
!"#$%%&'()*+#,+-.%+/'0-.+1(-%"(2-'#(23+

Workshop on Unique Chips and

Systems

U C A S – 6

December 4th, 2010

Atlanta, GA

Held in Conjunction with

the 43rd Annual IEEE/ACM International Symposium

on Microarchitecture (MICRO-43)

  i 

U C A S – 6

December 4th, 2010
Atlanta, GA

  ii 

UCAS-6 Organizing Committee

General Chairs

 Byeong Kil Lee, University of Texas at San Antonio
 Dhireesha Kudithipudi, Rochester Institute of Technology
 Tor Aamodt, University of British Columbia

Technical Program Committee

Rajeev Balasubramonian, University of Utah
Pradip Bose, IBM TJ Watson
Chen-Yong Cher, IBM TJ Watson
Young Kyu Choi, KUT
Jeanine Cook, New Mexico State University
Manoj Franklin, University of Maryland
Jie Han, University of Alberta
Jaehyuk Huh, KAIST
Ali Irturk, University of California San Diego
Hans Jacobson, IBM TJ Watson
Tejas Karkhanis, IBM TJ Watson
Omer Khan, MIT
Shigeru Kusakabe, Kyushu University
Jeffrey Kuskin, D.E. Shaw Research
Rabi Mahapatra, Texas A&M University, College Station
Saraju Mohanty, Univ. of North Texas
Mike O'Connor, AMD Research
Mark Oskin, University of Washington
Sanghamitra Roy, Utah State University
Karu Sankaralingam, University of Wisconsin
Resit Sendag, University of Rhode Island
Michael Shebanow, NVIDIA
Lei Wang, Univ. of Connecticut

  iii 

Table of Content

Session I: Computer Architecture - 1

Early Experience with Profiling and Optimizing Distributed Shared Cache Performance on
Tilera’s Tile Processor ……..……………………….…………………………………………... 2
 Inseok Choi, University of Maryland at College Park
 Minshu Zhao, University of Maryland at College Park
 Xu Yang, University of Maryland at College Park
 Donald Yeung, University of Maryland at College Park

A Formalized Task Migration Framework for Multiple Configurable Processors Shared Memory
SoC Platforms ………………………………………………………………………………….. 10
 Hao Shen, TIMA Laboratory, France
 Frédéric Pétrot, TIMA Laboratory, France

Forest Fires: improving a Cache Replacement Algorithm (Work-in-progress) ……………..… 19
 Filipe Montefusco Scoton, University of Sao Paulo
 Mario Donato Marino, University of Virginia
 Jorge Mamoru Kobayashi, University of Sao Paulo

Integral Parallel Architecture in System-on-Chip Designs (Work-in-progress) ..……………… 23
 Gheorghe M. Ştefan, Politehnica University of Bucharest, Romania

Session II: Computer Architecture - 2

Confusion by All Means ……………………………………………………………………….. 28
 Muhammad Faisal Iqbal, University of Texas at Austin
 Lizy K. John, University of Texas at Austin

Validation of Synthetic Benchmarks by Measurement (Invited) ……………………………..... 34
 Jungho Jo, University of Texas at Austin
 Lizy K. John, University of Texas at Austin
 Michele Reese, Freescale Semiconductor
 Jim Holt, Freescale Semiconductor

Selection of Representative Simulation Point using Performance Metric-based Similarity (Work-
in-progress) …………………………………………………………………………………….. 40
 Satish Raghunath, University of Texas at San Antonio
 Byeong Kil Lee, University of Texas at San Antonio

Marching Memory: designing computers to avoid the Memory Bottleneck
(Work-in-progress) …………………………………………………………………………….. 44
 Tadao Nakamura, Keio University, Japan
 Michael J. Flynn, Stanford University

  iv 

Session III: VLSI Design

Lightweight Energy Prediction Filters for Solar-Powered Wireless Sensor Networks ………. 49
 Cory E. Merkel, Rochester Institute of Technology
 Dhireesha Kudithipudi, Rochester Institute of Technology
 Andres Kwasinski, Rochester Institute of Technology

An Ultra Low Power Digitally Controlled Oscillator with Low Jitter and High Resolution ….. 56
 Nasser Erfani Majd, Tarbiat Modares University (TMU), Iran
 Mojtaba Lotfizad, Tarbiat Modares University (TMU), Iran
 Arash Abadian, Tarbiat Modares University (TMU), Iran
 Mohammad Bagher Ghaznavi Ghoushchi, Shahed University, Iran

Early Stage Trade-offs Analysis in Reconfigurable H.264 Video Design (Work-in-progress) .. 61
 Youngsoo Kim, North Carolina State University
 Kyungsu Kim, Electronics and Telecommunications Research Institute (ETRI), Korea
 Seongmo Park, Electronics and Telecommunications Research Institute (ETRI), Korea

RSA Cryptography Acceleration for Embedded System (Work-in-progress) ………………… 65
 Rolando Duarte, Florida International University
 Chen Liu, Florida International University
 Xinwei Niu, Florida International University

Session I: Computer Architecture - 1
!

