the inner workings of the processing element
(traditionally the processor), which would need to be replicated
for each non-processor computation element. Second, there
are many special-case tag-propagation rules which must be
introduced due to unintuitive component usage. In a processor
for instance, XORing a register with itself, a common way to
clear a register, should also clear its associated tag, instead of
propagating it according to the standard XOR tag-propagation
rule [9]. Obtaining an exhaustive set of these special-case
rules, while still maintaining information security, is nontrivial.
Our proposed CG-STA, on the other hand, only maintains
tagging information on an input/output flow level (which
we consider a course-grained tagging approach). This allows
information disclosure security to be easier to implement,
specify, and verify. The downside of this, though, is that each
component can only exist in a single processing mode at
a time, which was not a restriction for fine-grained tagged
architectures.

There is also a large body of work addressing information
security strictly in software. Much recent research focuses
on web browser policies that attempt to isolate untrusted
computation from external sources, from trusted computation
originating on the host computer [10]. For example, browser
extension source code can automatically be examined to detect
information flows which may violate this isolation policy[11].

While this line of work is certainly more easily applicable
since it is software-based, the CG-STA addresses security
isolation at a lower, hardware level. This is desirable because
we strive to fulfill the NEAT requirements [2] of a high-
security system. A NEAT security mechanism should be Non-
bypassable, Evaluatable, Always Invoked and Tamperproof.
By using hardware for security, we trade off the flexibility of
software approaches for higher security assurance. We must
make sure, however, that the proposed hardware mechanism
is powerful enough to enforce desired security policies, but not
overbearing, since it can not be changed. The possible policies
permitted by the CG-STA will be discussed further in Section

2

III-B.
Lastly, another class of security attacks which is not the

focus of this work deals with covert channels [12] from the
proposed architectural design. Guidelines for these channels
typically require offline analysis and and online measurement
in order to minimize their effects [13]. Mitigation techniques
exist to perform these tasks [14], [15].

III. ARCHITECTURAL JUSTIFICATION

We now motivate the design of the Coarse-Grained Security
Tagged Architecture, and arrive at the design which we have
implemented in the second part of this paper. First, in Section
III-A, we take a clean-slate design approach to building
an information-secure system, arriving at the final design
of the CG-STA. Then, Section III-B discusses the types of
information-security policies permitable by the mechanisms
present in the CG-STA.

A. CG-STA Design

We now take a clean-slate design approach to building
an information-secure system. We describe several systems
iteratively, at each step relaxing some restrictions to gain
flexibility without compromising security. We will describe,
in order, a fully-isolated system, a semi-isolated system (with
shared interconnect), a restartable semi-isolated system, and
finally the CG-STA.

We start by considering a Fully-Isolated System, shown in
Figure 2. In this type of system, components processing data
with different security classifications are completely disjoint
and share no data. Clearly, such a system does not permit
information leakage between different security classifications.
Notice that the security of this type of system does not come
from the physical separation of the system parts, but rather by
the lack of communication between components with different
security classifications.

Bus

Encryption Engine
Digital Signal

Processor (DSP)

Processor
Core #1

Processor
Core #2

Bus

Fig. 2. In a Fully-Isolated System, computations in different security domains
are performed on physically separated hardware.

An isolated communication policy is essential to the next
step in the construction, which is to have a shared top-level
interconnection system between various system components.
This type of system, which we call a Semi-Isolated System,
is shown in Figure 3. The essential property of the common
interconnect is that it does not permit any communication
between the different security classifications, and therefore
the system is logically equivalent to the completely isolated
system. Since we are using the shared interconnect to provide

security correctness, it is part of the trusted computed base.
Additionally, since it is a shared resource, care must be taken
to prevent denial-of-service attacks and covert channels.

Bus

Interconnect
Interface

Processor
Core #2

Digital Signal
Processor (DSP)

Processor
Core #1

Encryption Engine

Mode
B

Interconnect
Interface

Mode
B

Interconnect
Interface

Mode
A

Interconnect
Interface

Mode
ABootstrap Element

Mode Configuration

Fig. 3. In a Semi-Isolated System, computations in different security domains
share a bus and their communication is tagged and filtered by Interconnect
Interfaces. In the figure, components can only receive data sent by other
components in the same security mode. The security modes are initially
configured using the Bootstrap Element.

We have not yet disclosed the architecture of the shared
interconnect, we have only described how it works at a high
level. In a typical present-day architecture, one possibility for
this interconnect would be something similar to the front-side
bus. In some multicore and manycore systems, the interconnect
could be a network-on-chip. Although possible, it is probably
undesirable to use a lower-level interconnect, such as an intra-
core bus. The primary reason for this is that removing the
interconnect should result in physically isolated components
which each run in a single security mode. If a low-level
interconnect is used, a connection may still remain using the
high-level interconnect (after removing the interconnect the
components are not physically isolated). Additionally, some
components are tightly coupled and it does not make sense to
have them operate in different security modes. An example of
this case could be a processor core and its local instruction
store.

One remaining issue with the semi-isolated system is initial
system configuration. The security modes must be assigned to
the Interconnect Interfaces correctly prior to bus usage. We
propose this bootstrapping is done by unique and unforgeable
bus messages from a Bootstrap Element within the trusted
computed base. Care must be taken by the Bootstrap Ele-
ment to properly identify the components connecting to the
Interconnect Interfaces. Additionally, this Bootstrap Element
may send some minimal initialization data to the components,
depending on the security context of the corresponding Inter-
connect Interface. However, this is a functional consideration
rather than a correctness requirement.

The system described so far is safe from overt information
leakage across security contexts, but it does not yet permit
sharing of anything but the interconnect. In the next step
of the construction, we permit each component to be used
by multiple security levels over time (although at any one
time instant each component only processes data in a single
security level). Starting with our semi-isolated system, we can

3

run the entire system with one security configuration. In order
to use a different security configuration, we can turn off the
system, presumably clearing all stored internal state, and then
restart the system using the Bootstrap Element to configure
the system with a different mode configuration. As long as
no state is saved between restarts, this Restartable Semi-
Isolated system, shown in Figure 4, properly enforces the
system-wide security policy. The restart must be initiated by a
trusted component, since malicious control of this ability could
lead to a denial of service. The Restarter component, which
performs this task, is therefore part of the trusted computing
base.

Bus

Interconnect
Interface

Processor
Core #2

Digital Signal
Processor (DSP)

Processor
Core #1

Encryption Engine

Mode
B

Interconnect
Interface

Mode
B

Interconnect
Interface

Mode
A

Interconnect
Interface

Mode
ABootstrap Element

Restarter

Pre-restart Signal

Fig. 4. A Restartable Semi-Isolated System contains a Restarter which,
prior to system restart and reconfiguration, sends a pre-restart signal to all
components. The components will then save their state to persistant storage
(not shown), the system will be completely restarted (presumably clearly
all internal component state), and the Bootstrap Element will reinitialize the
Interconnect Interfaces with new security modes.

One large drawback of the approach described so far is that
meaningful work may be lost when the system is restarted.
To address this, we employ co-design of the interconnect
hardware and the controlled components. Prior to initiating
a restart, the Restarter sends a pre-restart signal to all compo-
nents, indicating that the components should save their state to
persistent storage. Each component can then send a feedback
signal back to the Restarter when they have completed saving
their state, or it will wait for a timeout to occur when the reset
will be initiated anyway (in order to prevent components from
causing a denial of service by delaying the restart indefinitely).

The reason this approach works and prevents information
leakage is that restarting the system presumably clears the
state of every component, such that information processed
previously by each component is not available to the com-
putation currently being performed by the component (unless
it was accessed from permanent storage in accordance with the
security policy). Notice, however, that an entire system restart
is not necessary in order to have this property. Components
can be restarted individually and reused, as long as their state
is cleared between uses. This is the approach taken by the final
Coarse-Grained Security Tagged Architecture (CG-STA).

In the Coarse-Grained Security Tagged Architecture
(Figure 5), each component not only saves its state when
instructed by the Restarter, but is also modified to include
a hardware (non-bypassable) Sterilize Mechanism to reset the

state of every value stored internally within the component.
The Sterilize Mechanism is stronger than a traditional reset
capability, which many components already support. Specifi-
cally, the Sterilize Mechanism must clear the entire accessible
state, so that no prior information is available after it occurs,
whereas a traditional reset need only bring the component into
one valid initial state. In the Pacoblaze microcontroller, for
example, a reset will set the program counter to 0, but will not
clear the registers or internal scratchpad memory. The Sterilize
Mechanism, however, has to do the extra work to clear all
internally accessible information. The overhead and tradeoffs
of the Sterilize Mechanism will be discussed further in the
implementation section (Section IV-B).

Bus

Interconnect
Interface

Processor
Core #2

Digital Signal
Processor (DSP)

Processor
Core #1

Encryption Engine

Mode
B

Interconnect
Interface

Mode
B

Interconnect
Interface

Mode
A

Interconnect
Interface

Mode
ABootstrap Element

Restarter

Sterilize Mechanism Sterilize Mechanism

Sterilize MechanismSterilize Mechanism

Sterilize Command

Fig. 5. The CG-STA requires that each component have a Sterilize
Mechanism, which can be used by the Restarter to clear the internel state
of each component during runtime security-mode reconfiguration.

Using the previously-described modules, individual com-
ponents can be effectively restarted in a four-step process.
First the Restarter instructs them to save their state. Then,
after a save-complete message arrives or a timeout expires,
the Restarter initiates the non-bypassable Sterilize Mechanism.
Third, the Mode Setter assigns the reset component’s Intercon-
nect Interface a new security classification. Finally, the Mode
Setter sends the component some initialization data, which the
component uses to load its state from persistant storage.

The modules necessary for CG-STA computation are de-
scribed in the Table I.

While there are several modules in the trusted computing
base, the majority of the system complexity is contained in the
untrusted components. Fine-grained component modification
to support data flow tagging, a complex and potentially error-
prone process, is not necessary with the CG-STA approach.

B. Security Policy

The specific security policy enforced by the CG-STA de-
pends on the intent of the system designer. However, certain
precautions must be taken when initiating mode changes of
individual components, which we will describe in this section.
First, however, we outline two common security policies
supported by the CG-STA.

The easiest policy to enforce is the one described in the
CG-STA design section, complete isolation. If, for instance,
a finite number of virtual systems are to appear to run on

4

Module Description Trusted Computing Base?
Interconnect Provides communication among components and other

modules.
Yes

Interconnect Interface Interfaces each component with the Interconnect; auto-
matically tags bus transactions and filters messages in
accordance with the security policy.

Yes

Bootstrap Element Sets the security policy of each of the Interconnect
Interfaces; sends initialization data to the components.

Yes

Restarter Sends a message to the components informing them to
save their state; activates the Sterilize Mechanism.

Yes

Sterilize Mechanism Clears all stored values in the corresponding component. Yes
Components Operates on data flows. Examples include processor

cores, DSPs, dedicated memories, and custom IP cores.
No

TABLE I
ALTHOUGH SEVERAL MODULES MUST BE PRESENT FOR CORRECT CG-STA COMPUTATION, THE MAJORITY OF THE SYSTEM COMPLEXITY IS CONTAINED

IN THE UNTRUSTED COMPONENTS.

the same physical system, the CG-STA can be configured to
provide verified isolation. Each virtual system is assigned a
unique identifier. Each Interconnect Interface tags data flows
from each component with the unique identifier of the corre-
sponding virtual system. For filtering, only messages on the
interconnect with a matching unique identifier are propagated
by the Interconnect Interface into the underlying component
for processing. In this way, an exclusive view of the physical
system is presented to each virtual system.

Another security policy the CG-STA can enforce is the
Bell and La Padula security policy [16]. In this model,
there are four disclosure levels of information, unclassified,
confidential, secret, and top secret, and then within each level
there are several mutually exclusive compartments, all of
which a component must have permission to access before
receiving the data. Two security rules should be enforced by
the Interconnect Interfaces. First, components should only be
able to read data with a lower or equal security classification.
Second, components should only be able to write data with
an equal or higher security classification. To enforce such a
model, the Interconnect Interface would tag all data leaving
each component with the security level of the component,
and, when receiving, only data with a lower or equal security
classification would be propagated into the component. One
issue with this approach is that discretionary upclassification
of data is not possible. The reason for this is that the
tags on the interconnect are transparent to the underlying
components, so the security policy and its enforcement also
becomes transparent. Discretionary upclassification, however,
requires a security reclassification action to be initiated by the
component. If discretionary upclassification of data is desired,
the Interconnect Interfaces could be designed to perform some
limited introspection of the outgoing data which would contain
of an indication of the intentions of the underlying component
(the intention to send the data at a higher classification level).
If a higher security classification is indicated in the data,
this would then affect the outgoing tag sent on the bus by
the Interconnect Interface. Notice, however, that this requires
adding complexity to the logic of the Interconnect Interface,
which is part of the trusted computing base of the system,

and would therefore have to be done with care to maintain the
correctness of the system.

With all security policies, there are practical considerations
due to the restart and sterilize procedures in the CG-STA.
We describe two of these: potential for data loss during mode
switches, and the consistent appearance of the system to each
virtual system.

In most systems, data delivery on the front-side bus is
assumed to be reliable. However, if the Sterilize Mechanism
of the receiving component of a bus transaction is activated
before the sending component, messages could effectively be
dropped. For example, if a peripheral is sterilized before a
component processing the peripheral’s interrupt, the interrupt
acknowledge bus message may not be observed arriving at the
peripheral. For this reason, sending components should be ster-
ilized before receiving components. Unfortunately, there is not
always such a clear distinction among components, as system-
wide communication flows rarely form a directed acyclic graph
(DAG). However, recall that before activating the Sterilize
Mechanism, components receive a save-state, pre-restart signal
from the Restarter. The timeout after the pre-restart message
before forced activation of the Sterilize Mechanism should
be long enough such that the components can first enter a
consistent state without any lingering communication, and then
save their state to persistent storage.

An additional consideration is the view of the system pre-
sented to each virtual system. When components are restarted
and their state is restored, it may be expected that the physical
system has not changed and therefore the same components
which were previously available are still active. Although com-
ponents can be designed with plug-and-play support, which
would allow components to appear as suddenly removed from
the system, policies doing this would need to be co-designed
with the underlying processing elements.

IV. HARDWARE CG-STA PROTOTYPE

Based on the CG-STA design developed in Section III, we
have implemented a multicore CG-STA prototype in order to
evaluate critical aspects of the design. First, we will present
details about the overall architecture implementation. Next,

5

we describe the tradeoffs associated with the component’s
Sterilize Mechanism. Finally, we discuss implementation ob-
servations and their implications for CG-STA and tagged
computing.

A. Implemented Components Overview

Our prototype CG-STA was developed on a Xilinx ML501
Evaluation Platform, which features a XC5VLX50 FPGA. On
top of this FPGA, we programmed the logical architecture
shown in Figure 6. The implemented architecture has a pa-
rameterized number of Pacoblaze cores connected to the bus,
which has been verified as working with up to 16 independent
processing cores.

Instructions Pacoblaze

Bus Module

Instructions Pacoblaze

Bus Module

Instructions Pacoblaze

Bus Module

Bus

Main Memory LED Peripheral

Tags

Serial Port
Interface

Coarse-Grained
Tag Manager

Coarse-Grained
Tag Manager

Coarse-Grained
Tag Manager

Fine-Grained
Tag Manager

Coarse-Grained
Tag Manager

Coarse-Grained
Tag Manager

Coarse-Grained
Tag Manager

Mode Setter

Fig. 6. The implemented CG-STA contains components that communicate
through tag managers.

In our prototype (Figure 6), several types of components
were implemented in order to have a functioning CG-STA
system. Since we desired to have an external access to the
system, we implemented a Serial Port Interface component to
use as the main external communication mechanism. Through
instructions from the serial port, the Mode Setter acts as the
CG-STA Bootstrap Element and the Restarter. Messages sent
from components must pass through an Interconnect Interface,
either coarse-grained in the case of single-mode components,
or fine-grained in the case of concurrently shared components
such as the Main Memory Module. An LED Peripheral is
present to visually display output which controls 8 LEDs
on the ML501. Each Pacoblaze core is coupled with a bus
module for interfacing with the system bus, and an associated
instruction store. Upon receiving a sterilize command message
from the Mode Setter, each Interconnect Interface initiates its
component’s Sterilize Mechanism.

B. Sterilize Mechanism

One main architectural requirement of the CG-STA is that
each component be modified to include a Sterilize Mechanism
capable of resetting the component’s visible state. One of
the goals of the implementation was to evaluate the effort
required to add this mechanism to existing components, and
the overhead it required both in terms of area and in terms
of performance. Area overhead versus performance is a trade

off, with the most direct design of a Sterilize Mechanism
consuming more area.

Given the HDL source code, a direct Sterilize Mechanism
can be added in a way similar to a synchronous reset, with
the additional condition that every register in the design
be reset to a constant value. This was the approach taken
for modifying the Pacoblaze processor core. This process
should be done recursively for all components internal to
the design (in the Pacoblaze design it was also done for
the ALU, register file, and all other internal modules). The
main benefit of this approach is that it requires minimal
understanding of the underlying component design and is
therefore easy to do (we did not have to understand the
internal operation of the Pacoblaze in order to add the Sterilize
Mechanism). Additionally, tools could be made which scan
the HDL for Verilog reg statements and VHDL signal
statements to check that every register is in fact sterilized,
and that all internally instantiated components also have a
correct Sterilize Mechanism. Such automated checking would
be significantly benefitial for architectural validation, since the
Sterilize Mechanism is part of the trusted computing base in
the architecture and existing components will likely need to be
augmented in order to incorporate a Sterilize Mechanism. The
drawback of this approach is that it may consume significant
area, especially if the component has many registers which
maintain a significant amount of state information. This is
especially a problem for components whose main function is to
store data, such as the instruction store or memory peripheral,
so a different approach to designing their Sterilize Mechanism
was taken.

The approach taken to design the Sterilize Mechanism for
memory components is to trade off performance in order
to reduce circuit area. For a memory module, it would be
inefficient to reset the entire memory in a single cycle. Instead,
a multiplexer is used for the write source into the memory
block, and the sterilize signal starts a simple state machine
which outputs zero to incrementally-increasing addresses in
the memory block. In terms of Xilinx-specific FPGA consider-
ations, this allows BRAM blocks to still be used to implement
memory instead of flip flops, which saves significant area.
However, the downside is that the Sterilize Mechanism is
less efficient now, taking multiple cycles to fully sterilize the
memory. For a fine-grained tag manager, such as the one
used for the Main Memory Module, tags can be reset (which
resets the memory) on a smaller granularity, which incurs less
overhead than clearing the entire memory.

This area-time tradeoff is not a binary decision. Modern
memory systems contain multiple banks which can be con-
currently written. A sterilize implementation could, therefore,
clear all the memory banks in parallel, which would save area
over a one-cycle clear, but still be more efficient than a serial
write over the entire memory space.

C. Architectural Observations

Over the course of implementing the CG-STA, several
important observations were made. In this section we briefly

6

describe each of these, since they may have implications on
future tagged architecture research.

First, we noticed that instructions do not map directly
into a security compartment. When tracking information flow
through a processor, it is clear that one of the inputs is the
instruction, so therefore the processor’s security classification
should include the instruction compartment. However, the
output of the processor is usually not instructions, so the output
flow should not be tagged with the instrcution compartment.
In a pure MLS system, this is a declassification of the instruc-
tions, since, strictly speaking there is a possibility they could
be inferred from the output flow of the system, and is therefore
a violation of the security policy. The solution in the CG-STA
prototype is to employ different security modes for reading
and writing. The check for the compartment instruction, then,
does not occur when the bus module is receiving bus data, but
is instead internal to the processor component. Specifically, the
check occurs when data is written to the instruction store. This
solution creates a hierarchy of tagging. At the top level, the
Coarse-Grained Tag Managers tag security levels and enforce
coarse-grained information-flow security. At the lower level,
the processor itself does some additional tagging and checking
on input / output flows, so only data tagged as instructions
are allowed to be executed. This approach makes sense, since
the instruction compartment requirement is specific to the
processor core and not a generalized part of the architecture.

Another observation which may have implications for other
tagged systems is that tagged main-memory writes incur addi-
tional overhead when compared with a non-tagged approach.
This is because tagged memory writes must first read the tag
of the memory address to which they are writing, to make
sure they are not overwriting data with a higher security tag
(which, if allowed, could be used to corrupt data and cause
a denial of service). This effectively halves the possible write
speed. This additional latency can not be avoided even if the
tags are sent in parallel on the bus. Along this line, storing
tags for every byte in addition to data has the effect of halving
the usable memory size. One option here is to use a single tag
for groups of data words instead of each tagging each word
individually. In the case of a parallel tag bus, there is no extra
overhead for performing tagged reads.

The next architectural observation is that the Sterilize
Mechanism in the CG-STA may cause issues with external
components. For example, if there is timing synchronization
between an internal component and an external component,
activating the Sterilize Mechansim of the internal component
ruins this synchronization (since its internal state is cleared).
This was apparent when the Serial Port Interface component
was reset. When the Sterilize Mechanism was actived, the
serial port hardware would lose clock synchronization with
the host computer and the first byte sent after activating the
Sterilize Mechanism was usually corrupted (after the first few
bytes were sent, synchronization was restored). Also, if there
was an internal component acting as a network interface,
sterilizing its internal state would not reset external routers,
which may cause unexpected behavior.

Although only the Sterilize Mechanism is necessary for in-
formation security, components must save and load their states
for proper functionality across resets. This need not be done
entirely in hardware, as we demonstrated with our Pacoblaze
microcontroller. The software in our prototype would not only
save its own state, but would also load and save the state of
the LED peripheral. This requires, however, that all important
component state is visible to the software so that it can be
loaded and saved. Additionally, this introduces overhead when
performing resets.

System-Wide Virtualization is related to IOMMU technol-
ogy [17]. Using an architecture with an IOMMU, where pe-
ripheral I/O goes through a memory management unit, seems
to be an intermediate solution to the information security
problem. In an IOMMU architecture, external peripherals are
isolated from the processor, but peripherals are not isolated
from each other. In this sense, it is a hybrid solution between
System-Wide Virtualization and no protection. With the CG-
STA, security policies are possible which limit peripheral
interactions to those allowed by the system’s security policy.

Another observation is that compartment tags in our pro-
totype are handled in a global, hardcoded way. Ideally there
would be a dynamic tagging manager which could distribute
unique tags to the Mode Setter and cooperating components
during runtime, which would produce a cleaner implementa-
tion. If persistent tags across restarts are desired, the dynamic
tag manager would have to take this into account when
distributing tags with new compartments. This would allow
components to request a tag with a new, unique compartment
for an isolated execution of the system. The particular bit value
of the compartment they get, however, is unimportant.

Finally, we present a list of features essential to general
tagged architectures. In a tagged architecture, three types of
components are necessary: (1) components which produce
the tags, (2) components which move tags around with their
associated data, and (3) components which perform operations
and checks with the tags. The reliable functionality of the
tagging mechanism depends on all three of these compo-
nents. In the CG-STA, tags are created by the Interconnect
Interfaces (configured by the Mode Setter). Tags are moved
around with their associated data by both the bus, and, on
a broader time span, using the fine-grained tagged Main
Memory Module. The operations performed on the tags are
bus-transaction filtering, which are also performed by the
Interconnect Interfaces (configured by the Mode Setter). In
order to attack the tagging mechanism of the CG-STA, one
of these components would need to contain a vulnerability.
In traditional tagged processors, tags are created based on
manually assigning security classifications to input datasets,
and performing processor operations on data. Tags are moved
around within the processor, onto buses, and into memory and
persistent storage. The tag operations, mostly security checks,
are performed within the processor. If any one of the com-
ponents dealing with tag creation, movement, or checking is
incorrect, the functionality of the tagging can be circumvented.

Much research on tagged architectures, however, is con-

7

cerned with either tag creation or tag checking, and less
emphasis is placed on tag movement through the system. Tag
movement should guarantee that data stays coupled with its
description tags. This process has many avenues of attack. For
example, if separate buses transport the data and the tags, it is
possible that the tag bus experiences a parity error and has to
resend, while the data bus successfully completes the transac-
tion. This may decouple the data from the bus for a short time.
Alternatively, if the data and tag are sent in back-to-back bus
transactions, rebooting the machine between bus transactions
might violate tag movement requirements. If the tags can be
arbitrarily overwritten in memory, they can be decoupled from
their data. If tags are stored in persistent storage, which can be
accessed externally, tags may be decoupled from data. Keeping
tags coupled with their data throughout the architecture is just
as important to the reliability of the tagging mechanism as
having correct tag propagation rules, or correctly classifying
input data.

D. Future Extensions

The current CG-STA was demonstrated as functional on a
16-core Pacoblaze prototype. The next immediate step for CG-
STA research is to modify the arhcitecture to be closer to a de-
ployment system. Specifically, immediate steps to take would
be to use a 32-bit microprocessor such as the Microblaze or
LEON3 processor with proper preemption instead of an 8-
bit microcontroller. The overhead of the Sterilize Mechanism
on these processors, in terms of area, timing, and possible
effect on critical path, would be more interesting to evaluate.
With such processors, a high-end bus would be required, and
new tag managers would need to be developed to provide this
interface. An evaluation of benchmark applications running on
such an off-the-shelf processor, instead of programs designed
spefifically for our architecture, is also needed. Additionally,
rather than having embedded programs with direct access to
physical memory, running the CG-STA with full operating
systems on the cores may present additional challenges and re-
quire unique solutions. Another desired extension is to provide
a disciplined way to interact with external components, such
as network cards and other off-chip peripherals, that would
not cause unintended behavior after activating the Sterilize
Mechanism.

V. CONCLUSIONS

We have designed, evaluated, implemented a CG-STA
system-on-chip architecture to provide integrated security
for embedded systems. This was done by designing system
components which maintain information about their current
security principal, enforce flows between components, and
require components to sterilize, or flush, their entire internal
state before switching security principals. A 16-core CG-STA
prototype was implemented, verified, and evaluated on top of
a Xilinx ML501 FPGA.

The CG-STA approach has both drawbacks and benefits.
The primary drawback is that each computational element
can only be in one security mode at any point in time.

A single component is not allowed to concurrently process
data in different security domains. Additionally, hardware
components do need minor modifications to be able to sterilize
their internal state, as well as load and save important values
across state flushes. This may not always be possible since
processing elements may not be distributed as HDL code.
If this is possible, however, there are significant benefits to
the CG-STA approach. The design can take advantage of the
dissemination of computation from a single processing core
to distributed computation engines, by permitting authorized
hardware component cooperation. The design also disallows,
on the hardware level, malicious components from being able
to intercept or interfere with computations of incompatible
security classifications. The modifications necessary to the
components to make them CG-STA-compatible are minor,
requiring little additional component engineering effort. Most
importantly, the architecture is simple to understand and there-
fore simple to verify as information-secure. In high-security
embedded SoC devices, the CG-STA design provides a non-
bypassable, built-in security mechanism.

REFERENCES

[1] S. E. Madnick and J. J. Donovan, “Application and analysis of the
virtual machine approach to information system security and isolation,”
in Proceedings of the workshop on virtual computer systems. New
York, NY, USA: ACM, 1973, pp. 210–224.

[2] G. M. Uchenick and W. M. Vanfleet, “Multiple independent levels of
safety and security: high assurance architecture for msls/mls,” 2005.

[3] R. Vanover, “Peripheral virtualization over eth-
ernet,” virtualizationreview.com/blogs/everyday-
virtualization/2010/05/peripheral-virtualization-over-ethernet.aspx,
2010.

[4] Intel, “Intel virtualization technology for connectivity,” www.intel.com/
network/connectivity/solutions/virtualization.htm, 2010.

[5] T. Alves and D. Felto, “Trustzone: Integrating hardware and soft-
ware security,” www.iqmagazineonline.com/magazine/pdf/v 3 4 pdf/
Pg18 24 custZone Secur.pdf, 2004.

[6] Burroughs61, “The descriptor a definition of the b5000 information
processing system,” Bull. No. 5000-20002-P, 1961.

[7] D. A. Moon, “Architecture of the symbolics 3600,” SIGARCH Comput.
Archit. News, vol. 13, no. 3, pp. 76–83, 1985.

[8] E. F. Gehringer and J. L. Keedy, “Tagged architecture: how compelling
are its advantages?” SIGARCH Comput. Archit. News, vol. 13, no. 3,
pp. 162–170, 1985.

[9] M. Dalton, H. Kannan, and C. Kozyrakis, “Raksha: a flexible informa-
tion flow architecture for software security,” in ISCA ’07: Proceedings
of the 34th annual international symposium on Computer architecture.
New York, NY, USA: ACM, 2007, pp. 482–493.

[10] C. Reis, A. Barth, and C. Pizano, “Browser security: lessons from google
chrome,” Commun. ACM, vol. 52, pp. 45–49, August 2009.

[11] S. Bandhakavi, S. T. King, P. Madhusudan, and M. Winslett, “Vex:
Vetting browser extensions for security vulnerabilities,” 2010.

[12] B. W. Lampson, “A note on the confinement problem,” 1973.
[13] D. C. Latham, “Department of defense standard department of defense

trusted computer system evaluation criteria,” 1985.
[14] R. A. Kemmerer, “A practical approach to identifying storage and timing

channels: Twenty years later,” in ACSAC ’02: Proceedings of the 18th
Annual Computer Security Applications Conference. Washington, DC,
USA: IEEE Computer Society, 2002, p. 109.

[15] W.-M. Hu, “Reducing timing charmers with fuzzy time,” Security and
Privacy, IEEE Symposium on, vol. 0, p. 8, 1991.

[16] D. E. Bell and L. J. Lapadula, “Secure computer systems: Mathematical
foundations,” 1973.

[17] D. Abramson, “Intel virtualization technology for directed i/o,” Intel
Technology Journal, 2006.

8

Parallelizing Electroencephalogram Processing on a Many-Core Platform for the

Detection of High Frequency Oscillations

Gildo Torres, Paul McCall, Chen Liu, Mercedes Cabrerizo, Malek Adjouadi

Department of Electrical and Computer Engineering

Florida International University

Miami, Florida, USA
E-mail: {gtorr029, pmcca001, cliu, cabreriz, adjouadi}@fiu.edu

Abstract— EEG high frequency oscillations, known as ripples,

in subdural Electroencephalography (EEG) have been

associated to the seizure onset zone (SOZ). Ripples, which can

be visible in the frequency range from 80 to 250 Hz, are

considered reliable biomarkers (like interictal EEG spikes) to

identify the epileptic focus in the brain. Consequently, an

automated detection method is proposed with the aim of

identifying those electrodes that have a higher count of these

events. The computational approach considered in this paper

relies on processing the EEG records using the Intel Single-

Chip Cloud Computer (SCC) platform. This new method

preserves data coherency through the message-passing

interface and utilizes dynamic voltage and frequency scaling

(DVFS) capability of SCC, yielding both energy saving and

performance benefit. The proposed SCC-based method for

detecting high frequency oscillations (HFO) is validated by

EEG experts at Miami Children's Hospital, and the location of

the electrodes with higher counts will be compared with the 3-

D source localization using interictal spikes to demonstrate the

relation if any that exists between them.