1

Early Experience with Profiling and Optimizing
Distributed Shared Cache Performance on Tilera’s Tile Processor

Inseok Choi, Minshu Zhao, Xu Yang, and Donald Yeung
Department of Electrical and Computer Engineering

University of Maryland at College Park
{inseok,mszhao,yangxu,yeung}@umd.edu

Abstract—This paper describes our experience with profiling
and optimizing physical locality for the distributed shared
cache (DSC) in Tilera’s Tile multicore processor. Our approach
uses the Tile Processor’s hardware performance measurement
counters (PMCs) to acquire page-level access pattern profiles.
A key problem we address is imprecise PMC interrupts. Our
profiling tools use binary analysis to correct for interrupt
“skid,” thus pinpointing individual memory operations tha t
incur remote DSC slice references and permitting us to sample
their access patterns. We use our access pattern profiles to drive
page homing optimizations for both heap and static data objects.
Our experiments show we can improve physical locality for 5
out of 11 SPLASH2 benchmarks running on 32 cores, enabling
32.9%–77.9% of DSC references to target the local DSC slice.
To our knowledge, this is the first work to demonstrate page
homing optimizations on a real system.

I. I NTRODUCTION

Practically all current high-performance commercial
CPUs integrate multiple cores on a single chip. Today,
multicore chips with 4-8 cores are commonplace. Several
companies have also demonstrated that it is possible to
integrate many 10s of cores on-chip [1], while others are
shipping manycores [2] that run standard operating systems
and are programmable using familiar shared memory mod-
els. And since Moore’s law scaling will continue at historic
rates for the foreseeable future [3], even higher core counts
are expected down the road.

A key determiner of multicore performance is the on-
chip cache. As the number of cores increases, it becomes
necessary to introduce hierarchy or to distribute the cache
across the chip and provide independent access to separate
cache banks in order to keep up with the on-chip parallelism.
A multicore in which the shared cache is distributed among
the processor’s cores is called a distributed shared cache
(DSC [4]) architecture. Memory references to such phys-
ically distributed shared caches exhibit non-uniform cost
since data placed in a cache bank close to a requesting core
can be accessed more quickly than data placed in a distant
bank. Even when the caches are coherent, the cache misses
will exhibit a non-uniform cost. This can affect performance
each time the distributed cache is accessed–i.e., when a
miss occurs from a cache higher up in the on-chip memory
hierarchy.

On processors with distributed caches, higher performance
can potentially be achieved by managing on-chip physical
locality so that data are placed in the cache banks closest to
their referencing cores. Such bankhoming optimizationscan
be controlled either in hardware at cache-block granularity
or in software at page granularity. Hardware techniques,
which are implemented within the cache coherence protocol,
typically map the cache blocks on different banks based on
memory block addresses. Software techniques typically rely
on the operating system to provide homing information via
the virtual memory layer, thus enabling individual pages to
be homed on different banks. Page-based techniques often
require profiling to determine per-page access patterns for
driving the page homing decisions. Apart from homing
optimizations, it is also possible to replicate and/or migrate
data at runtime to further improve physical locality (e.g., to
track dynamically changing access patterns).

Several researchers have explored homing optimizations
in the past, with significant prior work related to both
hardware cache block-based [5], [6], [7], [8], [9], [10], [11]
as well as software page-based [12], [13], [14], [15] tech-
niques. However, all of this prior research was conducted on
simulators. To our knowledge, no study has applied homing
optimizations on real processors. Such research is important
because it can highlight real-world issues overlooked by
simulation studies that must be addressed before possible
benefits can be realized.

In the past, processors did not implement distributed
caches, so real-system studies were not possible. But this
is no longer the case today. For example, Tilera Corporation
has recently shipped many-core CPUs that use a tiled CMP
architecture. In theseTile Processors[2], the lowest level
of cache employs a cache-coherent distributed shared cache
architecture. A typical Tile processor DSC is composed of
64 independent cache ”slices” distributed amongst the cores,
hardware maintains cache coherency and operating system
provide homing information. When a processor makes a
given memory reference and suffers a cache miss, the cache
coherency mechanism directs the miss to ahome cacheon
another core on the chip, thereby potentially averting a costly
off-chip DRAM access. The coherency hardware then moves
the referenced data automatically to the referencing core’s

2

cache so that subsequent references may be satisfied locally.
In this architecture, cache misses incur a variable cache
access latency, making homing optimizations relevant.