Keywords: Cloud computing, Intel SCC, EEG

processing, High frequency oscillation, Power-aware

computing

I. INTRODUCTION

Epilepsy is a common medical condition characterized by

a predisposition to unprovoked recurrent seizures. A seizure

is the manifestation of an abnormal, hypersynchronous

discharge of a population of cortical neurons [1]. Affecting

over 60 million people around the world, Epilepsy is the

second most frequent neurological disorder other than stroke.

Advanced clinical techniques are used to diagnose

epilepsy, such as computed tomography (CT),

encephalogram (EEG), magnetic resonance imaging (MRI),

positron emission tomography (PET), and functional MRI,

along with others. While the aforementioned techniques

yield a coarse approximation of the epileptogenic region,

they otherwise lack either the spatial or temporal resolution

necessary to accurately determine the seizure focus location.

When this is the case, invasive recording techniques such as

intercranial-EEG (iEEG) or Electrocorticography (ECoG),

which are characterized by the placement of electrode arrays

on the cortex of the brain, are performed.

During ECoG recording it is routine clinical practice to

place multiple electrode arrays on different areas of interest

to the neurologists. Multiple arrays act to both eliminate

certain cortical regions of interest and designate cortical

areas where more analysis may be needed. For example, it is

customary for a patient undergoing ECoG to have sixty-five

or more implanted electrodes.

Within Epilepsy research, many relevant algorithms are

useful throughout the process of localization of the seizure

onset zone (SOZ). These include interictal spike detection,

seizure onset detection, artifact detection and elimination,

high frequency oscillations (HFO) detection as well as many

others [2-6]. For HFO detection, patients are monitored

throughout the night and sleep ECoG is recorded for up to 10

hours. What‟s more, high resolution clinical-use EEG

machines have an eclipsing sampling rate of 2KHz. Due to

these characteristics, it can be seen that any extensive time

recordings will yield large amount of data which requires

enormous computing power.

In the last several decades, we have seen how

microprocessor performance have been dramatically

improved by increasing the operating frequency, from 5MHz

of Intel 8086 to the astounding 5.2GHz of IBM z196 [7].

Unfortunately, in recent years, power-thermal issues have

limited the pace at which processor frequency can be

increased [8]. In an effort to utilize the abundant transistor

real estate offered by the Moore‟s Law [9] and at the same

time contain the power-thermal issues, current developments

in microprocessor design favor increasing core counts over

frequency scaling to improve processor performance and

energy efficiency [10].

In the commercial field, it is common to have a 2, 4, 6 or

even more cores housed in one chip nowadays; while the

research community makes use of experimental many-core

architectures containing tens or even hundreds of processors.

Today, the challenge is not only how to develop powerful

hardware architectures that satisfy the demands of high

resources-consuming applications, but also the development

of applications that could effectively explore the capabilities

offered by many-core architectures. There are major benefits

that can be obtained from parallel programs running on

many-core platforms.

9

The Single-Chip Cloud Computer (SCC) experimental

processor [10] is a 48-core „concept vehicle‟ created by Intel

Labs as a platform for many-core software research. This

system allows the implementation and study of parallel

applications by supporting a message-passing programming

model for communication among the cores. The SCC also

includes hardware elements which support dynamic voltage

and frequency scaling (DVFS) for improving energy

efficiency.

As we mentioned earlier, ECoG recording and HFO

detection would not be easily processed by desktop

computers or even specialized software. Due to the

limitations of the processing platforms that are available to

researchers in this field, currently only a sub-section of this

data, ranging between a few seconds to a few minutes, will

be subjected to analysis while the rest of the data is

discarded. In this paper we will illustrate the benefits of

utilizing the SCC as the platform of choice for EEG

algorithm implementation, by demonstrating the energy

savings and computational benefits associated with Intel‟s

48-core Single-chip Cloud Computer.

The rest of the paper is organized as follows. In Section II

we present an overview of the SCC platform. Section III

contains the methodology we propose for processing EEG

data on the Intel SCC platform and Section IV describes the

algorithm implemented for the detection of HFOs. In Section

V we present and comment on the obtained results. We

conclude in Section VI and give an outlook for future work.

II. COMPUTATION PLATFORM

The Single-Chip Cloud Computer contains 48 Pentium™
class IA-32 cores on a 6×4 2D-mesh network of tiled core
clusters with high-speed I/Os on the periphery [10]. There is
a unique hardware feature called Message Passing Buffer
(MPB), shared by every two cores, that is optimized to
support message passing programming model to
communicate among all the cores.

The SCC platform used in this research can be
considered a computational benefit to almost any parallel
application performed on it due to the fact that it possesses
48 cores. However, there are two main benefits that make the
SCC platform suitable for EEG signal processing: its inter-
core communication or message-passing abilities, and the
capacity for DVFS. These two aspects of the SCC make
EEG processing a promising application because they
address two problems that are inherent to processing of this
type.

The first difficulty that occurs when processing EEG data
is that a significant amount of time and energy is consumed
upon the access and distribution of the data. This problem is
magnified within a parallel architecture [11]; while a few
cores are accessing and loading the data, many of the cores
are running at the same power levels without contributing to
the overall progress. As shown in Figure 1, every two cores
form a frequency island and every eight cores form a voltage
island. The SCC allows the user to fully control these voltage
and frequency islands that are present on the chip.

In this way we can act to minimize wasted energy by
setting cores to lower power states while accessing large
amounts of data. A similar approach has been demonstrated
by the use of multiple voltage-frequency gears that run at
different segments throughout the program in order to
maximize performance while saving energy in a PC cluster
setting [12].

Figure 1. Frequency domains and voltage domains on SCC chip

The second issue with EEG data is that there tends to be

dynamic global parameters for most algorithm
implementations. This means that the processing of one
electrode may be dependent on a parameter defined by
another electrode or a group of electrodes. This is due to the
aggregate nature of the EEG signal itself. The EEG signal
stems from a summation of neuronal activity; therefore a
single phenomenon may have components in many
surrounding electrodes. A program which distinguishes a
particular activity of interest, such as interictal spikes, may
need information from numerous electrode signals in order
to confidently detect their presence within the data set. This
establishes a need for effective and user-controllable inter-
core and thus inter-electrode communication. When such
algorithms are run in a parallel manner, this becomes a more
detrimental issue. Without explicit user defined
communication protocols, there would potentially be cache
coherency issues and/or memory allocation issues due to
variables growing inside loops. The SCC allows the user,
through use of the RCCE library [13] (an API library for
message passing programming model specially designed for
SCC), the ability to control and synchronize inter-core
communication due to the message-passing benefits of the
SCC platform.

III. METHODOLOGY

The proposed method for implementing EEG algorithms
on the SCC platform is shown in Figure 2 and outlined
below.
1. Electrode dependencies and any need for global

parameters are identified. This knowledge will lead to
an understanding of the appropriate inter-core
communication that will be necessary for proper
execution.

2. Once inter-core communication is understood, the
program needs to be broken down into segments. These

10

segments are divided into two categories,
communication-intensive and computation-intensive.
Parts of code that accesses the data and distributes
appropriate data to proper cores would be considered
communication-intensive while parts of code that utilize
many processing cores for filtering or detection of any
kind would be considered computation-intensive. These
segments would then be run using the appropriate
voltage-frequency gear that would result in performance
benefits while maintaining energy savings.

3. Once there is an awareness of the necessary
communication between cores and the code has been
segmented and assigned correct gears, the code needs to
be modified with the correct RCCE library functions so
as to be implemented and executed on the SCC
platform.

Figure 2. Proposed EEG-SCC Methodology

 The EEG data and results that are presented within this
paper are gathered from a patient who was monitored
overnight with multiple electrode arrays placed on his cortex
totaling sixty-five electrodes at the Brain Institute in Miami
Children‟s Hospital (MCH) [14]. In the validation of this
algorithm, 10-minute segments were analyzed consisting of
32 electrodes. This number of electrodes was analyzed for
each run of the simulation because this is a preliminary
analysis of EEG processing on the SCC platform. Processing
of more electrode data will be an interesting avenue for
future work

IV. HFO – EEG ALGORITHM

HFOs have been defined as spontaneous patterns in the

range of 80 – 500 Hz that consists of at least 4 oscillations

which can be distinguished from the background. However,

this is not a quantitative definition, thus making accurate

detection of HFOs is both difficult and subjective. HFOs

can be visually marked, but this process tends to be highly

time consuming, on the order of hours for the analysis of a

few minutes of data [15]. Research has suggested that HFOs

are possibly related with epileptogenesis [16]. Electrodes of

interest, which correspond to the SOZ, have higher relative

ripple counts when compared with electrodes that are

associated with other cortex regions of normal neuronal

activity [17, 18].

The definition used in this paper for the HFO detector is

listed below and illustrated in Figure 3.

• HFOs are within the 80 – 250 Hz frequency band,

• A global threshold based on standard deviation of a

selected electrode is determined,

• Three or more crossings of the global threshold within

a 250 ms window will count as a HFO.

Figure 3. HFO Detection Program Executed on SCC

Raw EEG data, acquired at a sampling rate of 2 kHz, is

passed into the SCC program, parsed up and distributed to

the appropriate cores. Upon receiving the data, each core

implements a 10th-order Butterworth IIR filter using

cascaded Second Order Direct Form II sections. Once the

filtering process is completed, a global maximum value is

taken across all electrode signals. This electrode-max value

is used to normalize the entire set of electrode readings. A

sample segment of data is shown in Figure 4 after filtering

and normalization.

After normalization, a standard deviation calculation is

performed on the electrode signal that produced the

electrode-max value. The global threshold defined for the

program is calculated as a multiple of this standard

11

deviation value. This threshold parameter shows that even

for the simplest EEG algorithms, such as a rudimentary

HFO detector, there exists a fundamental need to efficiently

process and pass data between cores while the program is

analyzing the data.

Figure 4. Filtered and Normalized Data

After the electrode data is normalized, the data is

compared point-to-point with our global threshold, which is

determined as three times the aforementioned standard

deviation value. Threshold crossings are highlighted and

stored as possible spikes. If three or more threshold

crossings occur within any 250 ms window, that window is

determined to include one high frequency oscillation. The

program then moves to the end of the window and continues

to examine the data for threshold crossings.

V. RESULTS

This work acts to demonstrate the feasibility of the HFO

algorithm implementation for EEG analysis on the SCC

platform. In order to verify the correctness of our

implementation, relative HFO counts per electrode were

compared with the findings previously validated by

neurologists at Miami Children‟s Hospital and found to

match, with all electrode signals of interest being identified.

The results were further validated when electrode locations

with higher HFO counts from the algorithm were compared

with 3-D source localization using interictal spikes. This

analysis was performed for 10-minute segments of data with

all simulations taking less than 40-second of processing

time. It is worth noting that when a replica of our algorithm

is ran on Matlab, removing all Matlab optimized function

calls, the processing time exceed thirty minutes for the same

amount of data. When the program was executed including

Matlab optimized function calls, the load region took in

excess of 42 seconds, while the execute region took over 9

seconds. These results were obtained on a PC with an Intel

core i5 processor running at 2.30 GHz and 8 GB of RAM.

As shown in Figure 3, the program is classified into the

load region and the execution region. The load region

includes the section of the program where the data file is

being loaded and split by the master core. The data is then

distributed to each processing core. This region was

classified as a communication-intensive region, because the

code spends most of the time accessing memory or

transmitting information to other cores. Therefore a high

processing frequency is not required.

The execution region, explained in the previous section,

is where the ripple-detection algorithm is executed. We

classified this region as a computation-intensive region,

where a high processing frequency is required.

Gear Voltage Frequency

HIGH 1.1 V 800 MHz

LOW 0.8 V 533 MHz

MIX 0.8/1.1 V 533/800 MHz

XIM 1.1/0.8 V 800/533 MHz
Table 1. Voltage - Frequency Gears

We tested different setups of the SCC platform where

the number of cores employed varied while four Frequency-

Voltage configurations were used, as shown in Table 1. The

frequency-voltage schemes tested were HIGH gear (800

MHz and 1.1V), LOW gear (533 MHz and 0.8V), the third

and fourth ones were mixed approaches, where the low gear

was applied to the load region and the high gear to the

execution region in the third configuration that we called

MIX, and for the fourth one the high gear was applied first

to the load region and then low gear to the execution region,

for what we called the XIM gear. For both mixed gears we

dynamically changed the voltage and frequency values

during the transition between regions. The numbers of cores

tested were 1, 2, 4, 8, 16, and 32.

The elapsed time when switching between different

levels of voltage and frequency is not significant compared

to the time consumed by each region, therefore it has no

impact on the timing results associated with either region or

the total execution.

Figure 5. Performance Graph

It can be seen that total processing time for all simulation

runs does not exceed 40 seconds. While this is a major

improvement over serial Matlab implementation, it does not

directly demonstrate the need for the parallel platform. This

is because our proposed method is not specifically aimed at

this algorithm implementation. The HFO algorithm is a

simple computation task for the SCC, and immediate

benefits appear in the DVFS and message-passing abilities

12

of the system. However, as the execution region becomes

more burdensome, the benefits of parallelizing the program

can be easily seen. We can anticipate that processing

benefits associated with the SCC-based EEG analysis will

become more substantial when running more complex

algorithms on the platform.

From Figure 5 we can observe how significant the

communication region is when compared to the total time

for the simulations, with the exception of the simulations

completed with one core where no communication overhead

exists because all the data manipulation is local to one core.

The results show the HFO detection program spends most

of its execution time in communicating and transferring data

among the cores. We can see as the number of cores

increases, the communication overhead increases, and the

time for completing the execution region decreases. Here

the communication overhead has more weight than the

computation overhead. Therefore, “the more the merrier”

seems not work here. The implementation of the MIX gear

tries to match the communication-intensive region with low

power dissipation gear and the computation-intensive region

with a high processing frequency in order to improve the

power-energy efficiency without sacrificing performance.

Based on the nature of the specific program we are running,

we decided to try the XIM gear where we executed the

communication-intensive region with high frequency and

the computation-intensive region with the low frequency

gear. We discuss our findings below.

Figure 6. Power Graph

As we can see, the XIM gear provides a better

performance than the MIX gear except the one-core case.

The reason is for the parallel computing case, the

communication overhead is so high when compared with

computation time. Even though the XIM gear slows down

the execution region a little bit, it reduces the time spent in

load region significantly, thus having an advantage over the

MIX gear overall. This is not the case for single core

configuration because executing with one core is the only

case where the load and the execution region performances

are in similar order. This happens because in this case we

avoid the overhead of data transmission and because of the

prolonged time it takes for the execution region to be

completed. Overall, for optimal performance, we see that

the best configuration for the SCC is having 8 cores running

with the HIGH gear.

Differences in power consumption for both regions of the

program are demonstrated in Figure 6. HIGH gear always

consumes more power than LOW gear due to higher

frequency and voltage. In the MIX gear mode, the execution

region consumes similar power as HIGH gear mode, while

load region consumes similar power as LOW gear mode,

due to the dynamic change of operating frequency. The

opposite happens for the XIM gear. From this graph we can

observe that the execution region always consumes more

power than the load region, as more computation is

required. As we increase the number of cores, there is a

resulting increase in power consumption associated with

both the HIGH and the LOW gear. If optimal power is

required, either 1 or 2 cores running with the LOW gear

might be the right choice.

Figure 7. Energy Graph

The energy consumed by each region, as well as the total

energy consumption for each simulation, is shown in Figure

7. This graph reaffirms that the energy consumed by a

system is dependent on the balance between performance

and power, not simply processor speed or power dissipation

alone. From this graph we can conclude that for energy

considerations, the HIGH gear running with 1 and 2 cores is

the most energy-efficient one across all configurations.

Because the communication overhead and power

consumption are low at low core count, it is worth to run at

highest frequency and still be energy-efficient. When

running with 4-core or above, LOW gear and MIX gear

always provide better energy readings. This is because in

our HFO application, when we increase the core count, the

program spends a large portion of its execution time in

communicating and transferring data among the cores. As

we saw from Figures 5 and 6, the communication overhead

and hence the time required for completing the load region

increases, as well as power consumption for more cores if

they want to run at higher frequency.

13

The metric for measuring power-performance is very

common. From the system point of view, minimizing the

execution time may usually be the first priority. However,

even if the total energy is minimized, the user may not be

satisfied with extended system response time [19-20]. In

Figure 8 we present the energy-delay product (EDP) for

each used configuration. EDP metric takes into

consideration both energy and execution time. This graph

shows how both mixed gears generally have an EDP

between the HIGH and the LOW gear as we anticipated.

One thing worth mentioning is that in this case, similarly to

the energy analysis, the HIGH gear running with 1 and 2

cores provides the best of both worlds, user experience and

energy consumption.

Figure 8. Energy-Delay Product Graph

From observing the presented performance, power, and

energy results, we can observe how in most of the cases,

mix gears offer varied results between the HIGH gear and

the LOW gear when comparing the same number of cores.

VI. CONCLUSIONS AND FUTURE WORK

The performance benefits of utilizing the SCC platform

for HFO detection are substantial. The SCC can process

data while implementing complex algorithms in short

periods of time. In the area of HFO detection alone this is a

remarkable advance. This would allow HFO analysis to be

performed on extended durations of recordings, hours of

data instead of minutes. This increase in data processing

capability will act as an analysis tool for neurosurgeons and

neuroscientists in order to define the SOZ with higher

resolution and confidence.

The advantages associated with EEG processing on the

SCC platform can be employed on a myriad of EEG signal

processing algorithms. The SCC proves to be an ideal

platform on which to process multiple electrode recordings

in an energy-efficient manner, while increasing the

performance of analysis as a whole. The DVFS capabilities

of the SCC allow the user to have full control of energy

usage, which can lead to total system energy savings when

the code can be broken up into communication-intensive

and computation-intensive segments and run with the

appropriate voltage-frequency gears. The message-passing

architecture, both at the hardware and software level of the

SCC, allow for user-defined inter-core and therefore inter-

electrode communication, which has been shown to be

essential for EEG algorithms.

All blocks pertaining to the HFO-EEG algorithm are

implemented and running on the SCC platform. This

algorithm is not computationally burdensome to the SCC

and is handled in a very efficient manner. As for future

work, we expect to implement a program which is able to

process 65 electrodes overall and more than 32 at a time.

Further research can be done implementing more complex

EEG-based detection algorithms. Other areas of interest

would be systems and EEG algorithms that incorporate

more message-passing or electrode-dependencies than are

currently present in the HFO algorithm. The SCC platform

allows for the development and implementation of more

complex, data-dependent algorithms in which further

neuronal phenomena can be examined. A system approach

in which multiple algorithms are executed in parallel on the

SCC would be beneficial to the field of neuroscience and

epilepsy research as well.

ACKNOWLEDGMENT

This work is partly supported by the National Science
Foundation and the Department of Defense (DoD). Paul McCall is
supported through the National Defense Science & Engineering
Graduate Fellowship (NDSEG) Program. The authors are also
grateful for the support provided by the National Science
Foundation under grants ECCS-1125762, CNS-0959985, CNS-
1042341, and HRD-0833093. Any opinions, findings, and
conclusions or recommendations expressed in this material are
those of the authors and do not necessarily reflect the views of the
National Science Foundation or Department of Defense.

REFERENCES

[1] S. S. Spencer, D. K. Nguyen, and R. B. Duckrow, Invasive

EEG in Presurgical Evaluation of Epilepsy, Chapter 53 of the

Treatment of Epilepsy, 3rd ed. Hoboken, NJ: Wiley, 2009, pp.

767–798.

[2] M. Ayala, M. Cabrerizo, P. Jayakar, and M. Adjouadi,

“Subdural EEG Classification into Seizure and Non-seizure Files

Using Neural Networks in the Gamma Frequency Band”,Journal of

Clinical Neurophysiology, Volume 28, Number 1, February 2011.

[3] M. Adjouadi, D. Sanchez, M. Cabrerizo et al., "Interictal Spike

Detection Using the Walsh Trans.," IEEE Trans. on Biomed Eng.,

51, 868-72, 2004.

[4] Weidong Zhou; Gotman, J.; "Removal of EMG and ECG

artifacts from EEG based on wavelet transform and ICA,"

Engineering in Medicine and Biology Society, 2004. IEMBS '04.

26th Annual International Conference of the IEEE , vol.1, no.,

pp.392-395, 1-5 Sept. 2004.

14

[5] Smart, O.L.; Worrell, G.A.; Vachtsevanos, G.J.; Litt, B.; ,

"Automatic detection of high frequency epileptiform oscillations

from intracranial EEG recordings of patients with neocortical

epilepsy," Technical, Professional and Student Development

Workshop, 2005 IEEE Region 5 and IEEE Denver Section , vol.,

no., pp. 53- 58, 7-8 April 2005.

[6] Gardner et al., 2007. Gardner AB, Worrell GA, Marsh E,

Dlugos D, Litt B. Human and automated detection of high-

frequency oscillations in clinical intracranial EEG recordings. Clin

Neurophysiol 118: 1134–1143, 2007.

[7] Morgan, Timothy Prickett (July 23, 2010). "IBM's zEnterprise

196 CPU: Cache is king". The Register. September 7, 2010.

[8] J. Held, J. Bautista, and S. Koehl, "From a Few Cores to Many:

A Tera-Scale Computing Research Overview," Research at Intel

white paper, 2006.

[9] Moore, Gordon E.; , "Cramming more components onto

integrated circuits, Reprinted from Electronics, volume 38, number

8, April 19, 1965, pp.114 ff.," Solid-State Circuits Newsletter,

IEEE , vol.20, no.3, pp.33-35, Sept. 2006.

[10] Howard, J.; Dighe, S.; Hoskote, Y., et al , "A 48-Core IA-32

message-passing processor with DVFS in 45nm CMOS," Solid-

State Circuits Conference Digest of Technical Papers (ISSCC),

2010 IEEE International , vol., no., pp.108-109, 7-11 Feb. 2010.

[11] Valentini, G., Lassonde, W., et al.; An overview of energy

efficiency techniques in cluster computing systems, Cluster

Computing, pp. 1–13, issn 1386–7857.

[12] Hotta, Y., Sato, M., Kimura, H., Matsuoka, S., Boku, T.,

Takahashi, D.: Profile-based optimization of power performance

by using dynamic voltage scaling on a PC cluster. In: Proc. of the

20th IEEE International Parallel and Distributed Processing

Symposium (IPDPS) (2006), 8 pp.

[13] Van der Wijngaart, Rob F. and Mattson, Timothy G. and

Haas, Werner, "Light-weight communications on Intel's single-

chip cloud computer processor", SIGOPS Oper. Syst. Rev., vol.

45, Issue 1, pp. 73-83, February 2011.

[14] http://www.mch.com/page/EN/605/Medical-Services/Brain-

Institute.aspx.

[15] Zelmann, R.; Mari, F.; Jacobs, J.; Zijlmans, M.; Chander, R.;

Gotman, J.; , "Automatic detector of High Frequency Oscillations

for human recordings with macroelectrodes," Engineering in

Medicine and Biology Society (EMBC), 2010 Annual International

Conference of the IEEE , vol., no., pp.2329-2333, Aug. 31 2010-

Sept. 4 2010.

[16] J. Jacobs, P. LeVan, R. Chander, J. Hall, F. Dubeau, and J.

Gotman, "Interictal high-frequency oscillations (80-500 Hz) are an

indicator of seizure onset areas independent of spikes in the human

epileptic brain", Epilepsia, vol. 49, pp. 1893-907, Nov 2008.

[17] J. D. Jirsch, E. Urrestarazu, P. LeVan, A. Olivier, F. Dubeau,

and J. Gotman, "High-frequency oscillations during human focal

seizures", Brain, vol. 129, pp. 1593-608, Jun 2006.

[18] E. Urrestarazu, R. Chander, F. Dubeau, and J. Gotman,

"Interictal high-frequency oscillations (100-500 Hz) in the

intracerebral EEG of epileptic patients", Brain, vol. 130, pp. 2354-

66, Sep 2007.

[19] Hotta, Y., Sato, M., Kimura, H., Matsuoka, S., Boku, T.,

Takahashi, D.: Profile-based optimization of power performance

by using dynamic voltage scaling on a PC cluster. In: Proc. of the

20th IEEE International Parallel and Distributed Processing

Symposium (IPDPS), 8 pp. 2006.

[20] Brooks, D.M.; Bose, P.; Schuster, S.E.; Jacobson, H.; Kudva,

P.N.; Buyuktosunoglu, A.; Wellman, J.; Zyuban, V.; Gupta, M.;

Cook, P.W.; , "Power-aware microarchitecture: design and

modeling challenges for next-generation microprocessors," Micro,

IEEE , vol.20, no.6, pp.26-44, Nov/Dec 2000.

15

A Study of CUDA Acceleration and Impact of Data Transfer Overhead in

Heterogeneous Environment

Fahian Ahmed, Saddam Quirem Bum Joo Shin1 Duk Joo Son2, Young Choon Woo2

 Byeong Kil Lee Wan Choi2
 The University of Texas Pusan National University1 ETRI2,
 at San Antonio, USA Korea Korea

Abstract—Along with the introduction of many-core GPUs,
there is widespread interest in using GPUs to accelerate
non-graphics applications such as energy, bioinformatics,
finance and several research areas. With a wide range of
data sizes where the CPU has greater performance, it would
be important that CUDA enabled programs properly select
when to and not to utilize the GPU for acceleration.
Algorithms that use dynamic programming like P7Viterbi
algorithm of HMMER 3.0 (genetic application) show high
parallelism in its code. Based on performance hotspot
analysis, these parallel features were exploited through the
use of CUDA and a GPGPU. The CUDA implementation of
this algorithm being performed on the Tesla C1060 enabled
a 10-15X speedup depending on the number of queries. In
this paper, we focus on accelerating HMMER 3.0 - one of
the genetic applications with GPUs as co-processors. Also
we investigate the potential performance bottleneck in
GPU-CPU environment with blowfish - a security
application. Based on workload characterization and
bottleneck analysis, we provide optimization methodologies
to remove the bottleneck.

Keywords - CUDA, GPGPU, Hotspot analysis, HMMER 3.0,
Database, Viterbi Algorithm, blowfish, CUDA profiling.

I. INTRODUCTION

Along with the advance of integration technology, multi-
core processors have provided a technical breakthrough to
the computing community. This includes both general-
purpose processor and application- specific processor
domain. In addition to multi -core trend, the demand of high
quality of graphics have the programmable GPUs (Graphics
Processing Units) evolving into a highly parallel,
multithreaded many-core processors. Even with powerful
and massively parallel GPUs, it is difficult to achieve peak
performance without the knowledge of graphics or graphics
dedicated APIs (Application Programming Interface).
However, with the introduction of new programming models
such as Nvidia’s CUDA (Compute Unified Device
Architecture) that abstracts the GPU hardware, non-graphics
users can easily map wide range of applications into many-
core GPUs without having deep knowledge of graphics and
GPU architecture [1][2].

The GPGPU (General-purpose computing on graphics
processing unit) is a technique of using a GPU, which has
high data-parallel processing capability and typically handles
computation only for computer graphics, to perform the
computation in general-purpose applications traditionally
handled by general-purpose CPU. With the introduction of
many-core GPUs, there is widespread interest in using GPUs
to accelerate non-graphics applications such as
f

bioinformatics, energy, finance and several research areas
[1].

CUDA makes use of the massively parallel nature of
NVIDIA’s graphics processing units to accelerate both
graphics computation and general purpose computations that
can be performed in parallel. The Tesla series of GPUs
represents the NVIDIA’s line of HPC (High Performance
Computing) oriented graphics processors, or GPGPUs. Each
graphics processor on a Tesla card contains several graphics
processing clusters (GPCs), which in turn contain multiple
streaming multiprocessors (SMs), which contain dozens of
CUDA cores. Each SM can simultaneously execute
thousands of threads. This highly parallel environment can
effectively reduce the cost of achieving higher levels of
computational speed.

Here, we architecturally characterize some basic kernels
and genetic applications and investigate performance hotspot
function in HMMER 3.0 and blowfish. HMMER [3] is an
application whose main use is ―searching sequence
databases for homologs of protein sequences. It is among
many bioinformatics applications whose algorithms can be
easily accelerated on a GPU.

Even though the GPUs provide highly parallel processing
capability, the interface between CPU and GPU could be a
performance bottleneck due to heavy data transfer. In this
case, if data transfer time is overwhelming the computation
time on GPU, it would be better keep the computation on
CPU instead of using GPUs. Thus, we aim to observe the
borderline between CPU vs. GPU performance as well as the
effects of using different types of memory. For this
observation we use a security application name blowfish
with different input size. The Security application includes
several common algorithms for data encryption, decryption
and hashing. Among others blowfish [4] is one of the
popular security applications.

The rest of paper is organized as follows: section II
describes related works. The workload characterization
including hotspot analysis is explained in section III. Section
IV shows CUDA implementation, and section V describes
results and analysis. Finally, concluding remarks and future
works are presented in the last section.

II. RELATED WORK

Major genetic applications known to make use of the
GPU include Gromacs, NAMD, HMMER and most notably
Folding@home. NVIDIA GPUs account for over 35% of
Folding@home’s native TFLOPS. HMMER itself is a
database search application, and like many similar
applications, GPUs have been applied for acceleration. Peter

 16

Bakkum and Kevin Skandron of the University of Virginia
have previously ported SQLite to CUDA resulting in at least
20x speedups in query time. For HMMER application,
various types of coprocessors were utilized for acceleration.
Perhaps most interesting acceleration is done with the FPGA
by Steve Derrie and Patrice Quinton [5]. This is where the
P7Viterbi algorithm was implemented in hardware as a set of
MUXs and LUTs. This FPGA implementation achieved a
50x speedup in one case. A CUDA implementation of
HMMER is also present. Walters et al accelerated HMMER
by focusing on the P7Viterbi algorithm at the core of the
application. Using a single Tesla GPGPU, GPU-HMMER
was capable of a 30x speedup with a large HMM size
(number of states). Likewise, an earlier implementation of

simplescalar. As variable resources, we use instruction fetch
queue, load store queue, and decode width, issue width,
number of ALU, number of multiplier and memory width.
We see the direct performance improvement in terms of the
number of functional units. The width of fetch, decode and
issue also affect the IPC because those components are
aligned on the processor pipeline. Compared to the result
(leftmost graph) with the smallest resource, the rightmost
graph with the largest resource shows 63% improvement in
IPC. Based on this simulation, we observe that the
performance of namd application can be scalable with the
number of functional units and the number of other
resources.

HMMER utilizing streaming processors (which includes
NVIDIA GPUs), known as ClawHMMER, took a similar
approach by targeting the P7Viterbi algorithm [6]. While all
the previous implementations are with old version of

2

IPC

(configurations‐ifetchq:decode:issue:alu:mult:mem_width)

HMMER, we focus on newer version of HMMER with
different memory allocation schemes.

A number of researchers have discussed bandwidth
troubles that can arise with frequent or poorly managed data
movement between devices. Schaa and Kaeli [7] examine
multiple GPU systems and acknowledge that unless a full
working set of data can fit into the memory on a GPU; the
PCI Express will be a bottleneck. Owens et al. [8] express
similar concerns. For this observation we use a security
application name blowfish with different input size.

III. WORKLOAD CHARACTERIZATION

3.1 Scalability and bottleneck Analysis
We choose two kernels from CUDA SDK and three

bioinformatics applications from SPEC CPU 2006, and
characterize them on CPU only and CPU-GPU
computational environment. The description of each
benchmark is shown in Table 1.

 Table 1: Benchmarks and description

Type Benchmark Description

 Matrix Two dimensional matrix multiplication

 multiply with multiply-accumulation functions

Kernels an image processing algorithm that

Histogram combines a stream of pixel light values

 into a series of bins that represent the

 distribution of light across an image

 [SPEC 2006 FP] Simulates large

 Namd biomolecular systems. The test case has

 92,224 atoms of apolipoprotein A-I.

Applicatio
 [Mibench] Blowfish is an encryption

Blowfish algorithm. It is a symmetric block cipher

ns that uses a variable-length key from 32

 bits to 448 bits.

 [SPEC 2006 INT] Protein sequence

 Hmmer analysis using profile hidden Markov

 models

In general, matrix multiply and histogram kernels consist of
large amount of ALU computations, and computation of
those applications can be accelerated with more parallel
functional units. We tried to explore the namd, one of
bioinformatics applications, that it shows proportional
performance impacts on the variation of hardware
configurations. Figure 1 shows IPC (Instruction per Cycle) a
performance metric, for multiple configurations using-

1.5

1

0.5

0

4:8:2:2:2:2:8 4:8:16:16:8:8:8 8:8:8:8:8:4:8 16:16:16:8:8:4:8 16:16:16:8:8:4:16

Figure 1: Impact on IPC (Instruction Per Cycle) with
hardware variations (namd)

Data transfer time investigation: We investigate the
memory transfer overhead costs for CPU/GPU performance
comparisons. Our results show that data transfer time can be
as significant as main kernel runtime if data size is big
enough. Also, if the number of CUDA cores is increased and
GPU dedicated memory size is increased; the data transfer
overhead will be more critical to overall performance. Two
CUDA SDK kernels are used for this matter. Nvidia CUDA
profiler (cudaprof) is used for characterizing and breaking
down the GPU time. Normally, GPU time consists of major
kernel computation time and data transfer time. In CUDA
profiler, data transfer time is divided into two components:
memcpyDtoH and memcpyHtoD. The memcpyDtoH means
Device to Host (data transfer from the GPU) and
memcpyHtoD means Host to Device (data transfer to the
GPU).

Figure 2 shows the experiment on Nvidia GTX 460. It
shows that kernel computation time is major time-
consuming part, and data transfer time is around 10% of the
total GPU time for both Matrix multiply and Histogram. It is
interesting to note that Matrix multiply shows more data
transfer time from the GPU and Histogram shows more data
transfer time from the CPU. The reason is coming from each
kernel’s algorithmic characteristics. The results from the
Matrix multiply on GPU will be slightly bigger data size
than the original data from the CPU, while the results from
the Histogram on GPU will be smaller data size than the
original data from the CPU.
3.2 Hotspot Analysis

The Intel VTune Performance Analyzer provides
information on the performance of code. The VTune
analyzer shows the performance issues, enabling to focus
tuning effort and get the best performance boost in the least
s

17

amount of time. The Hotspots analysis helps understand the
application flow and identify sections of code that took a
long time to execute (hotspots). A large number of samples
collected at a specific process, thread, or module can imply
high processor utilization and potential performance
bottlenecks. With the help of some performance analyzer
software like Vtune, we can figure out the hotspot.
According to the specific hotspot modules, we can modify
some modules for performance acceleration. This
acceleration and flexibility of an application on GPU can be
achieved by applying high level GPU programming
languages such as CUDA.

There are several sub-programs in HMMER application
like phmmer, jackhammer, hmmbuild, hmmsearch,
hmmscan, smmaligh, etc. Each sub-program shows similar
hotspot results, but here we only discuss about jackhammer.
The Jackhmmer program is for searching a single sequence
query iteratively against a sequence database. VTune
Analyzer creates and run an activity that collects
performance data of the application. An activity means
lunching application onto Vtune profiler. Figure 3 shows the
sampling summary view of the Jackhmmer.

(a) Matrix Multiply

(b) Histogram
Figure 2: GPU Time comparison of main computation and data transfer between CPU and GPU. Experiment is on

Nvidia GTX 460 (336 cuda cores, 1GB GPU memory, 256-bit memory I/O)

Figure 3: Hotspot analysis: the percentage of CPU clock
for active functions (Jackhmmer)

IV. RESULTS AND ANALYSIS
4.1 CUDA Parallelization of p7Viterbi
 With each implementation of the HMMER’s P7Viterbi
algorithm timers were utilized in order to properly compare
results. For the CPU version, the elapsed time was simply
measured between the start of the function and after the
completion of the function. The GPU implementations
utilize two timers that measure the total time taken to
allocate memory storage and transfer memory onto the GPU

and back, and the kernel execution time. The second timer
simply measures the time taken to execute the CUDA
kernels.

The P7Viterbi algorithm iterates through every
observation, from 1 to L, and determines a score for each
state from 1 to M. It is not possible to calculate the scores for
each observation in parallel, because the scores of the next
row of the dynamic programming matrix depend on the
previous row. However, it is possible to calculate each
column (query), independent of the other.

Figure 4 shows the path of the Viterbi algorithm through
the dynamic programming matrix and what cells were
computed in parallel. A set of kernels were written to
properly convert the all the functionality of the P7Viterbi
function. Because the data was already moved to the GPU,
the initialization of the data was executed as a single-
threaded kernel.
4.2 Accelerating Application with GPU

Based on our experiments, the CUDA implementation of
the P7Viterbi algorithm showed an over 14x speedup over
the original implementation of the P7Viterbi function, as
shown in Figure 5. The speedup increased exponentially as
the number of threads launched (number of queries)
doubled. No more than 16,384 queries were tested due to the
limitations of the GPU memory. The total speedup (CPU
j
 18

Time/GPU Time), the increase in speed was significantly
reduced.

 Figure 4: Viterbi Algorithm Executed in Parallel

Figure 5: Total Time Speedup represented as CPU Time
over GPU Time

Table 2: GPU time for three different input size

Method GPU time(us) GPU time (us) GPU time(us)
 Large data set Large data set Large data set
 (3.1 MB) (12 MB) (120 MB)

BF_encrypt 104441 107406.1 200857
BF_cfb64_encrypt 52406.1 60189 98277.84
main 3854.3 4030.66 5814.89
memcpyHtoD 21102.7 37041.7 87981.46
memcpyDtoH 504.608 681.37 1945.3

 4.3 Effect on Memory Transfer Overhead

Blowfish has two types of data set - large and small. For
the experiment issue we modified large data set into three set
so that we can get the clear picture of data transfer overhead.
And then using Vtune we got the hotspot zone and improved
the zone by converting source code to CUDA. Hotspot
module name is BF_encrypt(). It uses a special function
name BF_ENC() which is the main spot for higher number
of clock ticks. Since Vtune only shows the CPU clock time
so the improvement on GPU never reflects in Vtune. So we
used CUDA profiler to get the GPU- CPU time and also the
data transfer overhead. For three different large data sets
summary table is given in Table 2.

From the Figure 6 graph (GPU time), we realize that as
the data set increases both kernel execution and data transfer
overhead increases. But data transfer from Host (CPU) to
device (GPU) increases significantly. When data set
increases from 12MB to 120MB, kernel execution time
(GPU time) increases 2 times but data transfer time
increases almost 4 times.

 Figure 6: GPU time for three different data sets

V. CONCLUSION
A single application includes many kernels or functions,

and some of them are heavily used for entire computation.
Based on kernel’s algorithmic characteristics, some
functions show higher data transfer time than kernel
computations on GPU, but others are not. Therefore, full
CUDA modeling could not be an ideal solution. However,
the amount of overhead can vary drastically depending on
how a GPU kernel will be used in an application, or by a
scheduler. Future work will include using this information to
inform scheduling decisions about whether to run kernels on
a GPU or on the CPU.

ACKNOWLEDGEMENT: This work was supported by the IT R&D
program of MKE/KEIT. [10038768, The Development of Supercomputing
System for the Genome Analysis]

REFERENCES

[1] NVIDIA Corporation. Press Release: NVIDIA Tesla GPU
Computing Processor Ushers In the Era of Personal
Supercomputing, 20 June 2007.

[2] S. Ryoo, C. I. Rodrigues, S. S. Baghsorkhi, S. S. Stone, D. B.
Kirk, and W. W. Hwu, "Optimization principles and application
performance evaluation of a multithreaded GPU using CUDA," In
Proceedings of the 13th ACM SIGPLAN Symposium on
Principles and Practice of Parallel Programming, 2008.

[3] Rob Finn and Jody Clements, “HMMER3: a new generation of
sequence homology search software”, http://hmmer.janelia.org, 28
March 2010.

[4] Matthew R. Guthaus, Jeffrey S. Ringenberg, Dan Ernst, Todd M.
Austin, Trevor Mudge, Richard B. Brown “MiBench: A free,
commercially representative embedded benchmark suite,” IEEE
4th Annual Workshop on Workload Characterization, Austin, TX,
December 2001.

[5] Steven Derrie and Patrice Quinton, “Parallelizing HMMER for
Hardware Acceleration on FPGAs”, IEEE 18th International
Conference Application-specific Systems, Architectures and
Processors, 2007.

[6] Daniel Horn, Mike Houston, and Pt Hanrahan, “ClawHMMER: A
Streaming HMMer-Search Implementation”, presented at
Supercomputing 2005, Washington, D.C., 2005.

[7] D. Schaa and D. Kaeli, “Exploring the multiple-GPU design
space,” in International Parallel and Distributed Processing
Symposium., May 2009, pp. 1–12.

[8] J. Owens, M. Houston, D. Luebke, S. Green, J. Stone, and J.
Phillips, “GPU computing,” Proceedings of the IEEE, vol. 96, no.
5, pp. 879–899,May 2008.

14

1
6

6
4

2
5
6

1
0
2
4

4
0
9
6

1
6
3
8
4

0

5

10

15

1

86
45
1
2

4
0
9
6

Sequence Length

S

p

e

e

d

u

pM Queries

0

50000

100000

150000

200000

250000
Large data set (3.1 MB)
Large data set (12 MB)
Large data set (120 MB)

19

Session II: VLSI Design

The Impact of Technology Scaling in the
SpiNNaker Chip Multiprocessor

Eustace Painkras and Steve Furber
University of Manchester

United Kingdom
Email: painkras@cs.man.ac.uk

Abstract—This paper focuses on technology scaling of the
SpiNNaker Chip Multiprocessor (CMP). A detailed character-
ization of the SpiNNaker Processor Node has been carried out in
130nm and 90nm semiconductor processes with many variants of
the process libraries exploring the area, power and performance
aspects. Experimental results of processor node performance,
power dissipation and silicon area are presented and have been
used to predict the best technology for a future SpiNNaker CMP
for high-performance computing.

I. I NTRODUCTION

CMOS technology has seen continuous and systematic rise
in transistor density and processing performance for the last
few decades in accordance with the self-fulfilling prophesy
of Gordon Moore [1] and the scaling theory proposed by
Dennard et al. [2]. Other consequences of technology scaling
are increased power per unit area, due to transistor size
scaling faster than the power per transistor, and lower die
cost [3]. The aggressive scaling-down of transistor dimen-
sions in technology generations has enabled designers to
integrate a great many processor cores in a single die, thus
building Chip Multiprocessors. The focus of this paper is
the technology scaling aspects of the SpiNNaker CMP so
that the SpiNNaker system can be scaled to a large-scale
high-performance computing platform taking advantage of the
process technology enhancements. For this, the impact of the
underlying parameters and the trade-offs involving area, power
and performance on SpiNNaker CMP are studied.

An exploration of the impact of technology scaling at
130nm and 90nm technology nodes for a chip multiprocessor
is carried out to understand how embedded microprocessor
CMPs are affected by technology scaling. In particular, this is a
case study of the system-level performance/power analysis in a
CMP with many embedded ARM968 cores [4]. The evaluation
results pertaining to the technological options and design cost
form the design basis for a future SpiNNaker CMP scaled to
the appropriate technology node.

This paper is structured as follows. Related work in tech-
nology scaling, cortical simulators and CMPs is presented in
Section II. Section III reviews the design of SpiNNaker and
its components. We also describe the multi-core SpiNNaker
chip, the on-chip and off-chip communication mechanisms
and the connection of multiple chips to form a large-scale
SpiNNaker system. Section IV is devoted to describe in detail
the technology scaling experiments we have carried out on

the SpiNNaker CMP with the associated results and analysis.
After that, we focus on the major design considerations for
the current and future SpiNNaker CMPs in Section V. The
paper is concluded with pointers to what the future may hold
for the SpiNNaker chip in Section VI.

II. RELATED WORK

Huang et al. [5] apply analytical models, derived from
the technology-scaling predictions of ITRS [3], to commodity
processors of relatively large die sizes. Chung et al. [6] also use
the ITRS road map to construct their scaling model. Our work,
in comparison, uses experimental results to evaluate many-core
design considerations and zero-in on the best choice of process
technology for a future SpiNNaker CMP.

Most large-scale neural simulations [7], [8] utilize super-
computers. The Blue Brain project [7] uses BlueGene/P su-
percomputer [9] to simulate cortical columns. The BlueGene/P
is not a custom architecture, but a general purpose massively
parallel system. Ananthanarayanan et al. [8] also report using
the Blue Gene/P machine for cat cortical column simulation as
part of DARPA’s Systems of Neuromorphic Adaptive Plastic
Scalable Electronics (SyNAPSE) program.

In the CMP arena, quite a few many-core chips have been
reported in literature which differ in a host of parameters like
die size, process technology, number and type of processors,
power consumption, operating frequency, flops etc. making
comparison difficult. However, a few notable CMPs are men-
tioned below.

The Blue Gene/Q chip, the basic processing element for
IBMs latest offering - the Blue Gene/Q massively-parallel
scientific computer - employs 18 PowerA2 processor cores
with floating-point units occupying a silicon real-estate of
359.5mm2 with 1.47 billion transistors fabricated in a 45nm
SOI CMOS process. Peak performance for the chip was
specified at 204.8 GFLOPS with 55W power dissipation when
operated at 1.6GHz with a 0.8V supply [10].

Truong et al. [11] have presented a 167-processor computa-
tional platform suited for DSP and multimedia applications
built from simple programmable processors. Implemented
in 65nm low-leakage ST Microelectronics CMOS process,
the chip has 55 million transistors occupying a die area of
39.44mm2. The power consumption is 47.5mW when operat-
ing at a clock frequency of 1.07GHz.

20

Intel’s 80-core TeraFLOPS processor [12] consists of 80
tiles arranged as an 8x10 array and is designed to operate
at 4GHz. Fabricated in a 65-nm 8-metal CMOS process, it
occupies an area of 275mm2, has 100 million transistors and
achieves over 1.0TFLOPS while dissipating 97W at 4.27GHz.

Tilera’s TILE64 processor [13], with 64 tile processors
arranged in an 8x8 array, fabricated in a 9-layer 90nm triple-
Vt CMOS process consumed 10.8W core power when running
a deep-packet inspection application at 750MHz. Their latest
TILE-Gx family [14] of 40nm many-core processors, designed
for cloud computing datacentres, come with up to a hundred
64-bit cores operating at frequencies up to 1.5GHz. The 100-
core version with 32MB of on-chip memory has a power
consumption of 20W.

Compared to the above chips, the SpiNNaker CMP, with
100 million transistors in a 101.64mm2 die, peak performance
of 3.96GIPS and a power consumption of 1W at 1.2V when
all the processor cores are functioning at 180MHz, is a
customized architecture which is much more energy-efficient.

III. OVERVIEW OF SPINNAKER

SpiNNaker [15] is a biologically-inspired, massively parallel
computing architecture designed to facilitate the modelling and
simulation of large-scale spiking neural network systems of
up to a billion neurons and a trillion synapses in biological
real-time. It is a generic and programmable platform for
neuroscientists, psychologists and brain researchers to explore
brain functions with software neuronal models. The architec-
ture scales from a single chip with 18 processor cores in
its smallest configuration to a system of 65,536 chips with
1,179,648 processors in a fully-fledged machine, delivering
peak processing power of over 235 Dhrystone TeraIPS.

Fig. 1. SpiNNaker Machine

A. SpiNNaker System Architecture

The SpiNNaker machine is designed as a very large array
of up to 216 nodes, each node containing a CMP die and a
128MB SDRAM die, stacked and housed in a single 300-pin
BGA package. Each CMP contains 18 processing cores, each
capable of simulating up to 1000 spiking neurons. Instead of
many large and fast processors, this design takes advantage of
one of the most important features of embedded processor
cores - their low power consumption - to deploy a low-
power, massively-parallel architecture with many simple cores.

Special emphasis is also placed on its fault-tolerance features.
Fig.1 shows the connection of multiple chips to form a
SpiNNaker machine and also the manner in which this system
connects to the outside world.

PL340
Memory

Controller

128 MB Mobile
DDR SDRAM

System
RAM

2-of-7
Decoder

2-of-7
Decoder

2-of-7
Decoder

2-of-7
Decoder

2-of-7
Decoder

2-of-7
Decoder

N

S

W

E

NE

SW

From Processor
Cores

Input
links

0

Packet Router

AHB
Master

AHB
Slave

2-of-7
Encoder

2-of-7
Encoder

2-of-7
Encoder

2-of-7
Encoder

2-of-7
Encoder

2-of-7
Encoder

N

S

W

E

NE

SW

Output
links

To Processor
Cores

17

System NoC

Even
Clk

RtrClk

OddClk

AXI SlaveAPB Slave

System AHB

AHB Slave

Watchdog
Timer

AHB/APB Bridge

Ethernet
PHY

System
ROM

AHB Slave

System
Controller

AHB Slave

Ethernet
MII

AHB Slave

Processing Node 0

Comms Controller

Tx (S->A)

AXI Master

Rx (A->S)

Processing Node 1

Comms Controller

AXI Master

Processing Node 17

Comms Controller

AXI Master

JTAG JTAG JTAG JTAG

PLLs 1,2

Clock
Generator

10 MHz

EvenClk
OddClk

RtrClk
SysClk

MemClk

(SysClk)

Packet
Decoder

Routing
Engine

Output
Select

Routing
Table

EvenClk

Comms NoC Fabric
(3-of-6)

1

17

1

0

Tx (S->A) Rx (A->S) Tx (S->A) Rx (A->S)

Fig. 2. SpiNNaker chip organization showing the CMP and the SDRAM

B. SpiNNaker CMP

The basic building block of the SpiNNaker machine is
the SpiNNaker chip with the CMP and the SDRAM. The
SpiNNaker CMP, shown in Fig.2, is a Globally Asynchronous
Locally Synchronous (GALS) multi-processor SoC [16] with
ARM968ES processing nodes residing in synchronous islands
surrounded by a packet-switched asynchronous communica-
tions infrastructure. The GALS architecture not only simplifies
timing closure in the SoC design [17] but also facilitates isola-
tion of faulty processor nodes. Self-timed delay-insensitive on-
chip interconnects based on CHAIN technology [18] are the
backbone for on-chip and off-chip communications. System-
wide communication is handled by the two separate hardware
communications channels - theComms NoCand theSystem
NoC. The Comms NoC implements inter-processor commu-
nications between any processor to any other processor in
the system. The off-chip communication is handled through
a bespoke multicast router with its routing tables and six full-
duplex links withTransmitandReceiveinterfaces connecting
to neighbouring chips in the north, south, east, west, north-
east and south-west directions forming a 2D toroidal triangular
mesh. The System NoC provisions the chip-wide sharing of
system resources, viz. 32KB System RAM, 32KB System
ROM, System Controller, Watchdog Timer and Ethernet Con-
troller Interface. It also provides access through a memory
controller to 128MB off-die SDRAM, private to each CMP
but global to its processors, housed in the same package. The

21

sharedSystem ROM and RAM are used for loading and wave-
pipelining the boot/application code and for inter-processor
communication as a mailbox, when needed. Each CMP can
communicate with the external world through a 100-Mbit
Ethernet interface.

The System NoC implements Silistix’s custom protocol
with AMBA AXI adapters [19] whereas the Comms NoC has
2-of-7 NRZ for off-chip links and 3-of-6 RTZ for on-chip
links. As opposed to typical synchronous bus interconnect, the
asynchronous NoCs with their packet-switched fabric deliver
scalable, high-bandwidth, power-efficient, multicast and low-
latency communications [20].

C. SpiNNaker Processor Node

The internals of the SpiNNaker Processor Node are shown
in Fig.3. The processor selected for the SpiNNaker machine is
the 32-bit ARM968E-S processor which is a power-efficient,
small-footprint core designed for low-power, data-intensive ap-
plications with a Dhrystone performance of 1.1 DMIPS/MHz
[4]. The core is fully synthesizable, so it can be ported
quickly and efficiently to different process technologies. The
processor node performs both computation and communica-
tion functions. On-chip, each processor node has an ARM968
core, private, directly-connected 32KB Instruction Tightly
Coupled Memory (ITCM) and dual-banked (for interleaved
word access) 64KB Data TCM (DTCM) and peripherals such
as the Timer, Vectored Interrupt Controller (VIC), Communi-
cations Controller (CC) and Direct Memory Access Controller
(DMAC). The Timer generates simulation time step intervals
for the neuronal models. The CC handles the packet-based
traffic at the processing end. The custom-designed DMAC
shares access to the TCMs with the processor core through a
dedicated AMBA AHB-lite slave interface. Its main function
is to offload communication tasks from the processor and
provide transparent access to other system resources such as
the System RAM, System ROM and SDRAM through the
System NoC. The VIC handles up to 32 interrupt requests
with programmable priority from the node peripherals as well
as system resources and generates IRQ and FIQ interrupts to
the processing core. A IEEE 1149.1-compliant JTAG port is
also available for debugging purposes.

IV. T ECHNOLOGY SCALING

In every process generation, the minimum channel length
of the transistor is roughly scaled by a factor S = 1/

√
2. In

practice, a combination of both Constant Field Scaling and
Constant Voltage Scaling is used to scale CMOS devices.
Compared to the previous process generation, same-size die
can now accommodate twice the number of transistors. Thus,
the major benefit of scaling is the increased density of transis-
tors thereby enhancing the capability to integrate more devices
in the same area or added functionality. The side-effects are
the ever-increasing power-density and the associated difficul-
ties to dissipate the increased power. Therefore, to harness
the benefits of Moore’s law and deliver increased compute-
power and performance while simultaneously keeping power

Proc Node AHB (HClk)

ARM9E-S
Integer Core

TimerClk

DMA
Controller

Comms NoC

Data1TCM
32KB

InstrTCM
32KB

AHBLite Master

ARM968E-S

OddClk/
EvenClk

AHBLite Master

AHBLite Slave

AXI Master

Data0TCM
32KB

AHB Slave

Timers/
Counters

AHB Slave

Vectored
Interrupt

Controller

AHB Slave

JTAG

Interrupt
Requests

Communications
Controller

AHB Slave

System NoC

IRQ/FIQ

DMAClk

Fig. 3. Details of a SpiNNaker Processor Node

to a minimum is onerous. Also, the leakage power increases
dramatically below the 130nm technology generation.

A. Process Libraries

Wafer fabs and independent foundries offer several process
technology library variants at different technology nodes, each
optimized for performance, power, supply voltage or threshold
voltage. This selection of libraries enables the CMP designer
to carry out design exploration from the power/speed tradeoff
viewpoint and to incorporate power-management considera-
tions throughout the design flow. For example, the choice
could be between a high-speed high-leakage library or a low-
speed low-leakage library. To reduce the leakage power in
finer geometries, the threshold voltage (Vt) of the transistors
is raised, but this results in a corresponding decrease in the
transistor operating frequency. In the SpiNNaker CMP design,
multiple-threshold libraries have been used in a concerted
effort to meet the performance of timing-critical circuits and
minimize the leakage power in non-timing-critical paths.

B. Framework, Tools & Metrics

We use the SpiNNaker CMP as the experimental platform
for our research. The Synopsys Galaxy Design Platform, with
tools for RTL simulation, logic synthesis, physical implemen-
tation, timing and power analysis, such as Design Compiler,
IC Compiler, PrimeTime and PrimeRail, is used for the design
and implementation tasks. Faraday standard cell libraries for
UMC process technology at 130nm and 90nm nodes - acces-
sible to universities for academic and research purposes - have
been used for the experiments. System-level metrics envisaged
are the area/design cost, throughput and power efficiency. The
experimental results are analyzed and discussed below with a
view of comparison in terms of area, power and performance.

22

100 120 140 160 180 200 220 240 260
2.85

2.9

2.95

3

3.05

3.1

3.15

3.2
P

ro
ce

ss
or

 N
od

e
A

re
a

(s
q.

m
m

)

Maximum Frequency (MHz)

130nm SP
130nm LL
130nm HS
130nm SP−LL combination

150 200 250 300 350 400 450 500
1.72

1.73

1.74

1.75

1.76

1.77

1.78

1.79

P
ro

ce
ss

or
 N

od
e

A
re

a
(s

q.
m

m
)

Maximum Frequency (MHz)

90nm SP
90nm LL

(a) Area in 130nm technology (d) Area in 90nm technology

100 120 140 160 180 200 220 240 260
5

10

15

20

25

30

35

40

D
yn

am
ic

 P
ow

er
 (

m
W

)

Maximum Frequency (MHz)
150 200 250 300 350 400 450 500
5

10

15

20

25

30

35

40

45

50

D
yn

am
ic

 P
ow

er
 (

m
W

)

Maximum Frequency (MHz)

(b) Dynamic Power in 130nm technology (e) Dynamic Power in 90nm technology

100 120 140 160 180 200 220 240 260
0

200

400

600

800

1000

1200

1400

1600

1800

Le
ak

ag
e

P
ow

er
 (µ

W
)

Maximum Frequency (MHz)
150 200 250 300 350 400 450 500
0

500

1000

1500

2000

2500

3000

3500

Le
ak

ag
e

P
ow

er
 (µ

W
)

Maximum Frequency (MHz)

(c) Leakage Power in 130nm technology (f) Leakage Power in 90nm technology

Fig. 4. Area, Dynamic Power and Leakage Power of SpiNNaker Processor Node for 130nm (SP, LL and HS libraries) and 90nm (SP and LL libraries)
process technologies with the current implementation also highlighted with the pentagram

C. Experiments on Technology Scaling of the SpiNNaker Pro-
cessor Node

Experiments on the physical implementation of the SpiN-
Naker Processor Node are carried out in 130nm and 90nm
technology nodes with Faraday standard cell libraries. The sil-

icon area, highest frequency attained and power-consumption
figures are measured from these experiments. These figures
may be extrapolated for future technology nodes or form the
basis for system model creation for a typical CMP.

To get a comprehensive perspective of technology scaling

23

from 130nm to 90nm, we have evaluated three different
standard cell library variants (High Speed (HS), Standard Per-
formance (SP), Low Leakage (LL)) at the 130nm technology
node and two variants (SP and LL) for the 90nm node. Not
just the standard cells, but the RAMs also specifically designed
for these library variants have been utilized in our experi-
ments. The HS library cells are targeted for implementations
where achieving highest possible performance is paramount.
The SP library is characterized for general-purpose standard-
performance implementations. The LL library has cells with
high threshold voltage and therefore has low leakage-power
dissipation.

It is worthwhile noting here that the experimental results
presented below, for the sake of a deeper understanding of the
key building block of the CMP and for carrying out design
exploration on a small-scale problem, pertain to the Processor
Node alone and not the entire CMP. The SpiNNaker Processor
Node is synthesized with its operating frequency as the main
design constraint for target frequencies ranging from 100 to
500MHz in numerous iterations and measurements taken of
the worst critical path delay, maximum frequency achieved,
dynamic power, leakage power and area. Only the synchronous
portion of the processor node was subjected to the following
experimentation as the asynchronous network interface part
was hand-crafted to safeguard the timing assumptions. This is
the reason that the processor node area in 130nm technology
mentioned in the following section is about 3.0mm2 whereas
the fabricated processor node area is 3.75mm2.

D. Experimental Results for 130nm Process Technology

Operating Frequency: As can be seen from Figs.4(a)-(c),
depending on the library variant chosen, the frequency at
which the processor node can be operated varies from a
maximum of 260MHz with the HS library to a minimum
of 110MHz with the LL library in 130nm technology. This
corresponds to a critical path length of 3.85ns/9.05ns at the
worst-case process corner of the respective libraries. The
design targeted towards the SP library can achieve almost the
same performance as the HS library in the lower range of
the desired frequencies whereas the higher-end of the range
is achievable only with the HS library with considerable
overhead on the dynamic and leakage power as explained
below. So, depending on the operating frequency desired, one
of these libraries or combinations of up to two libraries (for
e.g. SP-LL, HS-SP) may be chosen by the designer as the
target library for implementation.

Silicon Area: Fig.4(a) shows the silicon area for the proces-
sor node in a 130nm process. The area ranges from 2.88mm2

with the HS library to 3.13mm2 with the LL library. This
anomaly in standard cell area, wherein the HS design is much
more compact than the LL design, can be directly attributed
to the number of standard cells utilized in the design: 46,709
for HS as opposed to 66,886 for the LL design. Comparison
between the same type of standard cell with the same drive
strength, for e.g. NANDX8, from LL and HS libraries shows
that the intrinsic delay for the LL-type standard cell is twice

that for the HS-type cell. Therefore, in an attempt to meet the
target frequency (design constraint), the tools introduce more
cells in the slower paths to extract greater parallelism. The end-
result is larger area for a much slower design. The SP design,
as expected, is a medium-sized design with performance
comparable to the HS design at the lower end of the operating
frequencies achieved. It makes more sense to make use of
the SP library for designs where the achievable operating
frequency is not the main criterion, as the area overhead is
very little (about 0.18mm2).

Dynamic Power Consumption: Fig.4(b) shows the dynamic
power consumption predicted by the tools for the processor
node in a 130nm process. The range over which the dynamic-
power consumed by the design varies within a single target-
library is strikingly wide. For the HS design, the processor
node consumes about 7mW @ 145MHzvs40mW @ 255MHz.
This huge variation can be explained by the increase in
the standard cell count of the design at 255MHz (60,735)
compared to the lower frequency (46,709). As stated in the
above paragraph, the implementation tools try to match the
design constraint set by the designer as closely as possible,
which in turn leads to a bloated design at the extreme case
scenario. Therefore, it is not advisable to use the HS library if
the power budget is limited. The SP and LL designs, naturally,
consume less power as they operate at lower frequencies in
comparison to the HS design. However, there is an overlapping
central region in the graph where the dynamic power is
comparable for HS and SP designs. In this specific region,
other metrics such as the area and leakage power come into
play while evaluating the trade-offs involved. If total power
was the overriding constraint, we would choose the LL library
for the design implementation and our experimental results
lend support to this.

Leakage Power Consumption: Fig.4(c) plots the static leak-
age power for 130nm designs at the various operating fre-
quencies. As can clearly be seen, the LL library consumes
the least (around 50µW) whereas the HS design has the
highest leakage power (around 1600µW), with the SP design
falling in the middle (around 385µW). The SP design has
75% less leakage power in comparison with the HS design
over the central region of the graph with approximately the
same dynamic power consumption. It is important to note that
as the cells in the LL library are designed with the intention
of keeping leakage power to the minimum, this observation
validates our design. Also, leakage power accounts for about
10% of the total power consumed under full-load conditions.
This constitutes a major drain on the power resources for
systems in which portions of the circuitry have to be put in
sleep-mode for a considerable amount of time.