This paper presents our early experience with improving
physical locality in a Tile Processor’s DSC. Our work
focuses on how to apply page-based homing optimizations
on the Tile CPU, making the following contributions. First,
we present a novel technique for acquiring fine-grain page-
level access pattern information for driving page placement
decisions. Although only information about which threads
access which pages is needed, determining this requires pin-
pointing individual memory instructions so that the memory
addresses, and hence pages, each thread accesses can be
profiled. Our solution leverages the Tile Processor’s hard-
ware performance measurement counters (PMCs) to sample
the effective addresses of individual memory instructions.
PMCs enable low-overhead profiling, but they are typically
not designed to provide per-instruction sample resolution.
A key part of our solution is to use binary analysis to
correct the imprecise hardware samples, thus pinpointing
individual memory instructions that reference remote slices
and permitting us to profile their access patterns.

Second, we use our access pattern profiles to drive homing
decisions, to place the pages on the tile that accesses them
the most. Specifically, we try to explicitly home and improve
physical locality for pages in the heap and static data
memory regions. We currently only optimize pages that are
referenced primarily by a single core, placing them on the
DSC slice closest to the core with the most references to
the page. Our optimizations do not allow page migration.
Instead, placement decisions made at memory allocation
time are fixed for the duration of the program’s run.

Finally, we conduct experiments using programs from
the SPLASH2 benchmark suite [16] that demonstrate our
profiling and optimization techniques. Our results show we
can improve physical locality for 5 out of 11 SPLASH2
benchmarks running on 32 cores, enabling 39.3%–77.9%
of DSC references to target the local DSC slice. Moreover,
we find our homing optimizations already exploit most of
the potential physical locality in the SPLASH2 benchmarks.
Significant improvements can only come by creating more
opportunities for homing, perhaps by addressing false shar-
ing via smaller virtual memory pages.

The remainder of the paper is organized as follows.
Section II presents our access pattern profiling techniques.
Then, Section III describes how we home pages based on
the access pattern profiles. Next, Section IV discusses our
experiments. Finally, Section V concludes the paper.

II. A CCESSPATTERN PROFILES

Software page-based techniques require access pattern
information to drive page homing decisions. In particular,
the distribution of references performed by cores on a
per-page basis is needed. In previous work, such access

core

L1
L2

slice

switch

Figure 1. A typical Tile Processor is composed of 64 tiles, each containing
a VLIW core + L1 cache, an L2 cache “slice,” and an on-chip network
switch.

pattern profiles were obtained via simulation which is slow
and requires architectural simulators. To enable page-based
techniques on real systems, it is crucial to develop more ef-
ficient techniques. This section describes how access pattern
profiles can be acquired using hardware PMCs. Section II-A
begins with an overview of the Tile Processor architecture
and its PMC support. Then, Section II-B discusses the
problem of profiling individual memory instructions, and
describes how we address the problem. Finally, Section II-C
presents the profiling system we built.

A. Tile Processor

A typical Tile Processor, illustrated in Figure 1, consistsof
a grid of 64 general-purpose VLIW cores and interconnected
by multiple 2D mesh on-chip networks. Each core has its
own private split L1 cache, and a local L2 cache that acts
as one slice of a distributed shared cache. The core and
its associated cache are connected to the on-chip networks
through a switch. The switch, core, and cache are referred to
as atile. Cores can access their local L2 slice with minimal
latency, but incur increasingly higher latencies to access
more distant L2 slices due to inter-tile communication across
the switched interconnect.

Tile Processors allow several ways in which data can
be placed across the DSC caches, including on a page-by-
page basis in which each page can be homed on any given
core. This permits flexible OS-controlled distribution of data.
Since our work focuses on page-based homing, we use the
Tile Processor’s per-page mechanism exclusively.

In the per-page approach, every virtual memory page is
assigned its own home tile. The home tile’s L2 cache is
where cache blocks from the page are cached on-chip. In
Section III, we will discuss how software can specify the
home for each page, thus controlling data placement on-
chip.

To enable measurement of low-level hardware events,
the Tile Processor supports 2 32-bit hardware performance
measurement counters per tile. Each hardware PMC can

3

observe one of 99 pre-defined hardware events at any
moment in time. These events monitor instruction execution
in the cores, memory operations in the memory hierarchy, as
well as traffic across the on-chip network. The Tile Processor
runs a Linux operating system which supports OProfile, a
UNIX system-level utility for accessing the hardware PMCs.
In addition, we ported PAPI [17] and Perfmon2 [18] to the
Tile Processor.1 These are standard APIs that export a fuller
set of PMC features to users compared to OProfile.

B. Using PMCs to Profile Memory References

For every page in memory, we profile the number of
references each core makes to the page in the DSC, thus
identifying the most frequently referencing core(s) on a per-
page basis at the DSC level. We only profile read references
(loads) since these are the main source of performance
degradation. (Stores write to a store buffer on a cache miss.
They do stall when a memory fence is performed, but the
programs we study,e.g.SPLASH2, are coarse grain parallel
programs in which fences are very infrequent. Therefore,
stores rarely stall in such programs).