E. Experimental Results for 90nm Process Technology

We had to make do with the two variants of the standard cell
libraries and SRAMs that were available for the 90nm process:
SP and LL. For the sake of completeness, the experiments
should have included 90nm HS library. This was unavailable
and therefore, could not be included in the evaluation.

24

Operating Frequency: A noticeable difference in operating
frequency is inferred from Figs.4(d)-(f) - the SP design at
about 465MHz is twice as fast as the LL design at 238MHz.
Compared to the 130nm design, it is to be noted that the
operating frequency attained by the 90nm LL design is almost
the same as that achieved by 130nm SP and HS designs.
Overall, the 90nm LL library is a much better option for a
future design, if the aim is to operate at around 230MHz, as it
comes with added benefits of smaller area, lower dynamic and
leakage power, compared to the 130nm HS library. Albeit, if
the specification is to operate at around 400MHz, the 90nm
SP library is the way forward.

Silicon Area: The area for 90nm SP and LL designs are
plotted in Fig.4(d). For the processor node, the area ranges
from 1.72mm2 to 1.75mm2 with the SP library and from
1.74mm2 to 1.78mm2 with the LL library. We can infer
from this metric that there is not much difference in the area
irrespective of the library variants - the maximum variation is
only about 3% - and therefore insignificant at 90nm. However,
progressing from 130nm to the finer 90nm technology allows
the integration of roughly double the function on a similarly
sized chip. This can be confirmed by the fact that the silicon
area has shrunk by 43% from approximately 3mm2 in 130nm
to about 1.7mm2 in 90nm. It is to be noted that the RAM
area, which forms 80% of the Processor node area, has itself
reduced from 0.8mm2 to 0.47mm2, a 60% shrink. So, it can
be inferred that the scaling to the next technology generation,
at least in this particular technology, affects both the RAM
macros and the standard cells uniformly.

Dynamic Power Consumption: Fig.4(e) is an interesting
plot in that it shows that the dynamic power consumed by
the 90nm SP design varies from 15.62mW @ 367MHz to
49.97mW @ 465MHz. This is too drastic a variation, a three-
fold increase, which proves that this library is only to be
used if we are pushing for the highest operating frequency
and are not bothered by the power consumed, which might
be wasteful when the operating costs are factored in. How-
ever, if the specification calls for approximately 360MHz, the
90nm SP design is indeed useful as the dynamic power is
comparable to most of the other library designs, disregarding
the leakage power at this point. 90nm LL design is favorable
in the 200-250MHz region due to the reasonable value for
the dynamic power consumed. The dynamic power variation
at 90nm is quite similar to that at 130nm. The dynamic
power consumption of 90nm SP design is slightly higher than
130nm SP design with improvement in operating frequency
from 250MHz to 450MHz. By capitalizing on the higher
operating frequency of 90nm SP design, higher performance
may be achieved at smaller technology scale but with a slight
power overhead. Comparing the 130nm and 90nm LL designs,
Figs.4(b)&4(e), the enhanced throughput that can be garnered
with the increased operating frequency while maintaining the
same power envelope makes the power savings that can be
made by migrating to 90nm even more evident.

Leakage Power Consumption: Fig.4(f) also shows a marked
difference between the leakage power for 90nm LL (about

70µW) and SP (about 3mW) library designs. This in itself
could be a deciding factor when faced with the choice of these
libraries. In comparison with the 130nm library variants, the
leakage power has almost doubled in the 90nm generation.
This further reinforces the fact that the leakage power which
was negligible in technology nodes 130nm and higher has
become a significant factor in the 90nm node.

The above experimental results confirm that scaling down
from a technology node results in a higher integration level,
which, in turn, translates to more functionality in a similarly-
sized chip or a smaller footprint for the same design. It boils
down to making an informed decision based on how the area
savings and performance gain are to be balanced against power
savings. Considerable power savings translate to an overall
reduction in the total cost of ownership over the lifetime of the
system, which is significant for high-performance computing
systems as the running cost matches, or even surpasses, the
acquisition cost.

F. Power Efficiency

In this section, we embark on evaluating the processor
node designs based on another metric, their power efficiency.
We have used Dhrystone MIPS divided by the total power,
which is the sum of dynamic and leakage power, to calculate
this metric. The higher the value of DMIPS/mW, the more
power efficient the design is. It can be inferred from Fig.5
that the 90nm LL library stands out from the rest in terms
of power efficiency. This is a direct consequence of the low
dynamic power and very low leakage power consumption of
the 90nm LL design while operating at a reasonable frequency
of 200MHz. In the current SpiNNaker CMP, quite a lot of
effort has been put in to optimize the processor node to
deliver a good computational rate per Watt. The 130nm SP-
LL combination has been used to fix this figure in the central
region of the plot. When moving to the 90nm technology
node, disregarding cost aspects, 90nm LL seems the most
appropriate (greenest) choice of design library so that the
machine itself can be limited to a strict power budget. On
the other hand, the 90nm SP library design achieves power
efficiency comparable to that of the current 130nm design.

0 100 200 300 400 500
0

5

10

15

20

25

30

35

40

P
ow

er
 E

ffi
ci

en
cy

 (
D

M
IP

S
/m

W
)

Maximum frequency (MHz)

130nm SP
130nm LL
130nm HS
90nm SP
90nm LL
Current SpiNNaker CMP

Fig. 5. Power Efficiency of SpiNNaker Processor Node

25

G. Performance Density

Yet another metric we have used for evaluation is the Per-
formance Density of the various designs. This metric relates to
the throughput in relation to the silicon area. We have added 2
more scenarios in this experiment where in the 90nm library
designs the Data TCM sizes have been doubled to 128KB.
The reasoning behind that is that, at the increased frequency
of operation in the 90nm node, the processor should be able
to achieve higher throughput, but requires a larger RAM in
proportion to this throughput. Fig.6 plots the experimental
results of this phase of design exploration. It can be seen from
the plot that the added RAMs have lowered the performance
density figures with little effect on the maximum frequency
achieved. To explore this further, we need to take into account
System NoC bandwidth and latency, which we have not done
at this stage. Still, the 90nm LL library design is quite
attractive in terms of area, performance and power, if we
decide to migrate to the 90nm node.

0 100 200 300 400 500
0

50

100

150

200

250

300

P
er

fo
rm

an
ce

 D
en

si
ty

 (
D

M
IP

S
/m

m
2)

Maximum frequency (MHz)

130nm SP
130nm LL
130nm HS
90nm SP
90nm LL
90nm SP with 128KB DTCM
90nm LL with 128KB DTCM
Current SpiNNaker CMP

Fig. 6. Performance Density of SpiNNaker Processor Node

V. DESIGN CONSIDERATIONS

A. Balancing Area, Performance, and Power

High-performance and low-power devices are often consid-
ered to be at opposite ends of the design spectrum. Finding a
balance is a challenge, but several fundamental features helped
SpiNNaker achieve the goal of reducing size and also sav-
ing significant power while achieving adequate performance.
Speed/power/area trade-off analysis with the results of the
experiments described above ensured that the design balances
throughput with attractive area and power. For coordinated
power saving, both the leakage as well as dynamic power
dissipation need to be kept within limits. Concurrently, it is
desirable to achieve a good-enough performance with minimal
area overhead. In our evaluation, we have experimented with
implementing the Processor Node with the target libraries
individually and based on the results, made a judicious choice
for the Processor Node design implemented in the fabricated
CMP. So, for the fabricated 130nm SpiNNaker CMP design,
a combination of cells from SP (57%) and LL (43%) libraries
have been chosen for an area-efficient, low-power design.

The ensuing processor node design is highlighted in the
Figs.4(a)-(c) with the pentagram. It occupies about 3.75mm2

of silicon area and functions at about 180MHz with a power
consumption of about 20mW.

B. Power Optimization

To optimize the competing goals of throughput and power
efficiency, trade-offs are needed. In order to minimize the
operating costs of the SpiNNaker machine, the main strategy
employed is to reduce the power consumption. The SpiNNaker
system is built out of low-power embedded processors and
mobile DDR SDRAMs. Rather than employing large high-
performance power-hungry processing cores, small cores have
been chosen for the system, amortizing the area cost across
multiple cores. The SpiNNaker processor nodes operate at a
relatively low frequency of about 200MHz. Therefore, they
consume much less area and power and it is possible to
pack 18 of these processors in a single CMP. The ARM968
processors implement 32-bit fixed-point arithmetic as opposed
to the floating-point operations available in general-purpose
processors, thereby sacrificing performance for the sake of
an energy-efficient architecture. In addition, mechanisms have
been built in to power-off idle nodes of the machine, put
the processors intosleepmode when they are not used for
computation andwakethem up when the need arises.

Proc.0

Inst.
TCM

Data
TCM

Proc.4 Proc.12 Proc.13 Proc.5

Proc.8 Proc.9 Proc.1

Proc.6 Proc.14 Proc.15 Proc.7

Proc.2 Proc.10 Proc.11 Proc.3

P
ro

c.
1

Proc.16

PLL1

PLL2

Router

S
ys

te
m

 N
o

C

S
ys

te
m

 N
o

C

CG
S

ys
te

m
R

A
M

R
O

M

SDRAM
Controller

C
o

m
m

s
N

o
C

NoC
I/F

System AHB

Proc.0

Inst.
TCM

Data
TCM

Proc.4 Proc.12 Proc.13 Proc.5

Proc.8 Proc.9 Proc.1

Proc.6 Proc.14 Proc.15 Proc.7

Proc.2 Proc.10 Proc.11 Proc.3

P
ro

c.
1

Proc.16

PLL1

PLL2

Router

S
ys

te
m

 N
o

C

S
ys

te
m

 N
o

C

CG
S

ys
te

m
R

A
M

R
O

M

SDRAM
Controller

C
o

m
m

s
N

o
C

NoC
I/F

System AHB

Inst.
TCM

Data
TCM

Proc.4 Proc.12 Proc.13 Proc.5Proc.4 Proc.12 Proc.13 Proc.5

Proc.8 Proc.9 Proc.1

Proc.6 Proc.14 Proc.15 Proc.7Proc.6 Proc.14 Proc.15 Proc.7

Proc.2 Proc.10 Proc.11 Proc.3Proc.2 Proc.10 Proc.11 Proc.3

P
ro

c.
1

Proc.16

PLL1

PLL2

Router

S
ys

te
m

 N
o

C

S
ys

te
m

 N
o

C

CG
S

ys
te

m
R

A
M

R
O

M

SDRAM
Controller

C
o

m
m

s
N

o
C

NoC
I/F

System AHB

Fig. 7. Plot of the SpiNNaker CMP

C. CMP-Memory Packaging

The SpiNNaker chip is packaged, using wafer-stacking
technology, by stacking the SDRAM die on top of the CMP
die as seen in Fig.8. Each die is implemented individu-
ally: the 128MB SDRAM die is acquired from the memory
manufacturer as a Known Good Die and the CMP die is
manufactured using a conventional 2D IC process. Coarse
integration stacks these two dies in a 300-pin BGA package.
The ensuing advantages are improved system performance,

26

reducedinterconnect power dissipation due to smaller parasitic
RC than that of conventional on-board (off-chip) wiring, cost-
effective packaging/PCB due to integration within the same
package and, in particular, reuse of the 2D CMP design with
the latest commercially available, possibly higher capacity
and speed, SDRAM dies. In future, with the emerging Wide
I/O JEDEC standard, a highly parallelized Wide I/O interface
with a relatively low memory frequency may be utilized to
connect the logic die with the memory die with Through-
Silicon Vias. This 3D integration will bring about a dramatic
reduction in I/O power, lowering the power consumption of
the SpiNNaker CMP still further. Also in tandem with the
progress in the DRAM market, a higher capacity SDRAM
die, possibly 1GB, may be incorporated into the chip for a
higher memory bandwidth to cater for the increased number
of faster processor cores that can be crammed in a smaller
geometry process in a die of similar size.

Fig. 8. SpiNNaker chip package substrate with SDRAM

D. Fabricated SpiNNaker CMP

The Processor Node is implemented in two variants consis-
tently tuning to achieve the best performance/power figures.
The variants are then replicated nine times each to achieve a
fairly regular layout. Fig.7 is a layout picture of the SpiNNaker
CMP with its major components highlighted. The standard
cell libraries have been augmented with custom-designed
asynchronous logic cells and macros. The CMP is fabricated
in UMC 130nm L130E process technology and has over 100
million transistors and a power consumption of 1W at 1.2V
when all the processor cores are operating at 180MHz. The
CMP achieves a peak performance of 3.96 GIPS.

VI. CONCLUSION AND FUTURE WORK

Based on the above results, a combination of cells from SP
and LL libraries have been chosen for the fabricated 130nm
SpiNNaker CMP. By scaling the SpiNNaker CMP down to
90nm, power efficiency is enhanced while maintaining its
performance at reduced die size. On the other hand, 130nm
process continues to be competitive in terms of manufacturing
and implementation cost compared to 90nm. The experimental
methods and results presented in this paper, though for a
proprietary CMP, are easily extensible to other CMPs, thereby
giving valuable insight before making implementation tech-
nology decisions. With a view to extending the current design
exploration, future research will concentrate on aspects such

as memory requirement and bandwidth limitations, design cost
and technological options for a future SpiNNaker CMP scaled
to an even finer process geometry (possibly 65nm, 45nm and
32nm). The impact of process variability and the resulting
reliability issues in finer technology nodes is another possible
avenue of research.

Though SpiNNaker is an application-specific architecture,
it can still be used for running applications such as ray-
tracing, protein folding etc. which are outside the purview of
neuroscience applications. For the neural applications, major
advantage is gained in the flexibility afforded by the software
implementation of neural models in the processor core and the
asynchronous communications infrastructure.

ACKNOWLEDGEMENTS

The SpiNNaker project is supported by the Engineering and
Physical Sciences Research Council of the UK, through Grants
EP/D07908X/1 and EP/G015740/1, and also by ARM and
Silistix. The authors appreciate the support of these sponsors
and industrial partners. The die photo in Fig. 8 is courtesy of
Unisem Europe Ltd.

REFERENCES

[1] G. Moore, “Cramming More Components onto Integrated Circuits,”
Electronics, vol. 38, no. 8, pp. 114–117, April 19, 1965.

[2] R. Dennardet al., “Design of Ion-implanted MOSFETs with Very Small
Physical Dimensions,”IEEE JSSC, vol. SC-9, no. 5, pp. 256–268, 1974.

[3] “ITRS 2010 Update,”http://www.itrs.net/Links/2010ITRS/Home2010.htm.
[4] “ARM968E-S,” http://www.arm.com/products/processors/classic/

arm9/arm968.php.
[5] W. Huanget al., “Scaling with Design Constraints: Predicting the Future

of Big Chips,” Micro, IEEE, vol. 31, no. 4, pp. 16–29, July-Aug. 2011.
[6] E. Chung et al., “Single-Chip Heterogeneous Computing: Does the

Future Include Custom Logic, FPGAs, and GPGPUs?” inProc. 43rd
Annual IEEE/ACM Int. Symp. Microarchitecture, 2010, pp. 225–236.

[7] H. Markram, “The Blue Brain Project,”Nature Reviews Neuroscience,
vol. 7, no. 2, pp. 153–160, Feb. 2006.

[8] R. Ananthanarayananet al., “The Cat is Out of the Bag: Cortical
Simulations with 109 Neurons, 1013 Synapses,” inProc. Conf. High
Performance Computing Networking, Storage and Analysis, 2009, pp.
63:1–63:12.

[9] IBM Blue Gene Team, “Overview of the IBM Blue Gene/P Project,”
IBM J. Research & Development, vol. 52, no. 1/2, pp. 199–220, 2008.

[10] R. Haring et al., “The IBM Blue Gene/Q Compute Chip with SIMD
Floating-Point Unit,”Hot Chips 23, 2011.

[11] D. Truong et al., “A 167-Processor Computational Platform in 65nm
CMOS,” IEEE JSSC, vol. 44, no. 4, pp. 1130–1144, Apr. 2009.

[12] S. Vangalet al., “An 80-Tile Sub-100W TeraFLOPS Processor in 65-nm
CMOS,” IEEE JSSC, vol. 43, no. 1, pp. 29–41, Jan. 2008.

[13] S. Bell et al., “TILE64 Processor: A 64-Core SoC with Mesh Intercon-
nect,” in Dig. Tech. Papers. IEEE Int. SSC Conf., 2008, pp. 88–598.

[14] Tilera, “TILE-Gx Processor Family,”http://www.tilera.com/products/
processors/TILE-GxFamily.

[15] S. Furber and S. Temple, “Neural Systems Engineering,”J. Roy. Soc.
Interface, vol. 4, no. 13, pp. 193–206, Apr. 2007.

[16] L.Planaet al., “A GALS Infrastructure for a Massively Parallel Multi-
processor,”IEEE D&T Computers, vol. 24, no. 5, pp. 454–463, 2007.

[17] L. Planaet al., “SpiNNaker: Design and Implementation of a GALS
Multicore System-on-Chip,”ACM J. Emerging Technologies in Com-
puting Systems, vol. 7, no. 4, pp. 17:1–17:18, 2011.

[18] J. Bainbridge and S. Furber, “CHAIN: A Delay-Insensitive Chip Area
Interconnect,”IEEE Micro, vol. 22, no. 5, pp. 16–23, 2002.

[19] ARM, “AMBA AXI Protocol Specification, Rev.1.0,”
http://www.arm.com/products/system-ip/amba/.

[20] L. Planaet al., “An On-Chip and Inter-Chip Communications Network
for the SpiNNaker Massively-Parallel Neural Net Simulator,” inProc.
ACM/IEEE Int. Symp. Networks-on-Chip, 2008, pp. 215–216.

27

Abstract: We propose a new design methodology, which

simplifies the analog design cycle and introduces

reconfigurable and accurate prototype of any analog IC. A

comprehensive design methodology is being developed that it

makes Analog IC customizable and adaptable by a field

user. For example we have considered a most fundamental

analog element, the operational amplifier (op-amp). The

basic design of a two-stage compensated op-amp is firstly

analyzed to estimate the basic circuit configuration which

verifies its functionality. Secondly using its small signal

equivalent model, specifications are being derived in terms

of threshold voltage of transistors, present in the circuit.

Indeed, with the help of floating gate transistors, which has a

feature of post fabrication programmability of its threshold

voltage, an accurate and reconfigurable prototype of a

design can be obtained. The circuit is simulated using

BSIM3 level49 MOSFET models in T-Spice 0.35µm CMOS

process. Specifications such as slew rate, gain, CMRR,

PSRR, gain bandwidth, input range and offsets are being

derived and estimated their sensitivity with respect to

threshold voltage of respective floating-gate transistors. The

simulated results demonstrate that by programming

threshold voltages, fine tuning of specifications with wide

spectrum can be achieved. The designs fabricated using our

methodology can be adaptive to any desired value of

specification with very high precision (about 13bit

programming precision can be attain). It can also make

Analog ICs immune to most drawbacks like processes

variations, device degradation by introducing new

possibilities such as self correction and adaptability.

Keywords: Accuracy, Floating-gates, Field Programmable

analog array, Operational Amplifier, Reconfigurable,

Specifications, Threshold voltage.

I. INTRODUCTION

NALOG circuits from long time are getting

overshadowed by digital designs however real world

consists of analog, all electronic systems ultimately

have to interface at input and output with the analog

signals. The portable electronic devices also require

higher level of integration with lower power consumption,

which pervades the need of analog. Moreover, with

analog devices there would be no use of huge

ADCs/DACs, decision box (filters) and can have easy

interfacing with real world. But still analog devices are

less preferred because analog circuits are not easy and

well defined like digital as there is no unique answer.

Moreover, there is a knowledge mismatch between books

and industrial training kits for analog circuit designs

because teaching courses focus on analysis of analog

circuits rather than on their designing. Design is actually

reverse of analysis. As in industry one start with the

answer, which are the specifications, and one has to work

back to what circuit configuration to begin with and what

component values to use. This mismatch of knowledge in

books and industry create problems to fresh design

graduates in industry. Dr. R.D.Middlebrook, Prof. of

Electrical Engineering, California Institute of

Technology, Pasadena, also states that “I believe design

can be integrated into analysis at a much fundamental and

detailed level” [1]. Indeed analog design cycle consists of

many iterative steps. Analog designers have to maintain a

tradeoff between fabrication time and costs. Designers

also have to maintain a tradeoff between accurate and

optimized prototype of a design. Thus any analog design

turnaround time is about three months. As well as, each

new derivative (i.e. the same design with new value of

specification) requires going through the complete design

cycle again. Such limitations with analog IC design can

be outshined by introducing adaptability and reconfigure

ability in the designs. Recent efforts have introduced a

fair degree of design automation and field

programmability in the form of Field Programmable

Analog Arrays (FPAA) [2, 3, 4 and 5]. These FPAAs

have an array of analog components over a range of

specifications that can be switched in/out of a design on

the same lines as digital devices are in a FPGA. These

chips can be programmed very close to desired

functionality; besides the inbuilt device redundancy also

helps to make it fault tolerant to a certain extent.

Despite the phenomenal progress a basic question still

eludes analog ASIC designers. Can we build generic

analog devices that can be customized to desired

specification by the user in a field programmable manner?

Therefore we would like to propose a design methodology

for analog ICs which integrate designing and analysis at a

very fundamental level. As, we start designing any circuit

at very basic level that is, start with a simple equivalent

small signal model and some basic quantitative

relationships that can establish the required functionality

of the design with the help of sequence of steps. On the

basis of design functionality, specifications of the design

will be derived in terms of threshold voltage of the

respective transistors used in the design. The design with

the basic details of sizing and biasing condition can be

fabricated. Moreover with the help of post fabrication

programmability of transistor’s threshold voltage in

floating gate transistors, we can produce accurate

prototype of the design which are customizable to desired

specification by a field user [6, 7 and 8]. Prof. Keith

Hipel, a system designer said, “Any new methodology is

required to solve application and application in turn is

used to prove the proposed methodology. Therefore to

prove our methodology we have considered an

Operational amplifier, a fundamental building block in

analog integrated circuit design. Various programmable

op-amps with programming circuitry exists [9, 10 and

G. Kapur, S. Mittal, C.M.Markan, V.P.Pyara

A Unique Design methodology to generate reconfigurable

Analog ICs with simplified Design Cycle

A

28

11], however, we proposes a methodology to develop a

field programmable, reconfigurable and adaptive op

Using our design cycle we have analyzed, designed

estimated the circuit functionality with basic circuit

configuration and its specifications in terms of threshold

voltages of respective floating-gate transistors.

Furthermore these specifications can adapt with high

precision to any desired value by field user. Next section

will illustrate our proposed design cycle with br

description of field programming of floating

transistor. Consequently with an example of op

basic design, we propose a design methodology for op

amp designing in the section III, followed by its

simulation results.

II. NEW DESIGN METHODOLOGY

The new design methodology to introduce field

programmability, reconfigure ability and ad

analog circuit designs, using concept of floating gate

transistors leads to a new and simpler analog design cycle.

The flow chart of the new design cycle is shown in Figure

1. Algorithm of the design flow is being illustrated in next

section, however field and indirect programmability of

floating gate transistor is demonstrated in

section.

A. Proposed New Analog Design Cycle

 The usual design flow for analog designs consists of

many iterative steps and verification tools. For desired

specification, designing starts from first cut design using

classroom equations. To optimize the circuit and t

optimized W/Ls for individual transistors before the

circuit is ready for fabrication sophisticated simulation

tools with accurate yet complex simulation device models

are required. Wherein, analog designers have to sustain a

tradeoff between the prescribed design specifications with

design sizing and biasing conditions while maintaining its

functionality. Time and cost are very important gradient

in such tradeoff, especially in determining the accurate

and optimized prototype of a design.

propose an alternative paradigm in design of analog

devices wherein focus would be to reduce the

overdependence on determining accurate W/L of

individual transistors prior to fabrication.

design cycle starts with the designing analog circuits from

fundamental level, defining circuit specifications

of threshold voltage of the transistors and programming it

after fabrication to develop an accurate and stable

prototype. Hence it proves to pave a way of analog

friendly environment in fundamental teaching, graduate

level and at industry level. Algorithm of the proposed

design cycle is as follows:

Steps:

1. Analyze circuit with the help of block diagram to

establish desired functionality.

2. Simulate the circuit to check its functionality

with basic sizing and biasing conditions.

3. Design the equivalent small-signal model of the

circuit.

4. Derive specifications in terms of threshold

voltage of transistors.

], however, we proposes a methodology to develop a

field programmable, reconfigurable and adaptive op-amp.

e have analyzed, designed and

with basic circuit

in terms of threshold

gate transistors.

Furthermore these specifications can adapt with high

precision to any desired value by field user. Next section

will illustrate our proposed design cycle with brief

description of field programming of floating-gate

transistor. Consequently with an example of op-amp’s

basic design, we propose a design methodology for op-

amp designing in the section III, followed by its

GY

The new design methodology to introduce field

ability and adaptability in

t of floating gate

leads to a new and simpler analog design cycle.

is shown in Figure

1. Algorithm of the design flow is being illustrated in next

and indirect programmability of

floating gate transistor is demonstrated in the next sub-

Proposed New Analog Design Cycle

analog designs consists of

many iterative steps and verification tools. For desired

from first cut design using

To optimize the circuit and to derive

optimized W/Ls for individual transistors before the

sophisticated simulation

tools with accurate yet complex simulation device models

Wherein, analog designers have to sustain a

tradeoff between the prescribed design specifications with

ng conditions while maintaining its

functionality. Time and cost are very important gradient

in such tradeoff, especially in determining the accurate

 Therefore we

an alternative paradigm in design of analog

ces wherein focus would be to reduce the

overdependence on determining accurate W/L of

 Our proposed

designing analog circuits from

fundamental level, defining circuit specifications in terms

of threshold voltage of the transistors and programming it

accurate and stable

to pave a way of analog-

friendly environment in fundamental teaching, graduate

lgorithm of the proposed

circuit with the help of block diagram to

Simulate the circuit to check its functionality

with basic sizing and biasing conditions.

signal model of the

Derive specifications in terms of threshold

5. Analyze sensitivity of each specification with

respect to respective thresholds.

6. Simulate the circuit to check the sensitivity of

each specification.

7. Layout creation and verification

with basic sizing and biasing conditions.

8. Then after testing and extraction, fabricate the

design.

9. Program the transistor’s thresholds to adjust the

desired specifications with huge accuracy

Figure 1: Proposed Analog Design Flowchart

B. Floating-gate Transistor

 Floating-gate MOS transistors are conventional MOS

transistors wherein memory is stored in the form of

charge trapped on floating-gate, affecting its threshold

voltage. Two antagonistic quantum mec

processes, viz. injection and tunneling, alter the trapped

charge on a floating gate. As these processes can occur

during normal operation (indirect programming [13]), it

leads additional attributes to the FGMOS transistors such

as non volatile analog memory storage on floating

locally computed bidirectional memory updates and

memory modification during normal transistor operation.

Figure 2: Symbolic representation of a normal MOS with indirectly

programmable floating gate using in

Figure 3: Pictorial representation of non-volatile, high precision, indirect

and on-chip programming of Floating

Vg Vfg

Vtun

Vinj

Analyze sensitivity of each specification with

respect to respective thresholds.

Simulate the circuit to check the sensitivity of

out creation and verification of the circuit

with basic sizing and biasing conditions.

Then after testing and extraction, fabricate the

Program the transistor’s thresholds to adjust the

with huge accuracy.

sed Analog Design Flowchart

gate Transistor

gate MOS transistors are conventional MOS

transistors wherein memory is stored in the form of

gate, affecting its threshold

voltage. Two antagonistic quantum mechanical transfer

processes, viz. injection and tunneling, alter the trapped

charge on a floating gate. As these processes can occur

during normal operation (indirect programming [13]), it

leads additional attributes to the FGMOS transistors such

atile analog memory storage on floating-gate,

locally computed bidirectional memory updates and

memory modification during normal transistor operation.

representation of a normal MOS with indirectly

programmable floating gate using injection and tunneling

volatile, high precision, indirect

chip programming of Floating-gate MOS.

VS
tun

29

Tunneling

 Charge is added to the floating gate by removing

electron from it by means of Fowler-Nordheim tunneling

across oxide capacitor. This shifts the curve (Figure 4) to

the right or in other words threshold voltage of the

transistor increases.

Injection

 Charge is removed from the floating-gate by adding

electron on it by impact-ionized hot electron injection

from the channel to the floating gate across the thin gate

oxide. This shifts the curve (Figure 4) to the left or in

other words threshold voltage of the transistor decreases.

Figure 4: Output Characteristics of FGMOS transistor

With such simpler design cycle and field programmability

feature of FGMOS, any analog circuit can be designed

and customized at the field user end. It can reduce design

time and reconfigurable designs reduce costs of

fabrication. Optimization of the design can be performed

at the layout creation as only basic design is to be

fabricated. Moreover, accurate prototype of the design

can be obtained after fabrication. Hence it can produce

highly accurate and optimized designs without any

compromise. Indeed using our proposed design cycle, a

design methodology can be developed for any analog

circuit, i.e. which specification is most sensitive to which

FGMOS threshold programming. Consequently such

derived and estimated design methodology for any circuit

can be used to generate accurate as well as reconfigurable

prototypes of the design. To verify our design cycle we

have designed various applications. For simplicity we are

representing the design flow on the most fundamental

analog element and demonstrated its derived design

methodology.

III. APPLICATION

A. Analyses of Basic Op-amp Design

Operational amplifier is a fundamental building block in

analog integrated circuit design. A diagram of the two

stage compensated op-amp with output buffer is shown in

Figure 5, where first stage of an op-amp is a differential

amplifier. This is followed by another gain stage, such as

a common source stage, and finally an output buffer. The

open loop gain of an op-amp is infinite so a compensating

feedback loop which can make gain of op-amp finite and

easily controlled by the resistance is used in the feedback

path of op-amp and current biasing of differential

amplifier is done to reduce the common mode gain and

improves the CMMR ratio of op-amp. Op-amp is a

voltage controlled voltage source in which output voltage

depends upon the voltage difference in between inverting

pin and non-inverting pins of an op-amp and with the help

of op-amp various applications can be developed. To

verify our proposed design cycle we have analyzed the

op-amp circuit design with basic circuit configuration

(sizing and biasing conditions) for desired basic

functionality using simulation results as shown in Figure

6. It shows voltage gain equals to 34db and 3db

bandwidth equals to 30 kHz (represented by red curve in

Figure 6). Subsequently the circuit is designed using its

equivalent small signal model.

Figure 5: Proposed Op-amp Circuit using FGMOS

Figure 6: Plot representing voltage gain of proposed op-amp which

shows programmability with FGMOS M7 (Vt7, M7 threshold voltage)

B. Design of Proposed Op-amp Specifications

Designing of proposed op-amp is demonstrated with the

help of its equivalent small signal model. The circuit

consists of a differential pair (M1 and M2), current mirror

(M3 and M4) for biasing and a biasing MOS M5 along

with output buffer (M6 and M7). From small signal

equivalent model on applying nodal analysis, voltage gain

is derived in terms of MOS transconductances and output

resistances, which in turn can be substituted to generate

gain in terms of MOS threshold voltages (Vt1 and Vt7).