The Tile Processor’s PMCs can monitor a remote-read
hardware event which is useful for acquiring access pattern
profiles. A remote-read event occurs each time a core issues
a load instruction that misses in the local L1 cache and then
hits in a remote L2 slice. This monitors all DSC references
except for those issued by the core on the referenced page’s
home. To get around this problem, during profile runs, we
home all pages on a spare tile not running any of the
compute threads, thus forcing all DSC references to be non-
local and allowing them to be monitored by the remote-read
event.

While the PMCs can count DSC references, they alone
cannot associate the counts to pages and cores. For this,
we rely on sampling. Hardware PMCs can be configured
to deliver an interrupt after a pre-set number of remote-
read events have occurred, allowing an interrupt handler to
periodically sample load references to the DSC. In particular,
each interrupt can identify the core performing the load,
as well as the particular load instruction involved (i.e., its
program counter or PC). Moreover, given knowledge of
the particular load being sampled, the interrupt handler can
probe the register containing the load’s effective address
and identify the referenced page. In this fashion, each
interrupt/sample can attribute a single page reference to a
particular core. After a large number of such samples, we can
determinestatisticallythe frequency with which all pages in
a program are referenced by each core.

One obstacle to implementing this approach is the Tile
Processor’s PMCs (as well as those on most other com-
mercial CPUs) does not provide per-instruction sampling
resolution. The problem is PMC interrupts are not precise.

1The latest versions of PAPI are implemented on top of Perfmon2.

PC1: Load r1, (r2)

PC2: Add r3, r1, r5

...

stall

PMC interrupt

Event-triggering load

PC2 sampled

Skid

Figure 2. Imprecise handling of PMC interrupts on the Tile Processor
results in sampling of the instruction dependent upon the event-triggering
load (PC2) rather than the load itself (PC1).

When a PMC interrupt is signaled, the core keeps executing.
At some later time, the interrupt is actually serviced, but by
then the core may have executed past the event-triggering
instruction. If so, the PC sampled is not the load performing
the DSC reference, but rather some other PC further down
the instruction stream. Such PMC sampling “skid” is not
a problem when trying to locate the function or thread
incurring an event, but it prevents pinpointing individual
memory instructions which is necessary to profile their
access patterns.

Fortunately, it is possible to correct for sampling skid on
the Tile Processor due to certain features of its pipeline. The
Tile CPU employs a register file with presence bits [19]
that allow execution past cache-missing loads, providing
some latency tolerance. Rather than the cache-missing load
stalling the pipeline, the first instruction to use the load’s
target register stalls, as illustrated in Figure 2.2 In practice,
we find the delay in signaling a PMC interrupt is larger
than the def-use distance for loads that reference the DSC
(we observe a def-to-use of 1–20 VLIW instruction bun-
dles), but smaller than the latency for the remote L2 slice
access. Hence, the PMC interrupt almost always samples the
instructiondependenton the event-triggering load.

By performing dependence analysis, we can identify the
event-triggering load instruction from the sampled PCs: itis
the first load preceding the sampled PC whose destination
register matches one of the sampled instruction’s source
registers. Usually, we encounter the event-triggering load in
the same basic block as the sampled instruction. However,
in some cases, the event-triggering load resides in the
basic block preceding the block containing the sampled
instruction. To handle these cases, we perform dependence
analysis across basic blocks when necessary.

C. Profiling Tools

We perform two profiling runs to acquire the access pat-
tern profiles. The first addresses the imprecise PMC interrupt
problem described in Section II-B. It collects all of the
imprecisely sampled PCs that occur in the profiled program.
Then, after this profiling run completes, we perform binary

2It is possible that the first use does not stall if the cache-miss latency
is completely overlapped, but this is not the common case.

4

Binary
Analysis Tool

Program Binary

Imprecise-to-Corrected

Access
malloc

OProfile

PAPI Profiler

Imprecise PC

Pattern
LogProfile

Samples

PC Table

Figure 3. Profiling infrastructure for acquiring access pattern profiles.

analysis to correct the sampling skid and identify the event-
triggering loads. From this analysis, we build a table that
associates the imprecise PCs with their corresponding cor-
rected PCs, along with the register containing the effective
address of the event-triggering load at the corrected PC.

The second profiling run acquires the actual access pattern
profiles. During this profiling run, each sampling interrupt
consults the imprecise-to-corrected PC table computed from
the first profiling run to identify the load responsible for
the interrupt as well as its effective address register. As
discussed in Section II-B, the interrupt handler probes the
register to determine the referenced page, and logs the
sample (core ID and page number) in a profile table. At
the end of the second profiling run, this profile table–which
contains the access pattern profile–is output to the user.

Figure 3 illustrates the tools involved in profiling. We
use the OProfile utility (see Section II-A) in its unmodified
form to collect the imprecise PC samples. We built our own
binary analysis tool to construct the imprecise-to-corrected
PC table. This binary analyzer extracts a control flow graph
from the program binary to permit inter-basic block analysis
when searching for the corrected PCs. Finally, we use PAPI
to acquire the access pattern profiles. We modified PAPI
to download the imprecise-to-corrected PC table into the
kernel. We also modified PAPI’s kernel-level PMC counter
overflow handler to perform the PC sample correction and
load effective address identification.