The voltage gain is given by:
��
� ������� 	
������
����
������ � ����� � ��� �
 ���������� � ����� � �������� � �� � � 1

 (1)

M4M3

M1 M2

M7

M5 M6

Vout

Vbias

VDD

Vin+ Vin-

30

Transconductances in equation 1 can be expressed in

terms of square root of their respective saturation drain

currents:�� � ��
� � �⁄
2 � !"

��� 2⁄ � �⁄) (2)

However the slew rate is given by:
!#5
�� �

%�5�&'
5	&(52
2�� (3)

This shows direct dependency of slew rate on Vt5 i.e.

threshold voltage of FGMOS M5. Moreover, the common

mode rejection ratio is the differential gain by common

mode gain which is derived as:

�)�� � �*+,*+-
�*./0*.,*.1 (4)

Indeed these transconductances can be substituted in

terms of the respective threshold voltages. Hence CMRR

shows dependency on Vt1, Vt2 and Vt5. The PSRR can be

written as

2
�� � 34�56678
366�59:78 (5)

However for positive PSRR two stage op-amp is

connected in the unity-gain mode with an ac ripple of Vdd

on the positive power supply. It is given by:

�;< 2
�� � �*+-*+/*+=
�*.-0*.>��*+/*.?@*+=*.1 (6)

Similarly negative PSRR depends on where the voltage

Vbias is connected and is given by:

	;<2
�� � *+-*+=
�*.-0*.>*.= (7)

The 3db bandwidth or gain bandwidth of the circuit is

given by:

A3"C � ��1�;�� (8)

Poles of gain:

2� � @�
�DE,��0*+?E- , 2� �

@*+?�D
�-�,0�-�D0�D�, (9)

Zero of gain:

G � *+?�D (10)

Output impedance form the model is being derived and is

given by:

HIJK � �2�1��1
��1���

2�1�2��1�2�����1��2��
��1�2����7

��2�2����2��1�1����1�1
 (11)

C. Derive Sensitivity of each Specification

The design of proposed op-amp using floating gate

transistors is shown in Figure 5. To introduce field

programmability in the design, all transistors in design are

being replaced by indirectly programmable floating gate

transistors as represented symbolically in the Figure 3 and

represented symbolically in Figure 4. However basic

characteristics of the design, mentioned in last section,

can be expressed in terms of threshold voltage by

replacing transconductance of the respective transistors

with their threshold voltages. As the threshold voltage of

these floating-gate transistors can be programmed on-chip

after fabrication (as illustrated in section II), hence basic

characteristics of the design can be adjusted after

fabrication. Thus, such design methodology save several

simulation steps and can produce accurate prototype of

the op-amp design with specific characteristics. To obtain

its design methodology, sensitivity of each specification

with respect to respective threshold voltages is derived.

Using equation (1) voltage gain shows dependence on Vt5

and Vt7. Sensitivity of voltage gain with respect to

threshold voltage of FGMOS M1 is given by:

&K1�; � 	&(1
�&'
1	 &(1 (12)

Sensitivity of gain w.r.t Vt7 is given by:

&K7�; �
 	&(7
&'
7	&(7	
�� 	

�1�2��&(7%7

2�1�2��1�2�����1��2��
� �1�2���&'
7	&(7%7

��1��1�����2��2�����1
 (13)

Sensitivity of pole P1 of voltage gain with respect to Vt7:-

&K721 � �2&(7%7
1�%7�&'
7	&(7�2 (14)

Sensitivity of pole P2 of voltage gain with respect to Vt7:-

&K722 � 	&(7
&'
7	 &(7 (15)

Sensitivity of zero Z of voltage gain with respect toVt7:-

&(7H � 	&(7
&'
7	&(7 (16)

The Figure 6 illustrate that the gain can be programmed

using FGMOS M7 as plot demonstrates that the gain

varies at different M7 threshold voltage, Vt7. With

decrease in threshold voltage, Vt7, gain of the proposed

op-amp increases. Similarly rest of the important

specifications like slew rate, CMRR, offsets have been

derived in terms of threshold voltage of the respective

FGMOSs and sensitivity of each will be analyzed. The

output impedance from equation (11) is now considered

and re-derived with respect thresholds and derives

sensitivity w.r.t Vt7 and is given by:

5M�NO
�
��������&M�

���������� � ����� � ��� �
 � ������%��&PQ� 	 &M� ������ � �� � ����� � ����1

Sensitivity of Slew rate with respect to Vt5 is given by:

&(5
� � 	2&(5
&'
5	&(5 (18)

Similarly sensitivity of CMRR with respect to Vt1 is given

by:

&(1�)�� � 	&(1
&'
1	 &(1 (19)

And sensitivity of CMRR with respect to Vt3 is given by:

&(3�)�� � 	&(3
&'
3	&(3 (20)

Moreover sensitivity of 3-dB Bandwidth with respect to

Vt1 is given by:

&(1A3"C � 	&(1
&'
1	&(1 (21)

Sensitivity of negative PSRR with respect to Vt2 is given

by:

&(2�2
�� � 	&(2
&'
2	&(2 (22)

Similarly sensitivity of negative PSRR with respect to Vt6

is given by:

&(6�2
�� � 	&(6
&'
6	&(6 (23)

And sensitivity of positive PSRR with respect to Vt2 is

given by:

&(2S2
�� � 	&(2
&'
2	&(2 (24)

31

Therefore the derived specifications of the proposed op-

amp design can be programmed using floating gate

transistors after fabrication. Simulation results illustrating

such programming or sensitivity of respective

specification while considering each FGMOS

individually. The plots in Figure 7, 8, 9 and 10 represent

the effect of each threshold voltage on all considered op-

amp specifications. Figure 7 represents sensitivity of

specifications with respect to Vt1 and Figure 8 represent

sensitivity of specifications with respect to Vt3. Moreover,

Figure 9 represent sensitivity of specifications with

respect to Vt5 and Figure 10 represent sensitivity of

specifications with respect to Vt7. Similarly sensitivity of

specifications with respect to each FGMOS threshold can

be obtained using simulation results. From such plots a

design methodology (steps for on-chip programming) for

the design can be developed which illustrate that which

specification can be adjusted with which FGMOS

threshold. Or in other words design methodology states

that the most sensitivity pair of each specification with

respective FGMOS threshold. The most sensitive pairs

along with compensation of rest of the FGMOS

thresholds determine the steps to program a specific op-

amp specification after fabrication.

Figure 7: Plot representing sensitivity of all specification with respect to

Vt1

Figure 8: Plot representing sensitivity of all specification with respect to

Vt3

Figure 9: Plot representing sensitivity of all specification with respect to

Vt5

Figure 10: Plot representing sensitivity of all specification with respect

to Vt7.

D. Proposed Op-amp Design Methodology

With the help of sensitivity equations as illustrated in last

section and sensitivity plots with respect to each FGMOS,

a design methodology for proposed op-amp have been

developed. It is observed that each specification shows

dependency on more than one FGMOS threshold. So with

some design modification as well as iterative simulations

each specification can be estimated with respect to only

one FGMOS threshold, compensating rest all the FGMOS

thresholds. Like voltage gain is sensitive to Vt5 and Vt7

however most sensitive to Vt7 while compensating Vt5.

However slew rate shows most sensitivity with Vt5.

Similarly with analyzing sensitivity of each specification

a design methodology for the proposed op-amp is

developed. The design methodology is as shown below:

Identified VT - Spec (most sensitive) pairs

� Gain - VT7

� Slew Rate - VT5

� Poles and zeros of gain - VT7

� CMRR - VT1

� Output impedance - VT7

� PSRR - VT2

� Input Range Vi(min) - VT1

� Input Range Vi(max) - VT3
32

� Offset voltage - VT2

� Output Range - VT6

The most sensitive pair of specification with respective

FGMOS threshold keeping sensitivity of rest of the

FGMOS threshold’s constant, a specification can be

programmed after fabrication. Thus the proposed op-amp

design using FGMOSs can be fabricated with basic circuit

configuration. And its specifications can be adjusted to

desired value with accuracy of about 13 bit programming

resolution (as claimed in [12]). In addition to it, any op-

amp design with new values of specification can be

reconfigurable on the same design. Moreover, design

variations due to noise, temperature change, parasitic, etc.

can also be adjusted adaptively in the design after

fabrication.

IV. CONCLUSION

The proposed op-amp design using indirectly

programmable floating gate transistors is simulated using

BSIM3 level49 MOSFET models in T-Spice, 0.35µm

CMOS process. Using small signal analysis of the design,

voltage gain, poles and zeros of voltage gain, 3-db

bandwidth, offset voltages, output resistances, CMMR,

slew rate, output voltage range are derived. Sensitivity of

each characteristic with respect to threshold voltage of the

respective transistors is derived, while considering each

one individually. The specifications are obtained from

simulations and verified with theoretical results. The

graphs showing programming for voltage gain, poles and

zeros, 3-db bandwidth, output resistance, offset voltage,

slew rate, CMRR with respect to respective dominant

floating gate transistor programming have been generated.

Sensitivity analysis for each characteristic has been

illustrated with the help of graphs. Hence, characteristics

of our proposed Op-amp design can be tuned after

fabrication in small range but with very high precision

(about 13bit programming resolution can be obtained

using floating gate transistors). An accurate and

reconfigurable op-amp design can be fabricated with less

design time and costs and without any additional

programming circuitry. Moreover, this methodology to

introduce field programmability can be extended to

various analog circuit designs. Instead of multiple steps of

simulations, testing and verification, accurate prototype

design can be obtained by tuning the specifications after

fabrication with the help of floating-gate transistors.

However, there is some limitation of range of tuning but

still such systematic approach can bring drastic revolution

in analog circuit design.

V. REFERENCES

[1] R.D.Middlebrook, “Analog Design needs a change in

perspective”, an article in Electronic Engineering

Times, 17 Dec, 1990.

[2] E.K.F Lee, P.G Gulak, “Field programmable analogue

array based on MOSFET transconductors”,

Electronics Letters, Vol. 28, Issue 1, pp. 28 – 29,

1992.

[3] Analog Integrated Circuits and Signal Processing,

“Special Issue on Field-Programmable Analog

Arrays”, Kluwer publishers, Vol. 17, Numbers 1-2,

September 1998.

[4] B. Pankiewicz, M. Wojcikowski, S. Szczepanski, and

Y. Sun, “A field programmable analog array for

CMOS continuous-time OTA-C filter applications,”

IEEE J. Solid-State Circuits, Vol. 37, no. 2, pp. 125–

136, Feb. 2002.

[5] J. Becker, F. Henrici, S. Trendelenburg, M. Ortmanns,

and Y. Manoli, “A field-programmable analog array

of 55 digitally tunable OTAs in a hexagonal lattice,”

IEEE J. Solid-State Circuits, Vol. 43, no. 12, pp.

2759–2768, Dec. 2008.

[6] D. W. Graham, E. Farquhar, B. Degnan, C. Gordon,

and P. Hasler, “Indirect programming of floating-gate

transistors,” in Proceedings of the IEEE International

Symposium on Circuits and Systems, Kobe, Japan, pp.

2172 – 2175, May 2005.

[7] K. Rahimi, C. Diorio, C. Hernandez,

M.D.Brockhausen, “A Simulation model for floating

gate MOS synapse transistors,” IEEE International

Symposium on Circuit and Systems, Vol. 2, pg. 532-

535, Aug, 2002.

[8] T.S.Hall, C.M. Twigg, J.D.Gray, P.Hasler,

D.V.Anderson, “Large Scale field programmable

analog array for analog signal processing.” IEEE

trans. on circuit and systems-I, Regular paper, Vol.52,

No.11, pg. 2298-2308, Nov, 2005.

[9] J.M Shin, K.S. Yoon, “Design of programmable slew

rate op-amp”, published in proceedings of 37th

Midwest symposium on circuit and systems, Vol.1,

pp.142-146, Aug, 1994.

[10] R. Hogervorst, S.M. Safai, J.P.Tero, J.H.Huijsing, “A

programmable 3-V CMOS rail-to-rail op-amp with

gain boosting for driving heavy resistive loads.”

published in proceedings of IEEE international

symposium on circuit and systems, ISCAS1995, Vol.2,

pp.1544-1547, May 1995.

[11] S.C. Delacruz, M. Delos Ruges, T.C. Gaffud,

T.Abaya, M. Gusad, M.D. Rosaler, “Design and

implementation of operational amplifier with

programmable characteristics in a 90nm CMOS

process”, published in proceedings of European IEEE

conference on circuit theory and designs, ECCCTD

2009, pp. 209-212, Aug, 2009.

[12] Y. L. Wong, M.H Cohen, P. A. Abshire, “A 1.2 GHz

adaptive floating gate comparator with 13-bit

resolution”, published in proceeding of ISCAS 2005,

IEEE(CAS), pg 6146-49, Vol.6, 2005.

33

An Automated Design Approach of

Dependable VLSI Using Improved Canary FF

Ken Yano
1

Fukuoka University

Fukuoka, Japan

yano0828@fukuoka-u.ac.jp

Takanori Hayashida

Fukuoka University

Fukuoka, Japan

thayashida@fukuoka-u.ac.jp

Takahito Yoshiki

Fukuoka University

Fukuoka, Japan

td102017@cis.fukuoka-u.ac.jp

Toshinori Sato
1

Fukuoka University

Fukuoka, Japan

toshinori.sato@computer.org

Abstract— The demand of power saving and highly efficient

LSI has increased by the miniaturization of semiconductor

technology and the spread of portable device such as a mobile

phone. We propose an automated design approach of

dependable VLSI that address the timing error caused by the

variation in the element characteristic in a deep submicron

domain, aging and soft error. The improved canary FF

described in this paper reduces about 8% of power

consumption compared with the original canary FF. Using the

existing standard cell library, the canary FF is mapped

automatically to gate cells and its influence on chip area and

power consumption is investigated.

Keywords-Flip-flops, timing error, dependable system, design

automation

I. INTRODUCTION

Due to the miniaturization of semiconductor technology

and the spread of portable devices such as a mobile phone,

further improvement of speed and power-saving LSI has

come to be called for. The design method which takes the

worst case scenario makes the design margin too large

because of the parameter variation of the elements in the

deep submicron domain has bad influence for performance

and power consumption. Moreover aging and soft error

would cause the timing error which is not assumed in the

design phase and it has become one of the main factors of

malfunction of an integrated circuit.

 In this paper, the design technique of dependable VLSI

which uses canary FF (CFF) by concentrating on the typical

case is proposed. First, the technique of limiting the

positions where to replace conventional DFF with CFF by

considering the timing error information acquired from the

worst case design is described. The proposed method is

evaluated on two sample microprocessors. We also propose

improved canary FF (iCFF) which is power saving and

requires smaller area is introduced by optimizing transistor

level circuit design. It is evaluated that the improved canary

FF can decrease power consumption by about 8% that of

canary FF. This paper further examines area and power

overhead by canary FF by introducing a novel cell mapping

technique to implement canary FF. Note that the improved

canary FF is not used for the analysis of are and power

overhead since the cell layout is under development. Canary

FF can be used for reducing power dissipation in

combination with DVS (Dynamic Voltage Scaling) [2] or

for timing error detection like Razor FF[4] or for soft error

protection. It is studied that in nanoscale CMOS domain,

soft error will just not impact SRAMs but latches/flip-flops

and combinational logic as well [7].

 After introducing the related research of timing error

detecting FF in Section II, Section III describes the

transistor level circuit structure of improved canary FF.

Detailed implementation method of canary FF is described

in Section IV and in Section V the area and power overhead

by canary FF are examined. Lastly further works and

direction of possible studies are described.

 In the following discussion, we use “CFF” for canary FF

and “iCFF” for improved canary FF when the meaning is

not ambiguous from the context.

II. TIMING ERROR DETECTING FLIP FLOP

Many researches have been done for detecting a timing

error of integrated circuit. There are mainly two methods in

order to improve the reliability of a circuit, one uses spatial

redundancy and the other uses time redundancy. This paper

describes a design approach for detection of timing error

using CFF which adopts spatial redundancy and the method

to integrate dependable LSI by utilizing it. We have so far

reported the technique of reducing design margins by the

variation of the element on LSI by using canary FF[2]. In

recent years the degree of complexity of semiconductor

process is increased and highly efficient and low power

consumption LSI is demanded. The problem of variation in

the device characteristic on a chip is emerging and the

1 CREST, Japan Science and Technology Agency

34

design method which takes the variation into consideration

is indispensable. The change of the device characteristic by

aged deterioration which is difficult to measure in the design

phase and soft error are also serious issues. Flip-flops which

detect a timing error such as Razor Flip-Flops (RazorFF) [4],

RazorII [3], Phase-adjustable Error Detection Flip-Flop

(PEDFF), and Delay-Compensation Flip-Flops (DCFF) have

been proposed. Moreover against soft error, redundant FF

such as Built-In Soft Error Resilience (BISER) [7] and

Bistable Cross-coupled Dual Modular Redundancy [5] are

proposed. There are problems when using redundant FF,

such as the increase of the power consumption and the cell

area. It has been reported that the timing error detecting FF

requires two to three times cell area compared with the

conventional FF because it consists of shadow FF(Latch), a

delay element and an error judging circuit in addition to

main FF. On the other hand, there is a proposal to reduce the

power consumption of the whole chip by utilizing the timing

error detecting FF in combination with DVS[2].

III. IMPROVED CANARY FLIP FLOP

Canary FF has been proposed for detecting timing error

and its circuit block is shown in Fig.1. In this paper, in order

to consider implementation of LSI using canary FF, the

transistor level circuit of CFF and cell mapping of CFF are

examined. As evaluation, ROHM 0.18µm Kyoto University

version standard cell library [1] is used. The cell library

generated using three design corners by varying temperature

and supply voltage: Max(also called worst), Typ(also called

typical), and Min(also called best). The three different

process corners are shown in Table I. The propagation

delay of cell is longest at “Max” condition and shortest at

Min “condition”.

 Fig.1 shows the circuit level schematic of CFF. CFF

consists of main FF and shadow FF and delay buffer and

XOR gate to detect a timing error. Phase synchronized

clock is provided to the main and shadow FFs. Delay buffer

is inserted at the input of shadow FF, hence the timing

requirement of the shadow FF is severer than the main FF.

Timing error is detected by comparing the outputs of two

FFs. If two values are equal, system is safe and can scale

down supply voltage or scale up frequency. If the two

values are different, system is unsafe and about to fail to

meet timing condition, so error signal is asserted to alert the

error. Then the system might scale up supply voltage or

scale down frequency. Fig.2 describes the conceptual timing

diagrams of CFF showing timing error detection. From

Fig.1, it is expected easily that it requires large cell area and

the power consumption will be more than doubled since two

equivalent FFs are needed in addition to the delay buffer and

error detection logic. In order to reduce the area and power

overhead, we try to optimize its transistor-level circuit

design. When a timing error occurs, it is possible to detector

the error at the timing when the data has been latched by

master latch of the master and the shadow FF, hence the

slave latch of shadow FF can be removed. The proposed

circuit of iCFF is shown in Fig. 3.

Power analysis by HPICE simulation of three FFs:

Fig. 1. Canary FF

TABLE II

Power analysis of DFF,CFF and iCFF

(Clock cycle: 20ns)

 DFF CFF iCFF

Avg.PWR[mW] 0.025 0.068 0.063

Max.PWR[mW] 5.0 5.3 4.9

TABLE I

Rohm0.18 micron standard cell library

Vdd Temp. Process

1.6V 85 Max

1.8V 25 Typ

2.0V -40 Min

Fig. 3. Improved Canary FF circuit

Fig. 2. Conceptual timing diagrams showing timing

error detection

35

DFF,CFF and iCFF, is shown in Table.II. As expected, the

average power of CFF is more than doubled than DFF. It is

confirmed that the iCFF can save 7.8% of average power

consumption and 7.6% of maximum power consumption of

CFF.

A. Strategy of replacing with improved canary FF

If only high reliability is pursued, it is possible to replace

all the FFs with iCFF, but the conventional microprocessors

use thousands to tens of thousands number of FFs, it is not a

practical technique when considering the area and power

overhead by iCFF. Moreover, it would become serious issue

how to collect timing error signal reported from all iCFFs.

Hence, we have proposed that only a small number of DFF

which has a small timing margin should be replaced with

CFF [8]. We follow almost same approach for the selective

replacement method described in [8]. Selective replacing

method also used in [3] to replace DFFs of critical paths to

Razor FF, however the detailed criteria and its

implementation are not described in both studies. Hence in

this paper we try to show our replacing method and its

implementation in more detail. For the evaluation of the

proposed method, we use RTL of Toshiba MeP processor

[9] and miniMips processor [10].

 The detail of selective replacement method is as follows:

First, the RTL description is synthesized into the structured

netlist by using Synopsys Design Compiler (D-2010.03-

SP5). Then the delays of critical paths are analyzed. The

minimum clock cycle is measured by using “Typ” condition

of cell library. The minimum clock cycle is obtained by

varying the clock length so that under such clock cycle no

paths barely reports timing errors.

 It must be confirmed that when setting the clock cycle to

the measured minimum value with the process condition of

cell library either with “Typ” or with “Min”, no timing

errors are ported. On the other hand, setting the same clock

cycle length and using the library of process condition with

“Max”, some of the circuit paths must be ported as timing

errors. This is because the “Max” process condition is the

worst case of the three and the propagation delay of each

cell is longest.

In Table. III, the number of DFF reported as timing error

is shown. It turns out that 1.6% out of the whole DFF for the

MeP and 11.6% out of the whole DFF for the miniMips are

estimated to cause timing errors. Although the number of

path reported as timing error is dependent on the clock cycle

length, we set the smallest clock cycle under which there is

no timing error is chosen when the process condition is

“Typ” as described before, and select the DFFs at the end of

paths reported error for replacement when using library with

process condition “Max”. That means, under that minimum

cycle length timing errors will not occur in normal operating

condition, however the possibility that timing errors will

occur rise in change of environmental conditions such as

sudden voltage drop, aging deterioration etc. By carrying

out this strategy, it becomes possible to limit the number of

DFFs which need to be replaced with CFF significantly.

B. Replacement Automation of Canary FF

The detailed procedure of replacement of DFF to iCFF is

shown in Fig.4. First the logic synthesis is performed by

setting process condition to “Typ” and decides the smallest

clock cycle length {clk_typ} from the critical path. Note

Fig. 4. Canary FF replacement procedure

TABLE III

of FF at the end of timing error path

RTL # of FF # of FF

Timing err.

Per.

MeP 3732 60 1.6%

miniMips 1967 228 11.6%

Fig. 5. Example of original netlist(top) and netlist(bottom)

after some DFFs are replaced with iCFF.

36

that this is an iterative process until the smallest clock cycle

{clk_typ} is detected under which no timing errors are

reported.

 The generated netlist is saved as {Netlist_org}. Next the

logic synthesis is performed again by setting process

condition to “Max” and uses {clk_type} as the clock cycle.

By analyzing the report from the synthesis tool, the timing

error paths are extracted and the FF at the end of each path

is saved in {FF_rep} for later process. After the analysis is

done, the FF replacement script reads {Netlist_org} and

{FF_rep} as input files and then replaces the DFF cell to

iCFF cell when the instance of DFF is found in {FF_rep}.

When all DFFs which might cause timing errors are

replaced to iCFF, the converted netlist is outputted as

{Netlist_chg}.

 Fig.5 shows the example of original netlist and modified

netlist after some DFFs are replaced with CFF. In this

example, the DFF instances reg_1 and reg_5 are replaced to

the iCFF since these DFFs are registered in {FF_rep}. As

for the selective replacement method just proposed, we

assume that iCFF is registered in the standard cell library as

a custom cell and is ready for synthesis and placement &

routing. However, this is not the case when the cell library is

provided from third party and it is not permitted to modify

or customize the library. In such cases, the iCFF has to be

implemented by utilizing existing standard cells. Moreover

the implementation of iCFF still underway, we propose our

implementation method of CFF using existing standard cells

in the next section.

IV. IMPLEMENTAION OF CANARY FF

The previous section explained the method of

transforming a netlist on the assumption that we already

have the cell library of iCFF. Since it is under development

and the cell library is not always modifiable, we describe the

implement method of CFF using existing standard cells.

The same technique can be using when the iCFF is build

using existing standard cells. Here the CFF is implemented

using the existing standard cell and placement and routing

are performed.

A. Cell mapping of canary FF

 To help understanding following discussion, original circuit

block and netlist are shown in Fig.6. Here we consider

changing reg_1 which is an instance of DFF into CFF. The

instance name and the signal name are changed into the

intelligible name for explanation, and as for net_a, net_b,

Fig. 6. DFF and netlist

(Before replacing to canary FF)

Fig. 7. canary FF and netlist

(After replacing to canary FF)

Fig. 8. Netlist after 1

st
 parsing(top) and after 2

nd

parsing(bottom)

37

net_C, it is necessary to extract the actual signal name used

by each FF which needs to be replaced to CFF in the FF

replacement script. Although FF replacement script to be

used is almost the same as that of what was explained in

Section 3, it is not simply to replace DFF to CFF, but to

replace it by the cell group which constitutes the CFF. The

details are stated following.

The circuit block and netlist after transformation is shown

in Fig. 7. Since INV and EXOR cells are already registered

into the standard cell library currently used, each gate is

mapped to those cells. All the cells to be used adopt those of

the minimum drive capability. UU_1, UU_2, UU_3, and

UU_4 are the added instance name of the generated cells

and net_D, net_E, net_F, and net_G are the added signal

names. In order to avoid the duplication of name which are

used by the original netlist, it is necessary to create these

unique added names by combining a suitable prefix name

and consecutive numbers. Since these names must be unique

only within each module definition, consecutive numbers

are reset when FF replacement script analyzes the syntax of

the start part of a module definition, and they are

incremented whenever a new name is generated. About the

newly added signal name, it needs to be declared in the

definition part of the module for which it is used. However,

in the stage in which FF replacement script parses the

module definition part, since it is not clear which signal

names should be declared, it is decided to make a signal

declaration by using a double parsing system. By the first

parsing, while performing the processing which replaces

applicable DFF to a CFF, the place holder {@wire_decl@}

is described as a mark into the portion which makes a signal

declaration in the head portion of module declaration as

explained in Fig.8. The place holder is replaced by the

declaration of the added signal names by the 2nd

parsing. The added signal names are managed using the

associative array referred to from the module name to which

it is scheduled to be declared by the first parsing.

V. POWER AND AREA OVERHEAD BY CANARY FF

 In this section, power and area overhead by CFF is

investigated. Placement and routing (P&R) are performed

using Synopsys IC Compiler (D-2010.03-ICC-SP2-1).

Note that the layout of iCFF is not implemented yet, so the

original CFF circuit is used and the netlist is generated by

the method described in section IV. We use four different

sets of configuration to estimate the overhead by CFF. Each

configuration is described as follows,

(1) T : P&R is performed using cell library (“Typ” case)

and no DFFs are replaced by CFFs

(2) TC: P&R is performed using cell library (“Typ” case)

and some DFFs are replaced by CFFs using selective

replacement method

(3) M : P&R is performed using cell library (“Max” case)

and no DFFs are replaced by CFFs,

(4) TCA : P&R is performed using cell library (“Typ” case)

and all DFFs are replaced by CFFs

Cell area and power estimates are obtained from the result

of P&R by IC Compiler. Fig.9 and Fig.10 show power and

area overhead for minimips and MeP processor respectively.

Area is normalized based on config. (M) for both cases. For

minimips, power of config. (TC) is 19.11[mW], which is

increased by 26% from config. (M) and by 9.8% from

config. (T). It turns out that power overhead by CFF is

relatively large. In case of config. (TCA), power is

estimated to 34.18[mW] which is 2.25 times larger than that

of config. (M). Hence the selective replacement of CFF is

deemed an effective method to decrease the power overhead

by CFF. The power of config.(T) is larger than that of

config.(M). This might be because in cell library “Typ”, the

supply voltage is defined as 1.8V and in cell library “Max”,

it is defined as 1.6V, hence the net total power consumption

of config.(T) is slightly larger than that of config.(M).

 On the other hand, the area of config.(TC) is decreased by

23% from config. (M) and increased by 3.6% from config.

(T). This means that area overhead by CFF is much less than

the cell area estimated by considering worst case “Max”

Fig. 9. miniMips

(Power and area overhead by CFF)

Fig. 10. MeP

(Power and area overhead by CFF)

38

condition. The cell area of config.(M) is relatively larger

than that of config.(T). This is because in case of config.(M),

gate cells with bigger drive strength, so larger cell area, are

selected to compensate for longer propagation delay. Hence

the area overhead by canary FF is deemed very small.

 As for MeP, area overhead by CFF are very small since the

chip area is mostly occupied by instruction and data caches.

Instruction and data caches are implemented as hard macros

using library with “Typ” condition. Actually the area of

config.(TC) is decreased by 0.3% from that of config.(M)

and increased by 0.1% from that of config.(T). Increase

rate of area of config.(TCA) is relatively larger compared

with minimips case. This might be because the number of

DFFs is much larger than minimips. The power of

config.(TC) is decreased by 20% from config.(M) and is

increased by 0.1 % from config.(T). The power of

config.(M) is much larger than config.(T). This might be

since the chip area of MeP is occupied with large cache area,

so the power consumed by cache is not negligible.

 The difference of the two results comes from different

architecture of the two microprocessors. MeP is an off the

shelf commercial processor and uses state-of-art technology

and contains large cache area to increase the performance

(IPC); however the minimips is an open architecture

processor and contains no cache. The chip area of Mep is

about 7 times larger than minimips and the power

consumption is about 1.25 times larger than minimips.

 CFF can be used not only for microprocessor but also any

sequential circuits which require timing error detection

mechanism. The area and power overhead by CFF can be

suppressed low by selecting DFFs for replacement by

analyzing the critical paths under system timing requirement.

VI. CONCLUSION AND FUTURE WORKS

 By miniaturization of semiconductor technology, the

timing error caused by process variation of within-die or

intra-die and aging deterioration is considered serious issue

especially in deep submicron domain. The importance of the

technique avoiding the defect of LSI during operation is

increasing. In this paper, an automatic design method of

reliable LSIs with canary FF is proposed which concentrates

on typical case to ease the design margins incurred by worst

case analysis. We show that by selectively replacing DFFs

with canary FFs, the area and power overhead by canary

FFs can be suppressed very small. The selection of DFFs is

done by analyzing critical paths from worst case based on

the results of typical case.

 The future remaining studies regarding canary FF are as

follows. First, we have to build the cell library of the

improved canary FF. Since the CMOS circuit is complicated,

it will be designed as double height cell. When the library is

built, power and area overhead by iCFF can be measured in

more detail and the comparison with CFF can be discussed.

It also necessary to consider the method of collecting error

signals when timing error is detected from CFFs and

utilization of that signal. If there is N CFFs and when the

collection of error signals is constituted from OR gates of

two ports, an error signal will travel log2N piece of OR gate.

Then the wiring delay of error signal cannot be disregarded.

The error signal could be used to trigger DVS or DVFS to

control the supply voltage and the clock frequency.

Moreover, it is also necessary to examine the amount of

delay buffer inserted at the shadow latch. When the amount

of delay buffer estimates to be large excessively, timing

error information occurs more than needed, and it will affect

the performance. Conversely, when it is estimated too small,

the possibility of overlooking timing errors becomes high

and system reliability falls down. Furthermore, testing and

verification of proposed method are not yet done and needs

to be addressed more.