In addition to profiling access patterns, we also log all
calls to malloc, the heap memory allocator. During each
malloc call, we record the call site as well as the dynamic
instance for that call site (in case it is executed multiple
times). When each malloc call returns, we record the starting
address and size of the allocated object. This information
allows us to associate pages in the access pattern profiles
back to individual heap objects, and to identify where (call
site and dynamic call instance) those objects were created.
As the next section will show, this information can be used
for optimizing heap objects.

III. PAGE HOMING OPTIMIZATION

Once the access pattern profile and malloc log have been
acquired for a given program, subsequent executions of the
program can use them to drive page homing optimizations.
This section presents our optimizations. First, Section III-A
describes the access patterns that we target. Then, Sec-
tions III-B and III-C explain how we drive page homing
for the heap and static data regions, respectively.

A. Optimization Opportunities

Our page homing optimization tries to home pages resid-
ing in the heap and static data memory regions on the tiles
where they are referenced most frequently. Currently, our
optimization targets pages in the access pattern profiles that
are referenced primarily by asingle core. Figure 4 shows
an example access pattern profile, illustrating the different
access patterns and objects we optimize.

In Figure 4, we graph the access pattern profile for a
16-core execution of Ocean, a program from the SPLASH2
benchmark suite [16]. Pages are plotted along the X-axis
while cores are plotted along the Y-axis. The graph plots
the normalized number of samples acquired for each page
from each core along the “Z-axis” (extending out of the
paper). Samples that are particularly large are highlighted by
the shaded peaks. As Figure 4 shows, the pages numbered
106 to 883 are referenced primarily by a single core (i.e.,
at each X-axis point in this range, there is always a single
Y-axis point with a dominant peak). These are the pages our
optimization tries to explicitly home.

In addition to identifying the pages to optimize, we must
also identify which program-level objects the pages belong
to. This is particularly important for heap objects because
it determines which malloc calls must be instrumented to
control homing (see Section III-B). In practice, we find there
are two different types of objects. The first is illustrated in
Figure 4 by pages 148–274 and 274–442 which form diag-
onal access patterns that increase in core ID with increasing
page number. Each of these two memory regions is a single
object (in this example, they are both on the heap and each
is allocated by a single malloc call). Due to their diagonal
access pattern, each object is accessed by all the cores,
but most of the per-core accesses are destined to mutually
exclusive and contiguous pages in the object. These two
memory regions are examples ofdistributed arrays. They
can be optimized by distributing their pages in chunks across
neighboring tiles to match their diagonal access patterns.

The second type of object is illustrated in Figure 4 by
pages 106–127 and 442–883 which form diagonal access
patterns that decrease in core ID with increasing page
number. Again, most of the per-core accesses in these two
memory regions are destined to mutually exclusive and
contiguous pages. But instead of one object containing all
of the pages on the diagonal, each set of pages that are
referenced by the same core is a separate object (i.e., on the

5

0

3

6

9

12

15

0

0.5

1

1

2
1

4
1

6
1

8
1

1
0
1

1
2
1

1
4
1

1
6
1

1
8
1

2
0
1

2
2
1

2
4
1

2
6
1

2
8
1

3
0
1

3
2
1

3
4
1

3
6
1

3
8
1

4
0
1

4
2
1

4
4
1

4
6
1

4
8
1

5
0
1

5
2
1

5
4
1

5
6
1

5
8
1

6
0
1

6
2
1

6
4
1

6
6
1

6
8
1

7
0
1

7
2
1

7
4
1

7
6
1

7
8
1

8
0
1

8
2
1

8
4
1

8
6
1

8
8
1

9
0
1

9
2
1

9
4
1

9
6
1

Core IDS

Page Numbers

0.5-1

0-0.5

0

3

6

9

12

15

0

0.5

1

1

2
1

4
1

6
1

8
1

1
0
1

1
2
1

1
4
1

1
6
1

1
8
1

2
0
1

2
2
1

2
4
1

2
6
1

2
8
1

3
0
1

3
2
1

3
4
1

3
6
1

3
8
1

4
0
1

4
2
1

4
4
1

4
6
1

4
8
1

5
0
1

5
2
1

5
4
1

5
6
1

5
8
1

6
0
1

6
2
1

6
4
1

6
6
1

6
8
1

7
0
1

7
2
1

7
4
1

7
6
1

7
8
1

8
0
1

8
2
1

8
4
1

8
6
1

8
8
1

9
0
1

9
2
1

9
4
1

9
6
1

Core IDS

Page Numbers

0.5-1

0-0.5

Figure 4. Example access pattern profile of a 16-core execution of Ocean from the SPLASH2 benchmark suite. Page numbers are plotted along the
X-axis while core IDs are plotted along the Y-axis. Normalized sample count per core/page is plotted along the “Z-axis” (extending out of the paper).

heap, each would be allocated by a separate malloc call).
These memory regions are examples ofprivately accessed
objects. They can be optimized by homing all of their pages
on the tile where most of the memory references occur.

The remaining pages in Figure 4 in the ranges 1–106 and
883–950 are primarily accessed by multiple cores, usually
2 or 3. Although not shown in Figure 4, another common
case is pages that are accessed equally by all the cores.
Our optimization does not try to improve physical locality
for such shared pages. Instead, we simply distribute shared
pages in round-robin fashion across tiles.

B. Homing Heap Pages

Page homing in the heap can be controlled via the Tile
Processor’s mspace abstraction. A standard Linux parameter,
mspace is a segment, with a particular homing policy for
all pages in the segment. By default, the heap resides in a
single mspace that homes its pages on the tile performing
the first malloc to each page. For programs in which core 0
allocates all of the heap objects (i.e., most of the SPLASH2
programs), this default policy places the entire heap on tile
0.

To improve physical locality for the different heap objects
and access patterns described in Section III-A, we create
multiple mspaces with different homing policies. We also
provide a custom malloc function in a separate optimization
library that can select between these different mspaces, thus
binding different homing policies to heap objects as they
are allocated at runtime. Users need only link their program
against our optimization library, and provide the access
pattern profile and malloc log for their program to enable
our heap optimizations.

For privately accessed heap objects, our optimization li-
brary creates one mspace per tile, with each mspace homing
its pages on a unique tile. At allocation time, the custom
malloc function selects one of these mspaces according to
the access pattern profile, thus homing the entire object on
the tile where most of its references occur.

For heap-based distributed arrays, our optimization library
creates an mspace that distributes pages across tiles so that
each portion of the distributed array resides in its referencing
core’s local tile. To achieve the desired physical locality,
we set the distributionchunking factor–i.e., the number of
contiguous pages to place on one tile before moving onto the

next tile–to be the ratio of the distributed array size and the
number of tiles in the machine times the page size.3 Since
each mspace can only support a single chunking factor, we
must create one mspace for every unique chunking factor
across all of the distributed arrays in the program.

In order to select the appropriate mspace for each allo-
cated heap object, our custom malloc function consults the
malloc log and access pattern profile acquired during the
profiling runs. In particular, as the custom malloc function
is called at runtime, it matches the call to its corresponding
call of malloc in the malloc log. (The custom malloc
function keeps track of the same call site and dynamic call
instance information logged during profiling, as describedin
Section II-C, to enable matching). Once the corresponding
malloc call from the profiling run is identified, the heap ob-
ject being allocated can be determined along with its access
pattern. If the heap object is a distributed array or a privately
accessed object, then the custom malloc function allocates
the object onto the mspace that supports the object’s access
pattern. Otherwise, the custom malloc function allocates the
object onto a default mspace that distributes the object’s
pages across tiles in round-robin fashion.

Since our optimizations are profile-driven, their effec-
tiveness is sensitive to discrepancies in access patterns
between the profiling and optimized runs. The chunk size
that each thread accesses will be different if the input
data size changes. In particular, it may be desirable for
optimized runs to use a different input problem or core
count compared to the profile runs. Our optimization library
tries to compensate for changes to these two parameters. For
example, our custom malloc function adjusts the chunking
factor for distributed arrays if array size and/or machine
size changes from profiling run to optimized run. However,
aside from problem input and core count variation, we do
not compensate for any other factors that may alter access
patterns at runtime, for example dynamic work distribution
(e.g., using work queues).

Our current page homing optimizations for the heap are
mostly (though not fully) automatic. As mentioned above,
users must link their programs against our optimization

3The chunking factor may not be an integral number of pages. Mspaces
permit specifying a separate chunking factor per tile in thedistribution.
This allows placement of the majority of a distributed array’s elements on
the optimal tile.

6

Benchmark Input Benchmark Input

FFT 220 points Ocean 1026 grid
Barnes 16384 bodies Water-NS 1000 molecules
Cholesky tk17.O Water-SP 1000 molecules
Radix 2097152 keys Radiosity 7832 objects
LU 1024 matrix Raytrace ball4
FMM input.2048

Table I
SPLASH2BENCHMARKS USED IN OUR STUDY ALONG WITH THEIR

INPUT PROBLEM SIZES.

library. In addition, they must call our library initialization
routines which requires adding 4 lines of code to their
program. Aside from this, there are no additional source
code changes needed to apply our heap optimizations.

C. Homing Static Data Pages

Unlike heap objects, static data objects are allocated at
compile time, and are bound to a particular mspace. Hence,
they are already assigned a home by the time a program
begins execution. Similar to the heap, the default policy is
to home all pages from the static data region on tile 0.