ACKNOWLEDGMENT

This study is supported in part by CREST project

“Fundamental technologies for dependable VLSI system” of

Japan Science and Technology Agency. The cell library

used on this research was developed by Tamaru/Onodera

laboratory, Kyoto University, and is released by Prof.

Kobayashi of Kyoto Institute of Technology. This work is

supported by VLSI Design & Education Center (VDEC),

the University of Tokyo [11] in collaboration with Synopsys,

Inc. and Cadence Design Systems, Inc.

REFERENCES

[1] H. Onodera, A. Hirata, T. Kitamura, K. Tamaru, ”P2Lib:

Process Portable Library and Its Generation System”, IPSJ Journal,

Vol.40, No.4, pp.1660-1669, 1999.

[2] T. Sato, Y. Kunitake, “Canary: A Variation Resilient FF to
Eliminate Design Margin for Energy Reduction”, IPSJ Journal,

Vol.49, No.6, pp.2029-2042, 2008.

[3] D. Blaauw, S. kalaiselvan, K. Lai, et al., ”RazorII:In Situ Error
Detection and Correction for PVT and SER Tolerance”, International

Solid-State Circuits Conference, pp.400-622, 2008.

[4] D. Ernst, N. S. Kim,S. S. Das, et al., ”Razor: A Low-Power Pipeline
Based on Circuit-Level Timing Speculation”, 36th International

Symposium Microarchitecture,pp.7-18,2003.

[5] J. Furuta, C. Hamanaka, K. Kobayashi, and H. Onodera, “A 65nm
Bistable Cross-coupled Dual Modular Redundancy Flip-Flop capable

of protecting soft errors on the C-element”, IEEE Symposium on

VLSI Circuits, 2010.
[6] K. Hirose, Y. Manzaw, M. Goshima, and S. Sakai, “Delay-

Compensation Flip-Flops for Timing-Error Tolerant Circuit Design”,

International Conference on Solid State Device and
Materials,pp.440-481,2007.

[7] S. Mitra, N. Seifert, M. Zhang, Q. Shi, K. S. Kim, ”Robust System

Design with Buit-In Soft-Error Resilience”, IEEE Computer, pp. 43-
52, February, 2005.

[8] Y. Kunitake,T. Sato,S. Yamaguchi,H. Yasuura, “Insertion-Point

Selection of Canary FF for Timing Error Prediction”, IEICE
Technical Report, DC2008-42, 2008.

[9] Toshiba MeP Processor, http://www.semicon.toshiba.co.jp/

[10] miniMips processor, http://opencores.org/project,minimips
[11] VDEC, the University of Tokyo, http://www.vdec.u-tokyo

39

http://www.semicon.toshiba.co.jp/
http://opencores.org/project,minimips
http://www.vdec.u-tokyo/

Session III: Computer Architectures

MODIFIED AVR CODING FOR TEST DATA

COMPRESSION

Sruthi.P.R
1
 Dr. M.Nirmala Devi

2

IInd MTech VLSI Associate Professer

Amrita Vishwa Vidyapeetham Amrita Vishwa Vidyapeetham

Coimbatore Coimbatore

sruthirk@gmail.com m_nirmala@cb.amrita.edu

Abstract: One of the major challenges in testing a System-

on-a-Chip (SOC) is dealing with the large test data size.

Several test data compression techniques have been proposed

to reduce the volume of test data. This paper presents a test

data compression approach, which reduces the test data

volume by encoding runs of both 1’s and 0’s as many other

codes, but here both runs share the same code word for the

same run-length Further an extension to this code

considering the relationship between two consecutive runs is

proposed. The proposed approach is based on the use of

alternating variable run-length (AVR) codes. The AVR codes

can efficiently compress the data composed of both runs 0s

and 1s. The decompression architecture is also presented in

the paper. Experimental results were performed on

ISCAS’89 benchmark circuits showed that the proposed

method greatly improved the compression ratio.

Key words : Automatic test equipment (ATE), encoding,

AVR codes, EFDR codes.

I. INTRODUCTION

Due to the advancements in process

technology, the emphasis on placing larger and more

complex devices in smaller areas is becoming more
prominent. With the increase in integration density, testing has

become a critical part of design process. The testing of devices

after fabrication has become a major problem for both

designers and test engineers. A major challenge in testing the

complex designs is dealing with the enormous test data

volume. In pattern storage testing, all the test vectors and test

responses are stored on an external tester like automatic test

equipment (ATE). But the cost of ATE grows significantly

with the operating frequency, channel capacity and memory

size. The amount of time taken to test a particular chip

depends on the amount of data that can be transferred on to the
chip and speed at which the data can be transferred known as

the test data bandwidth. The test data bandwidth between the

conventional testers and the chip is relatively small and hence

is a bottleneck in testing a chip [1].

Several approaches were addressed in past to

overcome the problems in external testing. Most of them are
either a) external only approaches or b) internal only

approaches. The external approaches include test data

compaction techniques [2]. Though this method reduces the

test data volume effectively, it does not overcome the

bandwidth limitations of ATE. The internal methods are based

on built-in-self test (BIST) [3]. BIST eliminates the need for

external tester storage. This is very useful in performing self-

test in the field when there is no access to a tester. But, these

do not provide high fault coverage due to the presence of

random pattern resistance faults. To increase the fault

coverage in these cases, techniques such as test point insertion
are required [4]. This involves modifying the functional logic

which can degrade the system performance. Some other

techniques modify the test pattern generator, but this tends to

result in large silicon area.

A solution to the ATE problem that does not

introduce any performance penalties is test data compression

which is a test resource partitioning variant. This arises as a

possible solution to reducing the speed, channel capacity and
memory requirements of ATE. By introducing an on-chip

decompressor it reduces the load on the ATE and therefore

simplifies the channel capacity and speed requirements. Test

data compression compresses test data losslessly and hence

preserves the fault coverage unlike other techniques [5].

The three test data compression environment (TDCE)

parameters are area overhead, test application time and
compression ratio. Satisfying all these parameters

simultaneously is found to be a difficult task. The existing

approaches trade off some of these parameters against others.

In this paper, a new test data compression scheme is

formulated. The compression scheme is based on code based

compression which achieves sufficient compression ratio

leading to a reduction in chip area and hence an overall

reduction in test cost [6].

The compression scheme reduces the test data

volume by encoding runs of both 1’s and 0’s as many other

40

codes, but here both runs share the same code word for the

same run-length Further an extension to this code considering

the relationship between two consecutive runs is proposed.
The proposed approach is based on the use of alternating

variable run-length (AVR) codes. The AVR codes can

efficiently compress the data composed of both runs 0s and 1s.

The rest of the paper is organized as follows. We

present an analysis on the existing run-length codes, the EFDR

(extended frequency directed) code and the AVR code in

Section 2. In Section 3, the modified AVR test architecture

for data compression procedure, and the decompression
architecture is presented. Experimental results for the large

ISCAS’89 benchmark circuits in Section 4. Section5

summarizes the paper.

II. PRELIMINARY

A. EFDR CODES

The EFDR code is a data compression code that maps

variable length runs of 0s or variable length runs of 1s to a

variable length code word. The don’t-cares in test vectors are

mapped to either 0 or 1 before coding. For example consider a

run of seven 1s (0s). The run belongs to group A3 and it is

mapped to the code word 1110000 (0110000). A detailed

discussion for EFDR code is given in [7]. These codes were

found to have better compression ratio than frequency directed

(FDR) codes though an extra bit is used to indicate the type of
run. Fig.1 shows an example of encoding using FDR and

EFDR codes.

Illustration:

TD = {000000111111111110111000111111100000001}
(40bits)

TFDR = {110000 00 00 00 00 00 00 00 00 00 00 00 00 1001

110001 00 00 00 00 1001} (52 bits)

TEFDR= {01011 1110101 11000 001 11011 01011} (30 bits)

Fig.1 An example showing encoding using FDR and EFDR

codes

In Fig.1, TD is the input data stream and TE is the

encoded data. The input data contains both runs of 0s and 1s.

In FDR coding it can be seen that the size of the encoded test
set is larger than the size of uncompressed test set. Hence,

FDR codes are inefficient for data streams that are composed

of both 0s and 1s. It can be observed that the compression

ratio increases by using EFDR codes. During the analysis it is

observed that the compression ratio of s35932 has increased

from 19.359% to 57.6530% after using EFDR code based

compression. It can be noted that there exists a scope of

reducing the code-word length in these codes which will

further increase the compression ratio. This was exploited in

Alternating Variable Run-length codes (AVR codes).

B. AVR CODES

AVR code is a variable-to-variable length code. This
code helps in reducing the code word length by including two

parts – the group prefix and the tail. Fig.2 shows an example

of encoding using AVR codes for the same input sequence

which was earlier used for EFDR codes. It can be seen that the

compression ratio has improved further as the encoded bits has

reduced further to 26 bits.

Illustration:

TD ={0000001 1111111111110 1110 001 1111110 0000001}

(40bits)

TAVR= {00100 11011 100 011 00101 00101} (26 bits)

 α= 0 α=1 α=1 α=0 α=1 α=0

Fig.2 An example showing encoding using AVR codes

A detailed discussion for AVR codes is given in [8].

The AVR code consists of two parts – the group prefix and

the tail. The prefix identifies the group in which the run-

length lies and the tail identifies the member within the

group. The presence of these two parts distinguishes AVR

code from other run-length codes. Table I illustrates the

encoding for the AVR code.

TABLE.I EXAMPLE OF ALTERNATING VARIABLE RUN-
LENGTH (AVR) CODE.

A1, A2, A3….AK represents the different groups,
where k is the longest run-length L as in [8]. Group Aj is

calculated using (1).

41

j = log 2)4(log2 L
 (1)

Existing AVR codes can be further improved if

relationship between two consecutive runs can be

incorporated. It can be observed that if two consecutive runs

have the same run-length, then the second run can be encoded
using a small code word. This is done in this paper, where a

code that efficiently compresses both runs of 0s and 1s after

considering a relationship between two consecutive runs is

proposed. This code is discussed in detail in the next section.

III. MODIFIED AVR CODE

As stated earlier, modified AVR codes exploits the
relationship between two consecutive runs. It can be observed

that if two consecutive runs have the same run-length, then the

second run can be encoded using a small code word. If the

second run is runs of 0 then it is encoded as 000 else encoded

as 101. If there are more number of consecutive runs having

the same run then a combination of the previous codes can be

used. Fig. 3 shows an example of encoding using modified

AVR codes. Table II shows an analysis of modified AVR

codes. In this section we describe in detail the compression

procedure and the decompression architecture.

A. ENCODING PHASE

The overall flow of the encoding phase is depicted

using a flow chart in Fig. 4. After obtaining the fully specified

test set, the encoding stage is performed. For this, the run

length of the original bits is to be counted from the beginning.

0 run is defined as number of 0s followed by 1 and 1 run is

defined as number of 1s followed by 0. Initially the run-

length, cnt is assumed to be 0. For each occurrence of the

same bit as the previous, this count, cnt is incremented until

the occurrence of the opposite bit. For example, if the first

occurring bit in the sequence is 0 (1), the next bit is checked
then, if both the bits are found the same 0 (1), the count is

incremented by 1. This is continued until the bit 1 (0) is seen.

After this the next consecutive run-length is checked.

If both the run-lengths are same (cnt = pre_cnt) then the run

type is noted, if it is runs of 0 then it is coded using 000 else it

is coded as 101 (Type 2). In situations where the run-lengths

are not same, then a normal AVR encoding (Type 1) is done.

This can be explained using an example.

Illustration:

T = {0xx0xx1 111xxxxxxxxx0 11x0 001 xxxxx10
xx0xxx1} (40 bits)

TD ={0000001 1111111111110 1110 001 1111110

0000001} (40bits)
TMAVR = {00100 11011 100 011 00101 000} (24 bits)

 α= 0 α=1 α=1 α=0 α=1 α=0

Fig.3 Example showing the modified AVR encoding technique

 It can be observed from the example that the last two runs

of the original set TD have the same run-length and hence they

can be encoded using the Type 2 coding technique. Since the
second run-length is runs of 0 it is encoded as 000. The other

run-lengths are not found to have any similarity with the

previous bits and hence they are encoded using Type 1 coding.

It can be observed that the amount of compression achieved

has been improved when compared to the other existing

techniques.

Fig.4 Flowchart showing the encoding procedure

B. DECOMPRESSING PHASE

 This is carried out on-chip with the help of an on-

chip decoder. It decompresses the encoded test set TE and

produces the primary set TD. The decoder architecture for the

modified AVR code is shown in Fig. 5. The decompressor

architecture is simple and it is independent of the pre-

computed test set and the CUT. This decompressor

architecture is slightly modified from conventional AVR

coding [8] after considering the relationship between two

consecutive runs. For this, an extra counter in included in the
architecture to keep an account of the previous run-length.

 If the previous run-length was found equal to the

present run-length, then the output is directly fed as 000 or

101 according to the run type. Though the architecture was

modified with the inclusion of an extra counter, this does not

add much to the area overhead and hence is acceptable. If

Lmax is the longest run of 0s or 1s, then k is given by (2).

42

 k= 2)4(log max2 L
 (2)

The decoder consists of a (k+1)-bit counter, a log2

(k+1)-bit counter a finite-state machine (FSM), a T flip-flop

and an exclusive OR gate.

 bit_in is the input to the FSM and en is the enable signal

used to control the input encoded data when the decoder
was ready.

 shift signal is used to control the prefix and the tail of the

code word to the (k+1)-bit counter. dec1 and rs1 are the

decrement and reset pins respectively. rs1 indicates the

reset state of the counter.

 A log2 (k+1)-bit counter was used to count the length of

the prefix and the tail which helps in identifying which

group it belongs to. inc and dec2 are used to increment

and decrement the counter respectively. rs2 is another

signal which indicates whether the counter has finished

counting.

 A T-flipflop is included which is controlled by the out
signal of the FSM. Signal v is indicated when the output

was valid. This is used to control the scan clock signal

scan_clk.

The operation of the decoder can be explained as below:

Step1: In the initial state, the T flip-flop was reset and v was

reset to 0. Signal en became high to indicate the readiness of

the decoder to receive bit_in.

Step 2: The FSM fed the prefix to the (k+1)-bit counter. The

end of the prefix is indicated by a separator 0 or 1 according to

the type of the codeword. The signals en, shift, and inc were

kept high until the separator was received. The signal out
gives out 0 until the rs1 signal goes high. This occurs when

the prefix is fully read into the (k+1)-bit counter.

Fig.5 The decoder architecture of modified AVR code

Step3: The 0s given out by out signal is xor-ed with the α bit

to produce the first part of the original set. Now, the en signal

goes high and the (k+1) bit counter receives the bits until the

rs2 signal of the log2 (k+1)-bit counter goes high. This is when

the value of dec2 becomes 1 less than the prefix count.

The FSM for AVR code has 8 states. The S0-S1-S2-

S3 process was related to the prefix decoding with “0….01”

and S0-S6-S7-S3 was related to the prefix decoding of the

codeword with prefix “1…10”. The states S0-S1-S3 and S0-

S6-S3 processes were related to the prefix decoding with “01”

and “10”, respectively. The S4-S5 process was related to the

tail decoding. Fig. 6 shows the state diagram of the FSM.

 Fig.6 State diagram of the FSM

IV. POWER CONSUMPTION ANALYSIS

The impact of test set encoding on power

consumption during scan testing is examined. For CMOS

circuits, power consumption can be classified as either static

or dynamic. Static power consumption, which is caused by
leakage current is negligible and therefore ignored. Dynamic

power constitutes the predominant fraction of CMOS power

consumption.

 For scan vectors, the dynamic power consumption

during testing depends on the number of transitions that occur

in the scan chain as well as on the number of circuit elements

that switch during the scan in and scan out operations. Power

estimation models based on the switching activity of the

circuits have been presented in [10][11]. Weighted transition

metric (WTM) introduced in [11] is used to estimate the

power consumption during scan vectors.
 The WTM models the fact that the scan in power for a given

vector depends not only on the number of transitions in it but

also on their relative positions. Consider a scan chain of

length l and a scan vector tj=tj,1,tj,2,….tj,l ,with tj,1 scanned in

before tj,2 and so on. The weighted transition metric for tj,

denoted WTMj, is given by (3).

)(*)(1,

1

1 ,

 ij

l

i ij ttilWTM (3)

If TD contains n vectors t1,t2….tn then the average scan in

power Pavg and peak scan in power Ppeak are estimated using

43

(4) and (5) respectively.

 n

ttil

P

n

j

ij

l

i ij

avg

1

1,

1

1 ,)(*)(

 (4)

)}(*)({max 1,

1

1 ,
},...3,2,1{

 ij

l

i ij
nj

peak ttilP (5)

V. EXPERIMENTAL RESULTS

To validate the efficiency of the proposed method,

experiments were performed on ISCAS’89 benchmark

circuits. The test sets used in these set of experiments were

obtained using MinTest ATPG. The experiments were
performed on Intel ® core i5 2.30 GHz workstation with 4.00

GB RAM. FDR [9], EFDR [7], AVR [8] and the proposed

modified AVR were implemented in C. First the proposed

compression method is analyzed from the point of view of

compression ratio. It should be noted that all the proposed

schemes were applied on the same test set after performing

mapping as proposed.

Fig.7 shows an analysis of the number of runs in a

test set. The number of 1s in a test set is as equally important

as the number of 0s in the test set. This can be clearly
visualized from the figure. In circuits like s35932, the

number of runs of 1s exceeds the number of runs of 0s and

this is the main reason for a low compression ratio obtained

in these circuits when only 1s coding or 0s coding alone was

done.

Fig. 7 Distribution of the runs both 0s and 1s in various sequential
circuits

Fig.8 Comparison between Modified AVR coding and other existing
code based schemes

TABLE. II. COMPARISON BETWEEN AVR CODES AND
MODIFIED AVR CODES.

 Table. II shows an analysis of modified AVR codes.

The decompressor architecture for the modified AVR code

contains an FSM, a (k+1)-bit counter, log2(k+1) bit register, a

T-flip-flop, and an extra register. The FSM was coded in

verilog HDL using Model Sim 6.2c and was synthesized in

Quartus II.

 It can be clearly observed that there exists an increase

in compression ratio after considering the relationship between

two consecutive runs. AVR (A) represents the AVR encoding
with α parameter is not included and AVR (B) the parameter α

is included. The compression ratio obtained after including α

is found less than the coding where α is not included. But, the
compression ratio in both the cases is more than the existing

encoding techniques.

0

1000

2000

3000

4000

5000

6000

s5
3

7
8

s9
2

3
4

s1
32

07

s1
5

8
50

s3
5

9
32

s3
8

4
17

s3
8

5
84

R

U

N

S

CIRCUIT

0 runs

1 runs

44

 TABLE III COMPARISON AVERAGE POWER (mW)

TABLE IV COMPARISON PEAK POWER (mW)

 Fig.8 shows a comparison between the modified AVR

code with other compression schemes. The achieved

compression ratio is maximum for modified AVR codes. A
comparison of the peak power and average power obtained

using the different coding schemes is shown in Table III and

Table IV. It can be observed that there exists sufficient amount

of reduction in some circuits like s13207,s38584etc.

VI FUTURE WORK

 The timing calculations for the proposed scheme is to

be analysed. The proposed scheme will be feasible only if it

consumes less power and also does not add to the testing time.

The power calculations for this scheme is found to be similar

to or has only a marginal increase for some circuits like

s13207 etc. Therefore techniques such as reordering of test

vectors can be applied to reduce the power consumption
further. These two parameters of the test data compression

environment (TDCE) has to be analysed in detail.

VII CONCLUSIONS

 An efficient code based compression scheme is

presented which is found to have a higher compression ratio

than any other existing schemes. Decoder architecture for the

modified scheme has been proposed. Experiments were

performed on all sequential circuits - ISCAS’89 benchmark

circuits and are found to have an increase in compression

ratio.

 ACKNOWLEDGEMENTS

We thank Prof. Nur A Touba of Duke university for

providing MinTest ATPG vectors for performing the

experiments.

REFERENCES

[1] N. Tauba, “Survey of test vector compression techniques”,

IEEE Transaction Design & Test of Computers, pp. 294–

303, 2006.

[2] Hamzaoglu and J. H. Patel, “Test set compaction

algorithms for combinational circuits”, in Proceedings

International Conference on Computer-Aided Design

(ICCAD), pp. 283–289, Nov. 1998.

[3] D. Dsa and N. A. Touba, “Reducing Test Data Volume

Using External/LBIST Hybird Test Patterns”, in Proc.

Test International Conference, pp. 115 -122, 2000.

 [4] A. Chandra and K. Chakrabarty, “A Unified Approach to

Reduce SOC Test Data Volume, Scan Power and Testing

Time”, IEEE Transactions on Computer-Aided Design of

Integrated Circuits and Systems, pp. 352-363, March

2003.

[5] V. Iyengar, K. Chakrabarty, and B. Murray, “Deterministic

built-in pattern generation for sequential circuits”,

Journal of Electronic Testing: Theory and Applications,

vol. 15, pp. 97–114, August/ October 1999.

[6] A. Chandra and K. Chakrabarty, “Test resource

partitioning for SOCs,” IEEE Design & Test of

Computers, vol. 18, pp. 80-91, September-October 2001.

[7] A. El-Maleh , “Test data compression for system-on-a

chip using extended frequency-directed run-length

code,” IET Comput. Digital Tech.2(3), pp.155–163,

2008.

[8] Bo Ye, Q.Zhao, D.Zhou, X.Wang and M. Luo, ”Test data

compression using alternating variable run-length code”,

Integration, the VLSI journal, pp.167-175, Nov. 2010.

Circuit Peak power (mW)

FDR EFDR AVR Proposed

s5378 7842 7867 7864 7852

s9234 10082 8543 7682 7694

s13207 84342 64875 76958 64341

s15850 65368 64450 37753 46082

s38417 45897 124374 24671 24384

s38584 453352 674923 398934 381158

Circuit Average power (mW)

FDR EFDR AVR Proposed

s5378 3185 2987 1565 1599

s9234 5329 5321 1348 956

s13207 12173 8026 6703 6381

s15850 17446 13611 8931 8969

s38417 184743 93225 72341 72294

s38584 203104 133420 61265 61469

45

[9] A. Chandra and K. Chakrabarty, “Test Data Compression

and Test Resource Partitioning for System-on-a-Chip

Using Frequency-Directed Run- Length (FDR) Codes,”
IEEE Trans. Computers, vol. 52, no. 8, Aug. 2003, pp.

1076-1088.

[10] [10] H. Fang, C. Tong, and X. Cheng,

“RunBasedReordering: a novel approach for test data

compression and scan power,” in Proceedings of the

Conference on Asia South Pacific Design Automation

(ASP-DAC ’07), Yokohama, Japan, January 2007.

[11] U. S. Mehta, K. S. Dasgupta, and N. M. Devashrayee,”

Research Article Weighted Transition Based Reordering,

Columnwise Bit Filling, and Difference Vector: A

Power-Aware Test Data Compression Method,” Hindawi

Publishing Corporation VLSI Design, Volume 2011,

Article ID 756561, 8 pages.

[12] L Zhang J.S Kuang and Z-Q. You, “Test Data

Compression Using Selective Sparse Storage,” J

ElectronTest,June2011.

[13] Nourani M, Tehranipour M,“ RL-Huffman encoding for

test compression and power reduction in scan
application,” ACM Trans Design Autom. Electron Syst ,

vol.10 pp.91–115, 2005.

[14] Jas A, Gosh-Dastidar J, Ng M, Touba N,” An efficient

test vector compression scheme using selective Huffman

coding,” IEEE Trans. Comput.-Aided Design Integr.

Circuits Syst (22)6:797–806, 2003 .

46

A Study on Performance Impact of Network Delay in Chip

Multi Processors

Monobrata Debnath , Ankil Patel , Byeong Kil Lee

Department of Electrical and Computer Engineering

The University of Texas at San Antonio

San Antonio, Texas

mhl494@my.utsa.edu , ankilpatel@hotmail.com , byeong.lee@utsa.edu

Abstract—Next generation CMPs are expected of having

hundreds of cores per chip. As the number of cores increases,

performance dependency of CMPs also varies. Cache Miss is

always being crucial on the overall performance of both multi

core and unicore systems. But with the growing number of cores

per chip, future CMPs will face new performance challenges. One

of such challenges is on chip communication. Network on chip or

NoC is an emerging and efficient way of solving on chip

communication for future CMPs. But its network delay and

power consumption remains crucial so far. In this paper, we

observe that the domination on overall performance of CMPs will

gradually shift from cache miss to NoC delay with the growing

number of cores.

I. INTRODUCTION

With the growing transistor count per chip, computer
architects have been given the opportunity to explore new
design paradigm chip multiprocessing (CMP). Performance of
CMPs in terms of speed and power consumption is also
satisfactory and this has lead computing industry to move
towards increasing cores for future computing devices The
Network on Chip (NoC) has gained enormous popularity in the
recent years and has shown the potential to be an efficient
alternative for CMPs [1][2][3]. Despite of NoC being very
promising, current design aspects of NOC still prevents CMPs
from reaching its maximum potential. The recent study
[3][4][5] encourages multi module last level memory systems
for large number of core CMPs (Figure1). Unfortunately, the
multi module memory system also uplifts traffic congestion in
the NOC significantly. As the number of cores expected to go
higher and higher in the near future, NOC will be emerging as
a major performance bottleneck in the multi module memory
architecture. Kim et. al performed in [6] address this issue of
network congestion in CMPs. But researchers miss the fact that
there exists a correlation between the network latency and
memory controller (or the cache coherency protocol) when the
number of cores goes high [7][8][11]. This correlation becomes
stronger as the number of cores increases. In this study, we
observe that the lower order performance trend strongly
follows L1 cache miss and loosely follows L2 miss and
network latency. There has been very little work done to
propose any integrated and mutually supporting solution to
control the network congestion treating memory coherency
protocols and network parameters inter-reliant of each other.
We also notice that the network latency becomes more
dominant on the overall performance of the CMP, as the

number of cores increases. We have simulated 4, 8 and 16 core
CMPs with the state of the art MOESI token and directory
based protocols and three different network topologies namely
point-to-point, torus2D and hierarchical switches.

The current state of the art widely used coherency protocols

are simply migrated from lower order CMPs to higher order
CMPs. The nature and the density of network congestion vary
from one CMP to another if number of cores increases. The
coherency protocol adopted for higher cores may show almost
no issue in terms of scalability but fails to control the network
congestion and hence results in performance degradation and
excess power consumption. This happens due to the fact that at
any point of time the cache controller receives no information
about network congestion. In this paper, we see that the overall
performance would be dominated by NoC delay, if coherency
protocols are adopted without necessary modification from a
lower order CMP. This may dilute the effects of the advance
features of each core and state of the art memory architectures.

 We proceed with our discussion by presenting the

coherency protocol chosen for this study in section II, network
topologies in section III, simulation environment and
methodology in section IV. Section V describes the simulation
results, and we conclude with section VI.

II. CACHE COHERENCY PROTOCOL

MOESI Coherency Protocol

We choose MOESI [9] protocol for our experiment.
MOESI Coherency Protocol was proposed by combining MESI
[10] and MOSI protocols. We further divide MOESI as

Figure1: Multi module memory Arrangement

47

mailto:mhl494@my.utsa.edu
mailto:ankilpatel@hotmail.com
mailto:byeong.lee@utsa.edu

directory based and token based. MOESI directory based
protocols maintains a directory at the home node. Directory
protocol sends all requests to its home node, which adds an
indirection to critical path of cache-to-cache misses. In addition
to that, it also escalates burden on NOC by sending redundant
requests. On the other hand, token based coherency protocol
[14] provides low-latency interconnection without indirection.
But cache to cache miss prevention is not as efficient as
directory based protocols. Wang H. et. al [13] have combined
the benefits of directory based and token based protocols by
using Sharing Relation Cache .This approach finds an
intermediate way to retain the benefits of both directory and
token based protocols.

III. NETWORK TOPOLOGIES

The on-chip network topology often adopted from off chip
networks determines the physical layout and connections
between nodes and channels in the network, the physical layout
and connections between nodes and channels in the network
[14]. A topology determines the number of hops (or routers) a
message must traverse as well as the interconnect lengths
between hops, thus influencing network latency significantly.
In our experiment, we have considered three different
topologies: (1) Hierarchical switch, (2) Torus 2D and (3) Point
to Point. These topologies consist of a set of system
components; each one being connected directly or indirectly to
a processing element. A processing element could be a
processor, cache or a cache controller. Each component usually
has a switch (or router), which handles message
communication among components. Each switch/router has
direct connections to its neighbor one. If the connection
between the routers to the processing element through a direct
connection is called as direct topology else it is known as an
indirect topology. Point-to-point and torus2D are direct
topologies where as hierarchical switch is an example of
indirect topology.

Network topologies and cache coherency protocol

The network topologies and cache coherency protocols are

considered as individual independent entity. P. Foglia et. al
[12] have shown that if cache coherency protocols and
network topologies combined wisely has positive impact on
the overall L1 miss latency and cache misses and hence
thereby on overall performance. In our study, we re-explore
the characteristics of NoC topology and cache coherency

protocol as a single entity and its impact on the overall
performance when the number of cores increases.

IV. SIMULATION ENVIRONMENT AND METHODOLOGY

 We performed the full-system simulation using Simics
[15]. We simulated 4, 8 and 16 CPU UltraSparc III plus CMP
system with Sun Solaris 10 operating System, each CPU using
in-order issue, running at 75 MHz .We also used GEMS [15]
in order to simulate the memory hierarchy and coherence
protocols. For NoC measurement we applied Garnet [16] and
Orion [17] for network power estimations. We conduct our
simulation against complete set of Parsec 2.1 multithreaded
benchmark suite [19] with native inputs. One billion
instructions are executed with fast forwarding first 1 million
instructions. The cache system is two levels with L1I and L1D
as private caches to each core and L2 as a shared resourse. The
cache architecture is a non uniform (NUCA). Size of L1 cache
is 64 KB 4-way set associative with block size 64 Byte. L2 is
16MB 4-way set associative with number of modules kept
equals to number of processors. The cache replacement policy
is Pseudo-LRU [21]. The router is a 5 stage pipelined with X-
Y routing algorithm and with 5 virtual channels and flit size is
of 16 byte.

V. SIMULATION RESULT

 We have simulated at least 1 billion instructions for each of
Parsec benchmark suite with three different topologies and two
different coherency protocols. We choose Cycles Per
Instruction (CPI) as the reference performance indicator. Also,
L1, L2 misses per thousand (Kilo) instructions (MPKI),
network latency and network power consumption as other
indicators. Arithmetic Mean of L1 MPKI, L2 MPKI, network
latency and CPI of all the thirteen Parsec benchmarks are used
throughout this section. In addition to arithmetic mean we used
logarithmic values (base 10) of network latency in the plots
throughout this paper.

As shown in Figure 2, it is clear that L1 miss per thousand
instructions is correlated with CPI in 4-core CMP. On the other
hand, when the number of cores is doubled from 4 cores to 8
cores, CPI is now loosely following L1 miss trends. In case of
MOESI Token and torus2D combination, this observed
behavior is completely opposite. For an 8 core CMP, L1 miss
has significantly less impact on CPI than that of 4 cores. But
when the number of cores is quadrupled, the correlation is
completely lost and behaves in a way opposite to that of 4 core
CMPs.

(a) (b) (c)

Figure 2: Correlation between CPI and L1 miss in (a) 4-core (b) 8-core (c) 16-core CMPs

48

However, cache misses cannot improve performance hence

it is well understood that with increasing number of cores the
performance bottleneck is no longer L1 cache miss. If L2 miss
is the performance indicator when order of the CMP is more,
then token coherency with point to point (token_pt_pt)
combination would have been the slowest among all the six
combinations. But as shown in Figure 3(c), it is clear that token
pt_pt has the second least CPI Since the token based protocols

has less network latency compared to directory based protocols
even though the cache miss in token based protocol has more.
So it is clear that L2 miss is not the only one where bottleneck
exists. This indicates for a third possibility: network delay in
higher order CMPs. Cache misses in a 16 core CMPs have very
less significance on the overall performance than the network
delay. It would be legitimate to assume that with the growing
number of cores the network delay will be the most crucial.
The network latency and CPI is shown in Figure 4.

To further investigate the correlation between CPI and

network latency we increase number of cores from 4 to 8

(Figure 5). The CPI is following average network latency in

way which is more profound than that of 4 cores. For 16 cores

(Figure 6), CPI is following network latency. In 8 cores CMP

CPI follows neither network latency nor L1 miss. L2 misses

impaction on CPI is more in case of an 8 core CMP. For 4 core

it is L1 miss rate and for 8 cores it is L2 miss which dominates

the overall performance and network latency dominates the

overall performance for 16 core CMP.

Power Consumption

Early stage estimation of NoC power has become crucially
important in chip multiprocessing. We calculate total network
power as the summation of router and link power. Figure 7, 8
and 9 represents the total network power for 4, 8 and 16 core
CMPs respectively. Point to point topology consumes more
power than any other network topology in all three CMPs. The
Vips consumes highest power in all 6 combinations for 4 and
has highest number of L1, L2 misses and network delay in 16

(a) (b) (c)

Figure 3: Correlation between CPI and L2 miss in (a) 4-core (b) 8-core (c) 16-core CMPs

Figure 4: CPI and N/W latency for 4 core

Figure 5: CPI and N/W latency for 8 core

Figure 6: CPI and N/W latency for 16 core

Figure 7: Total Network Power (W) for 4 core CMP

49

core CMPs. The Vips is an image processing application and
respective CMPs. But in the case of 8core, Dedup, a kernel
application, consumes more power. It also has the highest L1,
L2 miss and network delay. We see from the power statistics
that the network delay and cache misses are the primary
influences of network power consumption.

VI. CONCLUSION

 Performance of CMPs depends on the memory and its

accessing capabilities. With large number of cores per chip

future CMP’s dependence on the on chip communication

would be very critical. With growing number of cores the

critical factors to its performance changes from L1 miss to

network delay. We simulated 4, 8 and 16 core CMPs to

investigate the performance with widely used directory and

token based MOESI coherency protocol combined with various

network topologies.

 Without a symbiotic relation being established between

cache coherency and NoC parameters, future CMPs would not

be able to handle the network congestion efficiently and hence

network delay in future CMPs would be very crucial on the

overall performance. We would like to investigate more on the

network delay with more than 16 cores and improve the

coherency protocols so that it considers the network

congestion. Enhancing MOESI protocol with network

congestion handling capability will be the future goal in the

future.

REFERENCES

[1] S. Bell, et al., “TILE64 - Processor: A 64-Core SoC with Mesh Interco

nnect”, Proc. ISSCC 2008.

[2] Intel, Co., “Single-chip Cloud Computer”, available

http://techresearch.intel.com/articles/Tera-Scale/1826.htm.

[3] J. Bautista, “Tera-scale Computing and Interconnect Challenges– 3D

Stacking Considerations”, Tutorial, ISCA, 2008.

[4] W. Kwon, et al., “A Practical Approach of Memory Access

Parallelization to Exploit Multiple Off-chip DDR Memories”,Proc.
DAC, 2008.

[5] E. Aho, et al., “A Case for Multi-channel Memories in Video

Recording”, Proc. DATE, 2009.

[6] J. Kim, et al., “A Low Latency Router Supporting Adaptivity for On-

Chip Interconnects”, Proc. DAC, 2005.

[7] A. Singh, et al., “GOAL: A Load-Balanced Adaptive Routing Algorithm

for Torus Networks”, Proc. ISCA, 2003.

[8] A. Singh, et al., “Globally Adaptive Load-Balanced Routing on Tori”,

IEEE Computer Architecture Letters, 3(2):2, 2004.

[9] D. Kim, et al “A Network Congestion-Aware Memory Controller” 2010

Fourth ACM/IEEE International Symposium on Networks-on-Chip.

[10] P. Sweazey and A. J. Smith. A class of compatible cache consistency

protocols and their support by the IEEE futurebus. In ISCA '86: Pro-
ceedings of the 13th annual international symposium on Computer archi-

tecture, pages 414{423, Los Alamitos, CA, USA, 1986. IEEE Computer

Society Press.

[11] Z. Chishti, M. Powell, and T. Vijaykumar, “Optimizing replication,

communication, and capacity allocation in cmps,” Proceedings of the

32nd annual international symposium on Computer Architecture, pp.

357–368, 2005.

[12] Pierfrancesco Foglia, Francesco Panicucci, Cosimo Antonio Prete,

Marco Solinas .”An evaluation of behaviors of S-NUCA CMPs running

scientific workload”. Procedings of 12th euromicro conference on digital

system design / architectures, methods and tools.

[13] Haixia Wang Dongsheng Wang Peng Li .”SRC-based Cache

Coherence Protocol in Chip Multiprocessor,” Frontier of Computer

Science and Technology, 2006. FCST '06.

[14] Milo M. K. Martin, Mark D. Hill, and David A. Wood.”Token

Coherence: Decoupling Performance and Correctness”. Appears in the
proceedings of the 30th Annual International Symposium on Computer

Architecture (ISCA-30) San Diego, CA, June 9-11, 2003

[15] On-ChipNetworks. Natalie Enright Jerger and Li-Shiuan Peh.

[16] P. S. Magnusson, M. Christensson, J. Eskilson, D. Forsgren, and G.

Hallberg. Simics: A full system simulation platform. IEEE Computer,
35(2):50–58, Feb. 2002.

[17] Winsconsin Multifacet GEMS Simulator http://www.cs.wisc.edu/gems/.

[18] Niket Agarwal, Li-Shiuan Peh and Niraj Jha, "GARNET: A Detailed

Interconnection Network Model inside a Full-system Simulation

Framework," CE-P08-001, Dept. of Electrical Enginering, Princeton
University, Feb., 2008.

[19] Hangsheng Wang, Xinping Zhu, Li-Shiuan Peh and Sharad Malik,

"Orion: A Power-Performance Simulator for Interconnection Networks,"

In Proceedings of MICRO 35, Istanbul, Turkey, November 2002.

[20] http://parsec.cs.princeton.edu.

[21] Kedzierski,K.MoretoM.,Cazorla F. and J.Valero,” Adapting cache

partitioning algorithms to pseudo-LRU replacement policies,” 2010

IEEE International Symposium on Parallel & Distributed Processing

(IPDPS),o1-12,April 2010.

Figure 8: Total Network Power (W) for 8 core CMP Figure 9: Total Network Power (W) for 16 core CMP

50

http://techresearch.intel.com/articles/Tera-Scale/1826.htm
http://www.cs.wisc.edu/gems/
http://ieeexplore.ieee.org.libweb.lib.utsa.edu/xpl/mostRecentIssue.jsp?punumber=5465899
http://ieeexplore.ieee.org.libweb.lib.utsa.edu/xpl/mostRecentIssue.jsp?punumber=5465899

Potential of Dynamic Binary Parallelization

Jing Yang, Kevin Skadron, Mary Lou Soffa, and Kamin Whitehouse

Department of Computer Science

University of Virginia

{jy8y, skadron, soffa, whitehouse}@cs.virginia.edu

Abstract

As core counts continue to grow in modern microarchi-

tectures, automatic parallelization technologies are becom-

ing increasingly important to fill the gap between hard-

ware that has increased parallelism and software that is

still designed for sequential execution. In previous research,

we have proposed a novel dynamic binary parallelization

scheme called T-DBP, which leverages hot traces to pro-

vide a large instruction window without introducing spu-

rious control and data dependencies. In this paper, we

conduct a limit study to estimate the maximum possible

performance of T-DBP on the SPEC CPU2000 benchmark

suite. Our results indicate an average speedup of 9.18x and

22.34x over sequential execution for the integer and floating

point benchmarks, respectively. We also explain this high

speed increase by quantitatively demonstrating that T-DBP

uses runtime information to overcome two key handicaps

of compile-time parallelization techniques. By artificially

emulating the effects of these handicaps in T-DBP, the av-

erage speedup shrinks to 4.51x (integer) and 9.36x (floating

point), respectively.

1 Introduction

With the number of cores increasing rapidly but the

performance per core increasing slowly at best, software

must be parallelized to maintain performance improvement.

Manual parallelization typically yields the best speedups,

because the programmer can choose new algorithms and

data structures that are more amenable to parallelism. How-

ever, manual parallelization is often prohibitively time-

consuming and error-prone, especially due to data races and

memory-consistency complexities. Furthermore, some por-

tions of code may simply be too difficult to understand or

refactor for parallelization. Code is only parallelized when

the return on investment is sufficient.

There has also been considerable research on automatic

parallelization. However, most existing automatic tech-

niques are performed statically at compile time and require

source code to be analyzed, suffering three serious prob-

lems. First, in many cases, some or all of the source code

and development tool chain has been lost or, in the case of

third-party software, was never available. During the Y2K

crisis, it was estimated that some companies were miss-

ing as much as 60 percent of their source code [6]. Sec-

ond, modern applications are assembled and defined at run

time, making use of shared libraries, virtual functions, plug-

ins, dynamically-generated code, and other dynamic mech-

anisms. Furthermore, some software includes components

that are written in different languages. All these aspects of

separate development and compilation prevent the compiler

from obtaining a holistic view of the program, leading to the

risk of incompatible parallelization techniques, subtle data

races, and resource over-subscription. Third, compile-time

analysis has to conservatively respect all control and data

dependencies that appear on the control flow graph (CFG).

This deters parallelization, since many of these dependen-

cies may not involve the execution path that is actually

taken. All the above considerations motivate binary code

parallelization at run time, which we call dynamic binary

parallelization (DBP). Without effective techniques that can

operate on binary code, a large fraction of software will be

left behind. And without the ability to parallelize at run

time, opportunities for parallelism are curtailed.

In previous research [23], we have proposed a novel

DBP scheme (T-DBP) based on the insight that programs

tend to frequently repeat sequences of instructions called

hot traces. T-DBP monitors a program at run time and dy-

namically identifies these hot traces, parallelizes them, and

caches them for later use so that the program can execute

in parallel every time a hot trace repeats. The paralleliza-

tion purpose, however, imposes two significant challenges

in trace construction, which have never been simultaneously

overcomed by state-of-the-art technologies [2, 3, 7, 14, 15,

19, 25, 16]. First, traces have to be as long as possible to

expose more distant parallelism. Second, traces have to be

logically atomic. They should have a single entry point and

exit point, and encapsulate only a single flow of control.

51

Thus, analysis can ignore all control dependencies (as well

as derived data dependencies) among instructions within a

trace, enabling more aggressive parallelization. This atom-

icity property necessitates speculative execution to recover

program state when a trace deviates from the execution path

that is actually taken. The dilemma, however, is that the

longer a trace is, the more difficult it can be speculated ac-

curately. T-DBP exploits multi-path execution [1, 21] and

invents a holistic algorithm to balance trace length and spec-

ulation accuracy, which constructs the longest traces that

can be accurately speculated on the available number of

cores. Although our preliminary results have indicated an

average speedup of 1.96x (8-way parallelization) over se-

quential execution, we believe that T-DBP is able to achieve

much larger speed increases by improving on the initial pro-

totype implementation.

Thus, we conduct a limit study in this paper to estimate

the maximum possible performance of T-DBP, which can

act as the guidelines for future improvements. We perform

the experiments by appling T-DBP to the SPEC CPU2000

benchmark suite and compare the execution speed to se-

quential execution. Our results indicate an average speedup

of 9.18x and 22.34x for the integer and floating point bench-

marks, respectively. For all benchmarks, T-DBP is able to

achieve 1) long traces, 2) large trace coverage, and 3) high

speculation accuracy at the same time, indicating a large

room for further improvements from [23].

We also use this limit study to explain why T-DBP has

that performance. As described above, we hypothesize that

T-DBP has high performance because it overcomes two key

handicaps of compile-time parallelization techniques by:

1) parallelizing across boundaries between application and

library code, and 2) only respecting control and data depen-

dencies that appear in the actual execution path. We quan-

titatively test the hypothesis by repeating the experiments

while artificially applying each of the handicaps to T-DBP.

When both handicaps are applied, the average speed in-

crease shrinks to 4.51x (integer) and 9.36x (floating point),

respectively. These results support the hypothesis that T-

DBP is able to use runtime information to exploit paral-

lelism which compile-time techniques ignore.

2 Related Work

Existing DBP schemes are generally divided into two

main categories: parallelizing the raw dynamic instruction

stream (DIS) [9, 18, 20] and parallelizing the dynamically-

generated CFG [5, 8, 24]. DIS-based techniques use extra

hardware to combine multiple cores to work cooperatively

as a wider core. Focusing on exploiting instruction level

parallelism (ILP), this scheme has wide applicability, since

ILP typically exists throughout the entire program (with dif-

ferent amounts). Limited by branch prediction accuracy

P
re

d
ic

t
P

re
d

ic
t

P
re

d
ic

t
P

re
d

ic
t

Sequential

Execution

Success

T-DBP

Abort

Parallelized Candidate

Traces

Abort

Skip

Abort

SuccessSkip

Dispatch

Dispatch

Core 1 Cores 2-7

Success

Continue

Dispatch

Dispatch

Figure 1. T-DBP uses one core for trace man-

agement plus sequential execution, and the
remaining cores for speculative execution of

parallelized candidate traces.

and instruction window size, however, this scheme gener-

ally fails to exploit distant or coarse-grained parallelism,

resulting in relatively mediocre speedups. On the other

hand, CFG-based techniques expose a global view of the

program and allow discovery of loop and thread level par-

allelism (LLP and TLP), which has the potential to produce

much larger speedups. However, analysis on the CFG has

to conservativly consider the large number of possible paths

of program execution, many of which are rarely executed in

a particular run. This requires the compiler to respect con-

trol and data dependencies that do not appear in the actual

execution path, inhibiting parallelism opportunities. When

source code is not available, this problem is exaggerated due

to the lack of high-level information (e.g., types, variables,

data structures), which is essential to achieve accurate alias

analysis. Thus, it is not surprising that existing CFG-based

techniques [5, 8, 24] have failed to parallelize at least half

of the selected benchmarks.

3 Overview of T-DBP

A conceptual overview of T-DBP is illustrated in Fig-

ure 1. Core 1 is instrumented with trace management func-

tionality and starts to execute the unmodified, sequential bi-

nary. Simultaneously, the trace constructor monitors the

instruction stream and identifies traces from frequently re-

peating instruction sequences. The traces are then pro-

52

Exec. on Avg. Trace Mispred.

Benchmark Traces Leng. Rate Speedup

gzip 86.97 % 108 1.95 % 1.54

vpr 80.90 % 125 3.92 % 1.34

mcf 31.28 % 93 11.77 % 1.08

INT crafty 61.48 % 78 2.53 % 1.38

parser 32.99 % 101 4.30 % 1.15

eon 74.53 % 122 3.03 % 1.59

bzip2 61.31 % 112 7.61 % 1.45

adpcm-dec 95.69 % 73 1.53 % 1.20

adpcm-enc 97.10 % 83 0.42 % 1.08

epic-dec 89.08 % 136 7.63 % 1.50

epic-enc 96.52 % 862 8.11 % 4.63

g721-dec 86.64 % 103 5.37 % 1.70

MEDIA g721-enc 70.55 % 105 5.27 % 1.57

gsm-dec 97.93 % 1,098 8.06 % 1.43

gsm-enc 97.23 % 756 2.54 % 2.53

jpeg-dec 87.97 % 240 4.21 % 1.87

jpeg-enc 59.23 % 138 2.55 % 1.28

mpeg2-dec 91.31 % 175 2.17 % 2.01

mpeg2-enc 68.81 % 394 10.56 % 1.85

wupwise 99.12 % 2,179 2.24 % 2.50

swim 96.74 % 836 4.38 % 1.53

mgrid 99.85 % 7,890 0.19 % 3.73

applu 97.58 % 4,583. 0.96 % 3.94

FP mesa 98.06 % 567 0.52 % 2.41

art 99.07 % 3,986 0.76 % 3.01

equake 95.55 % 638 2.60 % 2.28

ammp 79.64 % 182 1.71 % 1.31

sixtrack 89.88 % 119 0.70 % 1.66

apsi 98.62 % 3,362 1.23 % 2.45

Table 1. This table shows 1) the percentage

of instructions (executed by the unmodified

program) that are covered by correctly pre-
dicted traces, 2) the average length of the

trace (in number of instructions) that com-
mits in each correct prediction, 3) the trace

misprediction rate, and 4) the speedup over

sequential execution by performing 8-way
parallelization and dispatching at most 32

candidate traces.

cessed by the trace parallelizer and stored in the trace

cache. This parallelization process is offloaded to spare

cores in order not to affect the sequential execution.

Thus, at every point during execution, the trace predictor

checks for candidate traces: parallelized traces in the trace

cache that 1) begin with the instruction that is about to be

executed by the sequential binary, and 2) have a high prob-

ability of running to completion. If any exist, it suspends

the sequential execution and launches them in the remain-

ing available cores (Cores 2 to 7). The speculated traces

operate on copies of the actual program state. If a trace devi-

ates from the execution path that is actually taken, it aborts

and its copy of program state is discarded. If any traces

run to completion, one of them is selected and its copy of

program state is committed to the suspended sequential ex-

ecution, which “skips forward” in time to the end of the

selected trace. Figure 1 illustrates three example scenarios.

First, the right trace aborts and the left trace succeeds, caus-

ing the sequential execution to skip forward. Second, both

traces abort and so the sequential binary continues running

from the last dispatch point. Third, both traces succeed and

the copy of program state from the left trace is selected to

commit. In the last case, one trace is the prefix of the other

trace, which happens infrequently in practice.

Table 1 summarizes the performance of T-DBP as im-

plemented in [23], which uses a combination of novel and

existing algorithms. One clear takeaway from this table is

that T-DBP performs best on floating point benchmarks,

followed by media benchmarks, and could only achieve

mediocre speedups on integer benchmarks. This is not sur-

prising since integer programs normally have more com-

plicated control flows that are hard to predict and pointer-

based memory accesses that are hard to disambiguate. The

current algorithms have encountered significant difficulties

to further increase trace coverage and trace length while

maintaining high speculation accuracy. Thus, it is impor-

tant and necessary to conduct a limit study to estimate the

maximum possible performance of T-DBP, which can act as

the guidelines for future improvements.

4 Limit Study Setup

We analyze the limits of T-DBP by making two ideal-

izations about the hardware and algorithms: 1) the program

runs on a many-core processor with an unbounded num-

ber of cores, and 2) the trace construction algorithm can

always identify the most frequently repeating patterns of

instructions. The first idealization not only assumes unlim-

ited computing resources, but also guarantees perfect spec-

ulation accuracy since all candidate traces can be executed

simultaneously. The second idealization maximizes trace

length to expose more distant parallelism.

To conduct this limit study, we performed a five step pro-

cess for each program in the SPEC CPU2000 benchmark

suite1: 1) record the complete execution sequence of the

program, 2) analyze the recording offline to identify the fre-

quently repeating traces, 3) create a new execution sequence

by replacing each trace in the original execution sequence

with a parallelized version, 4) analyze the parallel execu-

tion time of the new execution sequence using a model of

a shared-memory many-core processor, and 5) replay a lin-

earization of the new execution sequence on a real machine

and check correctness of the result: a successful replay im-

plies correct synchronizationswithin the parallelized traces.

All programs are executed using the test data sets as input to

maintain a reasonable amount of recorded data. In the next

five subsections, we describe in detail how we implemented

each of these steps.

1The perlbmk benchmark was omitted because it recursively calls

itself, starting multiple instances of our capture framework and exhausting

memory of the machine.

53

Algorithm construct_trace : path

01 loop do

02 for each pair of adjacent symbols (s 1, s 2) i in path do

03 if check_pair (s 1, s 2) i then begin

04 num i ← occurrence number of (s 1, s 2) i

05 end

06 done

07 (s 1, s 2) m ← most frequent pair

08 freq m ← maximum occurrence number

09 if freq m > 1 then begin

10 A j ← create new symbol

11 replace all occurrences of (s 1, s 2) m with A j

12 end else begin

13 break

14 end

15 done

execution path pair (max. num.) new symbol

1 path → abcababc ab (3) A → ab

2 path → AcAAc Ac (2) B → Ac

3 path → BAB

(b) Example of Trace Construction.

(a) Idealized Trace Construction Algorithm.

Algorithm check_pair : (s 1, s 2) i

01 return true

(c) No Handicap.

Algorithm check_pair : (s 1, s 2) i

01 if (s 1 app && s 2 app) || (s 1 lib && s 2 lib) then begin

02 return true

03 end else begin

04 return false

05 end

∈ ∈ ∈ ∈

(d) Handicapped Algorithm that Cannot Parallelize across

Boundaries between Application and Library Code.

Figure 2. The idealized trace construction algorithm finds the most frequently repeating patterns of
instructions in the entire execution sequence, as shown in the example. The handicapped version

does not construct traces across boundaries between application and library code.

Other studies have built systems to efficiently record

program execution [13, 26], and some can also replay the

recording by capturing non-deterministic events such as in-

terrupts, preemption, and user input [10, 22]. Our limit

study framework is unique in that we can modify the ex-

ecution sequence and replay the modified version to verify

that it is equivalent to the original execution.

4.1 Recording Execution Sequences

We record the original execution sequence of the pro-

gram by adding instrumentation code to the binary exe-

cutable. This is performed by employing translation-based

dynamic instrumentation to the program during its execu-

tion: whenever a new basic block is translated, instrumenta-

tion code is added to record the program counter whenever

the basic block executes. Instrumentation code is also added

to record the effective address of every load and store in-

struction, as well as the memory value of each load instruc-

tion. We record the actual memory values so that the pro-

gram can be deterministically replayed. Otherwise, back-

ground operating system processes could change the state of

certain system libraries, creating non-deterministic effects

during program playback. We record the effective addresses

of memory accesses to performmemory disambiguation, as

described below in Section 4.3.

Recording the complete execution sequence of the pro-

gram produces a large amount of information and so we

use double buffering to reduce the runtime overhead [27]

and apply the VPC3 algorithm to compress the collected

information [4]. This greatly increases execution speed

and reduces disk space requirements, although a typical

one second program still required three minutes and fifty

megabytes of disk space to record.

4.2 Analyzing Execution Sequences to
Construct Repeating Traces

Once the execution sequence has been recorded, we con-

struct traces by finding all frequently repeating patterns of

instructions. We do this using an offline dictionary-based

algorithm that is typically used for compression [12], illus-

trated in Figure 2(a). Initially every basic block is defined

to be a unique symbol. We then identify the two symbols

si and sj that are the most frequent pair of adjacent sym-

bols in the entire execution sequence (lines 2 to 8). If no

pair appears more than once, the algorithm stops (line 13).

Otherwise, we replace all occurrences of sisj with a new

symbol Aj (lines 10 to 11). The execution sequence now

has fewer symbols and the algorithm repeats to again find

the most frequent pair of adjacent symbols. When the al-

gorithm completes, all symbols remaining on the execution

sequence become the selected traces. Figure 2(b) shows an

example of how traces are constructed on an execution se-

quence of eight basic blocks (a, b, c, a, b, a, b, c). In the first
iteration, ab is found to occur most frequently (three times)

54

and is replaced by a new symbol A. In the second itera-

tion, Ac occurs two times and is replaced by a new symbol

B. After that, no pair of adjacent symbols occurs more than

once and the algorithm completes, constructing two differ-

ent traces A (basic block sequence a, b) and B (basic block

sequence a, b, c).

We can modify the trace construction algorithm to hand-

icap T-DBP so that it cannot parallelize across boundaries

between application and library code. More specifically, we

replace the original check pair function (Figure 2(c)) in-

voked on line 3 of the trace construction algorithm with

an alternative version that only allows two adjacent basic

blocks to be combined into a single symbol if both of them

belong to application code or both of them belong to library

code. The pseudo code for this handicapped algorithm is

illustrated in Figures 2(d) and its effect on execution speed

will be analyzed in Section 5.

4.3 Parallelizing Execution Sequences

Once the repeating traces in the execution sequence are

identified, they are parallelized using a modified version of

the dynamic critical path scheduling algorithm [11], which

is derived from previous research on allocating task graphs

to fully-connected multiprocessors. This algorithm is se-

lected since it was experimentally demonstrated to produce

the minimum execution time among all comparable algo-

rithms. For the purpose of trace parallelization, we define

each instruction to be a separate task. The algorithm mainly

includes the following four steps:

1. Eliminate all anti and output register dependencies in

the trace through renaming. Identify all true dependen-

cies and build the dependency graph. Initialize the cur-

rent schedule to be an empty schedule. The effective

addresses of memory accesses recorded in Section 4.1

are used to perform memory disambiguation.

2. Calculate the absolute earliest start time (AEST) and

absolute latest start time (ALST) of each instruction

based on the current schedule. Let L be the group

of instructions with the smallest value of ALST −
AEST , and pick instruction i from L that does not

have predecessors in L.

3. Schedule instruction i on core j where 1) after inser-

tion, it does not delay the ALST of all instructions

already scheduled on that core, including itself, and

2) there are no violations of any true dependencies.

4. Go back to Step 2 if not all instructions are scheduled.

After all traces are parallelized, we replace their occur-

rences in the original execution sequence with the paral-

lelized versions. This new execution sequence represents

I2 : R0 = R1

I3 : R0 = R2 I5 : R2 = 2

I4 : R3 = R0

I3 : R0 = R2 I1 : R1 = R4

I4 : R3 = R0

3
 c
lo
c
k
 c
y
c
le
s

(b) Parallelization on the CFG.

I3 : R0 = R2 I1 : R1 = R4

I4 : R3 = R0

2
 c
lo
c
k
 c
y
c
le
s

(c) Parallelization on the Trace.(a) A Simple CFG.

I1 : R1 = R4

I2 : R0 = R1

I2 : R0 = R1

Figure 3. Analysis of the trace (dashed arrow)

produces fewer true dependencies than anal-

ysis of the CFG, leading to improved parallel
performance.

the ideal execution sequence that T-DBP might produce in

the real world. Correctly replacing every single trace in the

original execution sequence with the parallelized version

corresponds to the idealized assumption of perfect specu-

lation accuracy in our limit study.

We can also modify the trace parallelization algorithm

to handicap T-DBP so that it has to respect all control and

data dependencies that appear on the CFG. For example,

Figure 3(a) illustrates the CFG of a small program snippet

containing five instructions: I1, I2, I3, I4, and I5. Analy-

sis of this CFG reveals three true dependencies: I1 → I2,

I3 → I4, and I2 → I4. The last dependency exists because

of the possible execution path through I5. The best possible

parallelization of the left branch (dashed arrow) in this CFG

that respects all of the three true dependencies is depicted

in Figure 3(b), with a parallel execution time of three clock

cycles. In contrast, if the path along the left branch is con-

verted into a trace at run time, an analysis of the trace would

not find a true dependency I2 → I4 because I3 produces the

freshest value of R0. A parallelization of this trace would

thus run the same instructions with a parallel execution time

of only two clock cycles, as depicted in Figure 3(c). The ef-

fect of this handicapped algorithm on execution speed will

be analyzed in Section 5.

4.4 Modeling Parallel Execution Time

To calculate the execution time of a sequence of instruc-

tions, we define each instruction to have an execution time

of one clock cycle because of pipelining. We define the

execution time of a parallelized trace to be the maximum

AEST of all instructions in the trace plus one, to account for

the execution of the last instruction. We require at least one

clock cycle to separate any two instructions with true depen-

dencies that execute on different cores, for inter-core com-

55

0

5

10

15

20

25

30

35

T-DBP T-DBP - 1 T-DBP - 2

(a) CINT2000.

0

10

20

30

40

50

60

T-DBP T-DBP - 1 T-DBP - 2

(b) CFP2000.

Figure 4. The standard T-DBP achieves an average speedup of 9.18x and 22.34x over sequential

execution for the integer and floating point benchmarks, respectively. When all handicaps are artifi-

cially emulated, the average increase in execution speed shrinks to 4.51x (integer) and 9.36x (floating
point), respectively.

munication. Software-based synchronization mechanisms

such as locks, barriers, and monitors can cause more than

one clock cycle of runtime overhead due to the interactions

with the operating system, but special hardware such as the

synchronization array [17] provides efficient, non-memory-

based communication between different cores on the same

chip. This technique enables the production and consump-

tion of a single register value on different cores to be per-

formed in back-to-back cycles, as long as the communicat-

ing buffer between the two cores is not full.

4.5 Verifying Parallel Execution Se-
quences

In addition to calculating the execution time, we can also

execute the parallelized execution sequence to ensure cor-

rect synchronizations within the parallelized traces. To do

this, all basic blocks and traces in the final execution se-

quence are linked together into a single executable, loaded

into to its original address space, and replayed on a real

machine. For parallelized traces, a linearization is created

based on the final AEST of each instruction. This process

does not test all possible linearizations and thus does not

guarantee that the synchronization is one hundred percent

correct, but it does create a linearization that is substan-

tially different from the original execution sequence and

has allowed us to verify many programs with reasonable

confidence. During the replay, load instructions are not ac-

tually executed; the corresponding memory value that was

recorded in the original execution is provided to the target

register. This prevents background processes in the oper-

ating from producing non-deterministic values which can

cause segmentation faults.

5 Experimental Results

We used the limit study framework described in Sec-

tion 4 to analyze the performance of T-DBP on the SPEC

CPU2000 benchmark suite. We tested and compared three

different versions of the T-DBP implementation. The first

implementation is standard T-DBP with no handicaps ap-

plied. The other two implementations use handicapped ver-

sions of the trace construction (Section 4.2) and paralleliza-

tion (Section 4.3) algorithms, respectively. These three im-

plementations are named as follows:

• T-DBP: both trace construction and trace paralleliza-

tion are unconstrained.

• T-DBP−1: trace construction cannot cross boundaries

between application and library code.

• T-DBP−2: trace construction cannot cross boundaries

between application and library code; trace paralleliza-

tion has to respect all true dependencies that appear in

the CFG.