To control page homing in the static data region, we use
memory mapping and unmapping to change the homing
policy from the default policy. In particular, we identify
all pages in the static data region from the access pattern
profile that are referenced primarily by a single core. Next,
we copy the contents of these identified pages to an external
file. Then, we unmap the copied pages from the program’s
address space, and map into their place the copied data from
the external file using themmap_mbind() system call.
Similar to mspaces, the mmapmbind() system call permits
specifying a home tile for the mapped pages. Hence, this
permits per-page homing control.

In our current implementation, we determine the pages to
optimize in the static data region manually, and insert the
unmapping and mapping calls manually into the program
source code. However, due to the systematic nature of these
analyses and source code instrumentation, we believe it is
possible to automate them in the future.

IV. EXPERIMENTAL RESULTS

This section demonstrates the profiling and optimization
techniques discussed in Sections II and III, and studies the
potential benefits they can provide. In particular, our exper-
iments quantify the number of remote L2 slice references
that are converted into local L2 slice references by the page
homing optimizations. We begin by discussing experimental
methodology in Section IV-A. Then, Section IV-B presents
our results.

A. Experimental Methodology

We conducted all experiments on a Tile Processor running
the Linux operating system from the Tilera MDE version
2.1. To drive our study, we use the entire SPLASH2 bench-
mark suite [16] except for volrend. We usedtile-cc (the
Tile Processor’s C compiler) to compile the benchmarks with

the highest level of optimization. Table I lists the bench-
marks and the input problems we used in the experiments.

Unfortunately, we encountered some bugs in our page
homing code that prevented us from running with a large
number of cores. At the time of writing this paper, we were
unable to perform profiling and optimized runs on more than
32 cores for a number of SPLASH2 benchmarks. So, we
only report experiments on at most 32 cores.

For each benchmark binary, we acquire access pattern
profiles and malloc logs using the profiling tools described
in Section II-C. All of our profiles are acquired on 32-
core executions of the benchmarks. Then, we instrument
the benchmark source codes to call our optimization library
initialization routines and to perform the homing optimiza-
tions for the static data region, as discussed in Sections III-B
and III-C. Lastly, we re-compile the benchmarks, linking
them against our optimization library, and run them to
measure optimized performance. These optimized runs use
the same configurations as the profiling runs.

To quantify improvements, we compare the optimized and
unoptimized benchmarks. As discussed in Sections III-B
and III-C, the default homing policy places all pages in the
original unoptimized benchmarks on tile 0. To provide a
better baseline against which to compare our techniques, we
link the unoptimized benchmarks against our optimization
library, but configure the system to distribute all heap and
static data pages across tiles with a chunking factor of 1.
This utilizes the DSC capacity fully, but randomly distributes
pages across the on-chip L2 slices.

In our results, we report sampled page references at
the DSC level. Since we use a sampling frequency of
7000, sampling counts can be converted into page reference
counts (at least approximately) by multiplying by 7000. (The
selection of a proper sampling frequency is important. If the
sampling frequency is too small, profiling will incur large
overhead; but if the sampling frequency is too large, less
frequent events may not be sampled. Our choice of 7000
for the sampling frequency was determined experimentally,
and works well for SPLASH2 benchmarks. It may be
necessary to tune this sampling frequency parameter for
other benchmarks.) Lastly, we only report measurements in
the parallel region of each benchmark. We exclude program
initialization, which is performed at the beginning of each
SPLASH2 benchmark on a single core.

B. Physical Locality Results

Table II reports our page reference count results. In
particular, the 2nd and 3rd columns of Table II (labeled
“Total”) report the number of sampled page references in
each benchmark’s profiling run that are destined to the
heap and static data memory regions, respectively. This data
shows that across our benchmarks, heap objects receive more
memory references than objects in the static data region,

7

Total Baseline Optimized Potential
Heap Static Heap Static % Total Heap Static % Total Heap Static

FFT 5376 8387 289 536 6.0% 5372 536 42.9% 5376 0
Barnes 8197 11324 521 711 6.3% 521 7152 39.3% 246 6920
Cholesky 37361 6735 1890 389 5.2% 1907 389 5.2% 113 2
Radix 4299 79 276 5 6.4% 3404 5 77.9% 3425 15
LU 0 2 0 0 0% 0 0 0% 0 2
FMM 19667 123 1583 9 8.0% 1583 9 8.0% 19667 1
Ocean 90703 26030 5400 1387 5.8% 87857 1387 76.5% 88783 0
Water-NS 543 3211 22 190 5.6% 438 190 16.7% 543 0
Water-SP 415 0 1 0 0.2% 1 0 0.2% 415 0
Radiosity 4741 1824 430 68 7.6% 430 68 7.6% 192 259
Raytrace 30750 14580 1796 964 6.1% 1796 964 6.1% 5 0

Table II
NUMBER OF SAMPLED PAGE REFERENCES TO THE HEAP AND STATIC DATA REGIONS IN TOTAL, THAT ARE DESTINED TO LOCAL L2 SLICES IN THE

BASELINE AND OPTIMIZED BENCHMARKS, AND THAT CAN BE POTENTIALLY OPTIMIZED .

but both types of objects are important. (One case with
anomalous behavior is LU which we will discuss shortly).