The performance of all three versions of the T-DBP im-

plementation is illustrated in Figure 4. For the standard

T-DBP that is unconstrained, the average speedup over se-

quential execution is 9.18x and 22.34x for the integer and

floating point benchmarks, respectively. The higher speed

increase for the floating point programs is likely due to the

fact that they contain a larger fraction of numerical code,

which introduces fewer true dependencies. When all hand-

icaps are artificially emulated, the average increase in exe-

cution speed shrinks to 4.51x (integer) and 9.36x (floating

point), respectively. These results support the hypothesis

that the ability of T-DBP to overcome these two handicaps

56

Exec. on Avg. Trace. Exec. in

Benchmark Traces Leng. Libraries

gzip 100.00 % 90 4.83 %

vpr 99.99 % 50 4.06 %

gcc 99.99 % 102 15.91 %

mcf 100.00 % 106 41.82 %

crafty 99.99 % 80 7.80 %

INT parser 99.99 % 94 8.51 %

eon 99.97 % 126 6.60 %

gap 99.99 % 174 18.12 %

vortex 100.00 % 1,879 12.96 %

bzip2 100.00 % 118 0.18 %

twolf 99.98 % 100 6.59 %

wupwise 100.00 % 2,584 0.68 %

swim 100.00 % 10,800 52.28 %

mgrid 99.99 % 26,931 0.05 %

applu 99.93 % 2,003 2.22 %

mesa 100.00 % 4,503 70.62 %

galgel 99.99 % 967 0.13 %

FP art 99.99 % 1,465 6.67 %

equake 99.95 % 748 68.43 %

facerec 99.97 % 3,203 1.10 %

ammp 99.99 % 953 15.56 %

lucus 99.99 % 368 0.01 %

fma3d 100.00 % 58 14.45 %

sixtrack 100.00 % 2,081 8.31 %

apsi 99.98 % 7,238 10.21 %

Table 2. This table shows 1) the percentage
of basic blocks that are formed into traces,

2) the average number of basic blocks per

trace, and 3) the percentage of basic blocks
that belong to libraries.

accounts for its ability to explore a higher degree of paral-

lelism than compile-time techniques do.

5.1 Analysis of Trace Parallelization

The only difference between T-DBP−2 and T-DBP−1 is

that T-DBP−2 performs dependency analysis on the CFG

during the parallelization process while T-DBP−1 performs

dependency analysis directly on traces. Thus, the results of

these two versions of the T-DBP implementation indicate

the degree to which parallelism increases when using run-

time information to eliminate spurious dependencies. The

average speedup of T-DBP−1 over sequential execution

is 12.47x, outperforming that of T-DBP−2 by a factor of

1.72x. This result validates the hypothesis that dependency

analysis on the CFG is a significant handicap for compile-

time parallelization techniques.

5.2 Analysis of Trace Construction

The relative results of T-DBP−1 and T-DBP indicate that

parallelizing across boundaries between application and li-

brary code can improve the average speedup over sequen-

tial execution from 12.47x to 16.55x. Note that the speed

increase does not necessarily correspond to the percentage

of executed basic blocks that belong to libraries, which is

listed in the fifth column of Table 2. In fact, mcf executes

more library instructions than all other integer benchmarks

but almost shows the minimum improvement between T-

DBP−1 and T-DBP. Also note that the library instructions

are being parallelized in both versions of the T-DBP imple-

mentation; the handicapped version only eliminates paral-

lelization between application and library instructions. The

degree to which this handicap affects the speed increase is

related to the degree to which application instructions are

interleaved with library instructions. These results validate

the hypothesis that the inability to parallelize across bound-

aries between application and library code is a significant

handicap for compile-time parallelization techniques.

When all handicaps are removed, T-DBP constructs

very long traces. The fourth column of Table 2 lists the

average number of basic blocks within each constructed

trace, which can be as large as 1,879 for integer bench-

marks (vortex) and 26, 931 for floating point bench-

marks (mgrid). For all the programs, the average trace

length is at least an order of maganitude larger than that

was achieved in [23], indicating a large room for further

improvements. The third column of Table 2 lists the per-

centage of basic blocks in the entire execution sequence

that are formed into traces. This result shows that nearly

all basic blocks are combined to construct longer traces

and can be parallelized for later reuse. The singleton basic

blocks that do occur are primarily from the prologue and

epilogue of the program. Thus, a small number of traces

can cover nearly the entire execution sequence of a typi-

cal program, which suggests good trace predictability. In a

nutshell, an idealized system based on T-DBP can achieve

1) long traces, 2) large trace coverage, and 3) high specula-

tion accuracy at the same time.

6 Conclusions

In previous research [23], we have proposed a novel DBP

scheme (T-DBP) that leverages hot traces to provide a large

instruction window without introducing spurious control

and data dependencies. Although our preliminary results

have indicated an average speedup of 1.96x (8-way paral-

lelization) over sequential execution, we believe T-DBP is

able to achieve much larger speed increases by improving

on the initial prototype implementation. Thus, we conduct

a limit study in this paper to 1) estimate the maximum pos-

sible performance of T-DBP, and 2) explain why T-DBP has

that performance. Our results indicate an average speedup

of 9.18x and 22.34x over sequential execution for the in-

teger and floating point benchmarks, respectively. We ex-

plain this high speed increase by quantitatively demonstrat-

ing that T-DBP uses runtime information to overcome two

key handicaps of compile-time parallelization techniques:

1) not parallelizing across boundaries between application

and library code, and 2) conservatively respecting all con-

57

trol and data dependencies that appear on the CFG. By

artificially emulating the effects of these handicaps in T-

DBP, the average speedup shrinks to 4.51x (integer) and

9.36x (floating point), respectively.

References

[1] P. Ahuja, K. Skadron, M. Martonosi, and D. Clark. Multi-

path Execution: Opportunities and Limits. In Proceedings

of the International Conference on Supercomputing, 1998.

[2] V. Bala, E. Duesterwald, and S. Banerjia. Dynamo: A Trans-

parent Dynamic Optimization System. In Proceedings of the

Conference on Programming Language Design and Imple-

mentation, 2000.

[3] D. Bruening, T. Garnett, and S. Amarasinghe. An Infrastruc-

ture for Adaptive Dynamic Optimization. In Proceedings of

the International Symposium on Code Generation and Opti-

mization, 2003.

[4] M. Burtscher. VPC3: A Fast and Effective Trace-

Compression Algorithm. In Proceedings of the Interna-

tional Conference on Measurement and Modeling of Com-

puter Systems, 2004.

[5] M. DeVuyst, D. Tullsen, and S.-W. Kim. Runtime Paral-

lelization of Legacy Code on a Transactional Memory Sys-

tem. In Proceedings of the International Conference on

High Performance and Embedded Architectures and Com-

pilers, 2011.

[6] L. Freeman. Recover Missing Source Code to Over-

come ”Leaky-Roof Syndrome”. Enterprise Systems Jour-

nal, 1997.

[7] R. Hank, S. Mahlke, R. Bringmann, J. Gyllenhaal, and W.-

M. Hwu. Superblock Formation Using Static Program Anal-

ysis. In Proceedings of the International Symposium on Mi-

croarchitecture, 1993.

[8] B. Hertzberg and K. Olukotun. Runtime Automatic Spec-

ulative Parallelization. In Proceedings of the International

Symposium on Code Generation and Optimization, 2011.

[9] E. Ipek, M. Kirman, N. Kirman, and J. Martinez. Core Fu-

sion: Accommodating Software Diversity in Chip Multipro-

cessors. In Proceedings of the International Symposium on

Computer Architecture, 2007.

[10] S. King, G. Dunlap, and P. Chen. Debugging Operating Sys-

tems with Time-Traveling Virtual Machines. In Proceedings

of the USENIX Annual Technical Conference, 2005.

[11] Y. Kwok and I. Ahmad. Dynamic Critical-Path Schedul-

ing: An Effective Technique for Allocating Task Graphs to

Multiprocessors. Transactions on Parallel and Distributed

Systems, 7(5), 1996.

[12] J. Larsson and A. Moffat. Offline Dictionary-Based Com-

pression. In Proceedings of the Conference on Data Com-

pression, 1999.

[13] J. Larus. Whole Program Paths. In Proceedings of the Con-

ference on Programming Language Design and Implemen-

tation, 1999.

[14] S. Mahlke, D. Lin, W. Chen, R. Hank, and R. Bringmann.

Effective Compiler Support for Predicated Execution using

the Hyperblock. In Proceedings of the International Sympo-

sium on Microarchitecture, 1992.

[15] M. Merten, A. Trick, E. Nystrom, R. Barnes, and W.-M.

Hwu. A Hardware Mechanism for Dynamic Extraction and

Relayout of Program Hot Spots. In Proceedings of the In-

ternational Symposium on Computer Architecture, 2000.

[16] S. Patel and S. Lumetta. rePLay: A Hardware Framework

for Dynamic Optimization. IEEE Transactions on Comput-

ers, 50(6), 2001.

[17] R. Rangan, N. Vachharajani, M. Vachharajani, and D. Au-

gust. Decoupled Software Pipelining with the Synchroniza-

tion Array. In Proceedings of the International Confer-

ence on Parallel Architectures and Compilation Techniques,

2004.

[18] R. Ranjan, F. Latorre, P. Marcuello, and A. Gonzalez. Fg-

STP: Fine-Grain Single Thread Partitioning on Multicores.

In Proceedings of the International Symposium on High Per-

formance Computer Architecture, 2011.

[19] K. Sankaralingam, R. Nagarajan, H. Liu, C. Kim, J. Huh,

D. Burger, S. Keckler, and C. Moore. Exploiting ILP, TLP,

and DLP with the Polymorphous TRIPS Architecture. In

Proceedings of the International Symposium on Computer

Architecture, 2003.

[20] D. Tarjan, M. Boyer, and K. Skadron. Federation: Repur-

posing Scalar Cores for Out-of-Order Instruction Issue. In

Proceedings of the Design Automation Conference, 2008.

[21] S. Wallace, B. Calder, and D. Tullsen. Threaded Multiple

Path Execution. In Proceedings of the International Sympo-

sium on Computer Architecture, 1998.

[22] M. Xu, R. Bodik, and M. Hill. A “Flight Data Recorde”

for Enabling Full-system Multiprocessor Deterministic Re-

play. In Proceedings of the International Symposium on

Computer Architecture, 2003.

[23] J. Yang, K. Skadron, M. L. Soffa, and K. Whitehouse. Fea-

sibility of Dynamic Binary Parallelization. In Proceedings

of the Workshop on Hot Topics in Parallelism, 2011.

[24] E. Yardimci and M. Franz. Dynamic Parallelization and

Mapping of Binary Executables on Hierarchical Platforms.

In Proceedings of the Conference On Computing Frontiers,

2006.

[25] W. Zhang, B. Calder, and D. Tullsen. An Event-Driven Mul-

tithreaded Dynamic Optimization Framework. In Proceed-

ings of the International Conference on Parallel Architec-

tures and Compilation Techniques, 2005.

[26] X. Zhang and R. Gupta. Whole Program Traces. In Proceed-

ings of the International Symposium on Microarchitecture,

2004.

[27] Q. Zhao, I. Cutcutache, and W. Wong. PiPA: Pipelined Pro-

filing and Analysis on Multi-Core Systems. In Proceedings

of the International Symposium on Code Generation and

Optimization, 2008.

58

CRQ-based Fair Scheduling
on Composable Multicore Architectures

Tao Sun, Hong An, Tao Wang, Haibo Zhang, Gu Liu, Mengjie Mao

School of Computer Science and Technology
University of Science and Technology of China

Hefei, China,
suntaos@mail.ustc.edu.cn, han@ustc.edu.cn,{tao36, kopcarl, gliu, mjmao}@mail.ustc.edu.cn

Abstract— Emerging composable chip multiprocessors (CCMPs)
allow system software to dynamically configure chip computing
resources into different number and types of cores at runtime.
However, such dynamic heterogeneity poses a significant chal-
lenge to making fair scheduling, since the operating system tradi-
tionally only assumes fixed number and types of cores. To ad-
dress the fair scheduling problem on CCMP, firstly, this paper
introduces centralized run queue (CRQ) to capture the changing
number of cores, and proposes a pipeline-like scheduling me-
chanism to hide the large scheduling decision overhead caused by
the CRQ. Secondly, an efficiency-based dynamic priority (EDP)
algorithm is proposed to keep fair scheduling, which can not only
provide same applications with performance proportional to
their priorities, but also ensure equal-priority (different) applica-
tions to get equivalent performance slowdowns when running
simultaneously. In our experiments, several multi-program work-
loads are used for fairness evaluation, and the CFS algorithm is
also ported to CCMP for comparing with EDP. The simulation
results demonstrate that, besides achieving the fairness targets on
CCMP, EDP also outperforms CFS by as much as 10.6% in av-
erage turnaround time under heterogeneous workload.

Keywords- composable multicore; scheduling; fairness;
centralized run queue (CRQ)

I. INTRODUCTION

An emerging family of performance-asymmetric multicore
architectures, named composable chip multiprocessor (CCMP),
has been proposed in recent years [1, 5, 6]. Instead of placing
fixed heterogeneous cores at chip design time, CCMP consists
of small homogenous physical cores, but provides dynamic
heterogeneity at runtime by aggregating different number of
physical cores into different sized logical cores. This enables
CCMP to adapt the computing resources as the workload mix
or application parallelism requirements changed. Figure 1
shows a 16-physical core CCMP and its two possible dynamic
configurations. For ease of description, we use the terminology
P-N to refer to a logical core which is composed of N physical
cores, and we say P-x and P-y at different type when x≠y.
Typically, a logical core P-N will have N-times issue width,
instruction window, and level-1 I/D cache capacity than P-1.
The system software can dynamically configure different num-
ber and types of logical cores at runtime by calling the hard-
ware primitives (supported by CCMP micro-architecture).

However, such dynamic heterogeneity poses a significant
challenge to operating system in making fair scheduling on
CCMP. Firstly, schedulers on both symmetric-CMPs and fixed

P‐1

P-4

P‐1 P‐1

P‐1 P‐1 P‐1

P‐1 P‐1

P‐1 P‐1

P‐1 P‐1

P-2
P-2

P-8

P-4

Cores run OS Services

Composable cores

(i.e. Computing Resources)

Figure 1: Example 16-physical core CCMP and its two dynamic configurations

(b) A logical core is being Freed

 Core‐1 Core‐2 Core‐3 FREE

Scatter

(a) New logical core Created

 Core‐1 Core‐2 Core‐3

Gather

 NEW

Process
Executing

Figure 2: Gather/ Scatter operations caused by maintaining DRQs on CCMP

Figure 3: Speedups of different types of cores (P2/P4/P8) over P-1 running a
subset of SPEC 2K and EEMBC applications.

asymmetric-CMPs conventionally assume fixed number of
cores, and build distributed run queues (DRQs) on each core
for process scheduling. But in CCMP system, the number of
logical cores is often changed to gain the benefits of dynamic
heterogeneity, which makes the scheduler too expensive to
maintain DRQs upon logical cores. As Figure 2 illustrates,
when a logical core is being created or freed, the scheduler
needs to gather or scatter plenty of processes simultaneously to
maintain DRQs. Both operations are highly expensive.

Secondly, maintaining priority-based fairness on CCMP is
more challenging, as different applications (or different phases
of an application) probably run on different types of logical
cores, and the speedup-gains also vary widely across different
applications even on same core type (shown in Figure 3). Here
we define fairness in two features: it provides same applica-
tions with performance proportional to their priorities; while it
ensures equal-priority (different) applications to get equivalent
performance slowdowns when running simultaneously, i.e.
multi-program affects per-application performance equally if
they have equal priorities.

59

(Prioritized) Centralized Run Queue (CRQ)

P‐2

P‐2

P‐8

P‐4 Executing Queue (subset of CRQ)

 Record who are running

Figure 4: Example prioritized CRQ (can also be maintained as R-B tree in CFS).

 Time

Sched. Decision_1 Processes Running_1

Sched. Decision_2

Sched. Decision_3

Processes Running_2

Processes Running_3
Process‐Switching

Overhead

Schedule‐Tick

Figure 5: Pipeline-like scheduling mechanism. The scheduling decision over-
head may vary but typically shorter than OS schedule-tick (0.5ms in this work).

The rest of paper is organized as follows. Section II de-
scribes the centralized run queue (CRQ) based scheduling me-
chanism on CCMP. Section III firstly describes our efficiency-
based dynamic priority (EDP) algorithm, then discusses how
EDP can achieve system-wide fairness. Section IV discusses
the experimental results. Finally, Section V concludes.

II. CRQ-BASED SCHEDULING MECHANISM ON CCMP

A. Centralized Run Queue

As discussed in Section I, maintaining per-core distributed
run queues (DRQs) upon CCMP is highly expensive. Instead,
as illustrated in Figure 4, using centralized run queue (CRQ),
the scheduler can easily capture the changing number of logical
cores by maintaining an additional executing queue, which is
simply a subset of the CRQ but records the current running
processes. Furthermore, the CRQ can also be implemented as
the prioritized queue for fair scheduling.

Besides the benefits, CRQ also brings larger scheduling
decision overhead [7] and the scalability problem. In next sub-
section, we propose a pipeline-like scheduling mechanism to
hide the decision overhead of scheduler. In this paper, we do
not address the scalability in first place (we leave it for future
work), but we would like to make a short discussion on it.

Scalability of using CRQ. It is assumed that the future
many-core OS is probably to divide the cores into clusters and
provide a set of OS services for each individual cluster in paral-
lel [10]. Thus, the OS scheduling can be done at two levels:
intra- and inter- clusters. In each cluster, the CRQ-based pipe-
line-like mechanism can be well used because of a limited
number of cores (due to dividing). Between clusters, the CRQ
of each cluster can be viewed as the per-cluster DRQ at cluster-
level to support load balancing and cluster-level scalability.

B. Pipeline-like Scheduling Mechanism

Overview of the scheduling procedure on CCMP.
Figure 6 presents an overview of the scheduling procedure on
CCMP with CRQ. A new process will be assigned the smallest
core type (i.e. P-1) when created. At the beginning of every
schedule-tick (0.5ms in this work), the OS scheduler collects
the runtime information of each running process (shown by
②), evaluates the execution efficiencies (defined in Eq.2) and

Composable cores (CCMP)
(i.e. Computing Resource)

①

OS scheduler
Collect each process’
Runtime Information

(e.g. IPC)

Update each running
process’ Core Type

 OS scheduling algorithm (e.g. CFS, or EDP)

 Efficiency Evaluator

(Find suitable core type for per‐process)

 Switch processes on to /
off from composable cores.

②

③

(④)

(By using hardware primitives:
 “ create / free logical core ”)

CRQ … …

Figure 6: Overview of the proposed scheduling procedure on CCMP.

updates the core types (shown by ③); then, the scheduler
switches processes based on scheduling decision and puts the
selected ones to run on composable cores by calling the hard-
ware primitives create/free logical core (shown by ①&④).

P-N
P-N

P-1
=

IPC

IPC
Speedup

 P-N
P-N =

Speedup

N
ExecutionEfficiency

 Pipeline-like scheduling mechanism. Also shown in
Figure 6, OS services are running on separate cores. This pro-
vides an opportunity to “pipeline” OS scheduling decision
with processes running on composable cores. Such pipeline-
like mechanism is based on two facts. First, since the core
types of processes are unchanged between two adjacent OS
schedule-ticks, once the scheduler finishes process-switching,
it in fact accurately knows the core type of each running
process in this schedule period and the remaining time slice
after this period. Second, once the scheduler finishes process-
switching, the core running scheduler becomes idle.

Thus, as shown in Figure 5, while processes running on
composable cores, the scheduler can correctly pre-calculate the
dynamic priority (or key in CFS [8]) of each process, and pre-
maintain the CRQ to be prioritized as the new-calculated
priorities. When next schedule-tick arrives, since the CRQ has
been properly pre-sorted, the scheduler only needs to update
the core types of processes running in last period, and then
simply put processes one by one to composable cores from the
head of CRQ (if process-switching happens), until there is no
enough resources to form the demanded core type. Therefore,
the large scheduling decision overhead caused by the CRQ can
be well hidden by such pipeline-like scheduling mechanism.

It is worth mentioning that most of existing scheduling al-
gorithms, e.g. CFS [8], can be rebuilt on top of such pipeline-
like scheduling mechanism with moderate modifications.

III. EDP FAIR SCHEDULING ON CCMP

This paper proposes an efficiency-based dynamic priority
(EDP) algorithm to make fair scheduling on CCMP, whose
target is to provide same applications with performance propor-

(Eq. 1) , IPCP-N is task’s IPC collected on P-N

(Eq. 2)

60

Figure 7: Speedup (left Y-axis) and execution Efficiency (right Y-axis) of
different types of cores (P-1/ P-2/ P-4/ P-8) running three typical applications.
Three figures are aligned in right Y-axis (efficiency).

tional to their priorities, as well as ensure equal-priority (differ-
ent) applications to get equivalent performance slowdowns
when running simultaneously.

EDP fair scheduling has two basic ideas: first, it keeps all
applications running at efficiencies around a given threshold
(typically given by OS scheduler); second, it consumes applica-
tions’ time slices in different speeds depending on their core
types. Following two subsections discuss the two ideas in detail.

A. Keep Applications Running at Similar Efficiencies

A powerful characteristic of CCMP is its capability to dy-
namically configure computing resources (i.e. physical cores)
into different number and types of logical cores. This provides
an opportunity to keep different applications running at similar
efficiencies by assigning them different types of logical cores.

Figure 7 presents the speedups and efficiencies of three typ-
ically different applications running on different types of cores.
We can see that, although each application commonly gets
higher speedup at bigger core type, its execution efficiency
continuously decreases. This suggests that if a system-wide
efficiency threshold is given, different applications are able to
achieve the threshold by running on different types of cores.
E.g., mcf can reach the efficiency shown by the red line in Fig-
ure 7 when running on P-2, while applu on P-4 and fft on P-8.

As execution efficiency decreases when core type increases,
in this paper we modified the PDPA algorithm [4] to find the
biggest core type for each application in each phase (depending
on execution efficiency) when a lowest_efficiency_threshold is
given. Due to space limitation, the details of modified algo-
rithm are not shown in paper.

B. Efficiency-based Dynamic Priority (EDP) algorithm

Figure 3 has shown that the speedup-gains vary widely
across different applications. Thus, we argue that the fair
scheduling on CCMP must consider per-application’s execu-
tion efficiency (recall Eq.2). Based on this idea, this paper
proposes an EDP algorithm, which takes the cores’ hetero-
geneity (i.e. core types), the tasks’ priorities and the execution
efficiencies all into scheduling decision.

EDP keeps track of all runnable processes (in CRQ) by
two arrays, an active array and an expired array, like O(1)
scheduler [9] does. Let’s say a new schedule round begins
when the pointers of expired array and active array switched,
i.e. the active array in last round becomes the expired array in
current round and vice versa.

EDP schedules with following features:
① It uses the same algorithm as O(1) scheduler [9] to give

each process a dynamic priority to avoid starvation. But it
does not give any additional time slice when promoting the
dynamic priority of one waiting process.

② It always selects to execute the processes in active array
with higher dynamic priorities, and schdules the equal dynam-
ic priority processes as first-in-first-out order in each round.

③ It assigns each process proportional amount of time
slice according to its static priority (100~139).

④ It assigns each process different speed to consume its
time slice, depending on its core type. For example, when a
process runs on P-2, its time slice is reduced by 2 after one
schedule-tick. But when it runs on P-4, its time slice is re-
duced by 4. Such a scheduling decision ensures equal-priority
applications to get equal amounts of computing resources.

⑤ When one process uses up its time slice in this round,
EDP will reset its time slice and move it from active array to
expired array.

⑥ To avoid wasting of computing resources, when there
are less than a pre-defined number (4 in this work) of
processes in active array but the expired array is nonempty,
EDP will add each remaining process in active array with its
time slice in new round, promote its dynamic priority (10 in
this work), and move it to expired array. Then the active and
expired array are switched and new schedule round begins.
This method may cause unfairness in each round, but fairness
can be maintained among several rounds.

C. Summarize the Fair Scheduling on CCMP with EDP

EDP can ensure processes to get the proportional amounts
of computing resources to their priorities. By employing the
modified PDPA algorithm (discussed in subsection A), EDP
can also keep different applications running at similar effi-
ciencies by setting a lowest_efficiency_threshold (set to 0.8 in
this paper). So EDP can provide the demanded fairness.

IV. EXPERIMENTAL RESULTS

A. Experimental Methodology

Platform. We model a 32-physical core CCMP in the expe-
riments by using a cycle-accurate TFlex [1] simulator. The
micro-architecture parameters are same as in [1]. Maximum 16
logical cores can be formed simultaneously and four types are
allowed(P-1, P-2, P-4, P-8). We assume the future CCMP chips
can run at 1GHz, so 0.5ms is equal as 0.5M cycles in simulator.

Overheads. The overheads of logical core reconfiguration
and process-switching are all counted in final results. The hard-
cost of per-core reconfiguration (include saving/restoring regis-
ter and TLB states to/from memory, configuring a new logical
core) is about 550 cycles; the soft-cost (include recreating
branch predictor and L1 cache states on the new logical core) is
counted into task’s execution time. The scheduling decision
overhead does not affect results, since the decision overhead
can be well hidden by the pipeline-like mechanism (Section II.B).

Workloads. Nine of SPEC 2K and EEMBC applications are
selected to build homogenous and heterogeneous workloads.
They are shown in Fig. 3: mcf, tblook, cacheb (low speedups),
canrdr, applu, matrix (medium speedups) and rspeed, mgrid,
fft (high speedups). The simpoint tool is used for SEPC appli-
cations. Each task is chosen to be the length of 100M cycles of
an application on P-1. Each workload consists of 30 tasks.

Evaluation. All the 30 tasks in each workload become run-
nable at the same beginning time. Whenever a process exits, a
new one is started to keep the system load unchanged. The

61

Figure 8: EDP scheduling on homogenous workloads. Each workload consists of same applications, and the applications are shown under figures. Tasks in (a) ~ (c)
have same priority. But half of tasks in (d)~(f) have high-priority (100), while the others have low-priority (120), the ideal performance of high : low should be 2:1.

Figure 9: Fairness evaluation under heterogeneous workload, comparing between EDP and CFS scheduling on CCMP. Reconfig-overhead is too small to see in
figures. The heterogeneous workload consists of 2 mcf, 4 tblook, 4 cacheb, 4 canrdr, 2 applu, 4 matrix, 2 mgrid, 4 rspeed, and 4 fft (total 30 tasks).

fairness is evaluated by the maximum deviation degree of the
completion time (i.e. turnaround time) of each of 30 tasks. The
average completion time is also used as the performance metric.

B. Experimental Results

Firstly, we evaluate if EDP can ensure priority-based fair-
ness for homogenous applications. Figure 8 (a) ~ (c) show the
completion time of each task in three workloads, which are
consists of 30 copies of tblook, canrdr, and fft, respectively.
The tasks in each workload (a) ~ (c) will get the same comple-
tion time if an ideal fair scheduler is used. We can see that EDP
can provide good fairness. More precisely, the delta in the
figure presents the degree of unfairness, which is calculated as:

 delta = maximum (|mean – best|, |mean – worst|)
The workloads in Figure 8 (d)~ (f) are similar with (a)~ (c),

except that the tasks have different priorities. Half of the tasks
have high_priority (100), and the others have low_priority (120).
The high_prio tasks will get as twice performance as low_prio
ones under an ideal fair scheduling. We can see that EDP again
provides good priority-based fairness.

Because CFS shares the similar scheduling decisions as EDP
under the homogenous workloads, CFS results are not shown.

Secondly, we evaluate if EDP can ensure equal-priority ap-
plications to be affected equally under multi-program execution.
The heterogeneous workload (includes 9 different applications)
is used for evaluation. Figure 9 (a) shows the completion time
of each task under EDP scheduling, and Figure 9 (b) shows the
CFS scheduling results for comparison. Since CFS does not
consider the heterogeneity between logical cores and the execu-
tion efficiencies of applications, it fails to ensure equal-priority
applications getting equivalent performance slowdowns under
multi-program execution. The results show that EDP is able to
provide such fairness.

Finally, it is worth mentioning that the average completion
time under EDP scheduling is 10.6% shorter than CFS when
heterogeneous workload used (Figure 9), which means EDP
provides better per-task performance than CFS in average.

V. CONCLUSION AND FUTURE WORK

To make fair scheduling on CCMP, firstly, this paper intro-
duced CRQ to capture the changing number of logical cores,
then proposed a pipeline-like scheduling mechanism to hide the
larger scheduling decision overhead caused by the CRQ. Se-
condly, this paper proposed an EDP algorithm, which can pro-
vide priority-based fairness under both homogenous and hete-
rogeneous workloads. The experimental results also showed
that EDP outperforms CFS by as much as 10.6% in average
turnaround time under heterogeneous workload on CCMP.

We see two main areas of focus in next work. First, we will
evaluate how much benefit can be brought by the composabili-
ty through comparing several system metrics between symme-
tric-, asymmetric-CMPs (e.g. [3]) and CCMP. Second, we will
address and evaluate the scalability of using CRQ on CCMP.

ACKNOWLEDGMENT
We thank Doug Burger, Dong Li, and Xiufeng Sui for suggestions.

This work is financially supported by the National Research Program
of China under contract 2011CB302501, 60633040, 2009AA01Z106.

REFERENCES
[1] C. Kim, et al. Composable lightweight processors. MICRO’ 2007
[2] H. Vandierendonck, and A. Seznec. Fairness metrics for multi-threaded

processors. Computer Architecture Letter, issue 1. 2011
[3] T. Li, et al. Operating system support for overlapping-ISA hetero-

geneous multi-core architectures. HPCA’ 2010.
[4] D. Gulati, et al. Multitasking workload scheduling on flexible-core chip

multiprocessors. PACT’ 2008
[5] E. Ipek, et al. Core fusion: accommodating software diversity in chip

multiprocessors. ISCA’ 2007
[6] Y. Watanabe, et al. WiDGET: Wisconsin Decoupled Grid Execution

Tiles. ISCA’ 2010
[7] S. P. Dandamudi. Reducing Run Queue Contention in Shared Memory

Multiprocessors. IEEE Computer’ 1997.
[8] I. Molnar, "Modular Scheduler Core and Completely Fair Scheduler

[CFS]". http://lwn.net/Articles/230501. 2008.
[9] IBM DeveloperWorks, Inside the linux scheduler,

http://www.ibm.com/developerworks/linux/library/l-scheduler. 2006
[10] D. Wentzlaff and A. Agarwal. Factored operating systems (fos): the case

for a scalable operating system for multicore. ACM Ope. Sys. Rev. 2009.

H
ig
h
_p

ri
o

Lo
w
_p

ri
o

 0

 T
as
kI
D

2
9

mean = 120.1 M

delta/mean = 82.5%

mean = 107.4 M

delta/mean = 18.3%

(X-axis is in cycle)

 C
om

pl
et

io
n

 T
im

e
 (

C
yc

le
)

(a) EDP (b) CFS

62

	Session-1.pdf
	UCAS7-Univ-Virginia
	UCAS7_Bak_Heiner
	WIP-UCAS7-CUDA-UTSA
	UCAS7-Florida_Intl_Uni

	Session-2.pdf
	UCAS-7_impact_tech_scaling_final
	UCAS7-Analog-Electronics
	UCAS-7_paper_yano

	Session-3.pdf
	UCAS7-Coimbatore
	WIP_UCAS7-Network-Delay-UTSA
	WIP-UCAS7-CRQ