The 4th and 5th columns of Table II (labeled “Baseline”)
report the number of sampled page references in the unopti-
mized benchmarks that are destined to local L2 slices broken
down into heap and static data references, respectively.
The 6th column of Table II reports the percentage of the
total sampled references that these baseline local references
represent–i.e. (% Total)Baseline = (Heap+Static)Baseline

(Heap+Static)T otal
×

100. This data shows the unoptimized benchmarks exhibit
poor physical locality. Only 5%–8% of all DSC references
are to local L2 slices. In other words, more than 90%
of DSC references must traverse the on-chip network to
communicate with a remote L2 slice. This makes sense
because page homing in the unoptimized benchmarks is
essentially randomized across the Tile Processor’s DSC.

The 7th and 8th columns of Table II (labeled “Opti-
mized”) report the number of sampled page references in
the optimized benchmarks that are destined to local L2
slices broken down into heap and static data references,
respectively. The 9th column of Table II reports the per-
centage of the total sampled references that these opti-
mized local references represent–i.e. (% Total)Optimized =
(Heap+Static)Optimized

(Heap+Static)T otal
× 100. As this data shows, our page

homing optimizations improve physical locality for 5 bench-
marks: FFT, Barnes, Radix, Ocean, and Water-NS. In these
benchmarks, 39.3%–77.9% of DSC references are to local
L2 slices, a 6–12X increase over the baseline. For the re-
maining 6 benchmarks, our homing optimizations do not find
many pages to optimize (i.e., that are referenced primarily
by a single core), so the number of localized DSC references
does not change compared to the baseline.

The remaining columns in Table II provide insight into
how much of the potential physical locality in our bench-
marks we actually exploit. Since our homing optimization
must place each page on a specific tile, it is only effective
for pages that are referenced by a small number of cores.
In particular, pages that are shared by most/all of the cores
in the machine are unlikely to yield any benefit. The 10th

and 11th columns of Table II (labeled “Potential”) report
the number of samples destined to pages in the heap and

static data regions, respectively, that are referenced byno
more than half the cores(i.e., 16 cores) in the profiling runs.
Although some of these pages can still be “widely shared,”
we believe these sampled reference counts are a good
estimate for the potential physical locality improvement.

Comparing the “Potential” and “Optimized” results in
Table II, we see our optimizations capture most of the
physical locality in the SPLASH2 benchmarks–i.e., many
of the optimized heap and static data counts are close to
the corresponding potential heap and static data counts. (In
some cases, the optimized counts are actually larger than
the potential counts. These are due to references destined
to local L2 slices for pages shared by more than half
the machine.) The greatest missed potential is in FMM
where there are a large number of heap references none of
which are optimized. There is also some missed potential in
Water-SP. But overall, our homing optimizations are fairly
comprehensive.

These results suggest that for our optimizations to do
substantially better, we must create more opportunities for
homing. Comparing the last two columns against the 2nd

and 3rd columns of Table II, we see there is a significant
discrepancy between the potential and total sampled refer-
ence counts, especially for pages in the static data region.
This implies there are a large number of references to pages
shared by most of the machine. Upon closer examination,
we found a major reason for this is false sharing induced
by the Tile Processor’s large page size, 64 KB. We believe
our optimizations can become more effective if page size
is reduced.4 For pages with false sharing, a smaller page
size can create more pages with low-degree sharing that our
optimizations can exploit.

Finally, Table II shows LU cannot be optimized because
it does not exhibit any sampled references. This is due to
the fact that LU performs function calls very frequently. The
calls are so frequent that the interrupt handler skid after a
remote-read event almost always straddles a function call
(i.e., all interrupts sample the called code). Unfortunately,
our current binary analysis tool cannot analyze across func-

4In fact, the Tile Processor’s TLBs can support smaller pages, but the
current OS doesn’t exploit this hardware feature.

8

tions, so we fail to identify any of the event-triggering loads
in LU. We verified by hand that LU does indeed present
significant opportunities for our homing optimizations. In
the future, we plan to support inter-procedure analysis in
our binary analysis to handle cases like LU.

V. CONCLUSIONS

This paper describes our experience with page-level hom-
ing optimizations on a real system, Tilera’s Tile Processor
running a Linux OS. We show hardware PMCs can be used
to acquire page-level access pattern profiles. Moreover, we
show that binary analysis can be used to correct for interrupt
skid–due to imprecise PMC interrupts–to pinpoint individual
memory operations incurring remote-core references and
sample their access patterns. We find our page homing opti-
mizations driven by our access pattern profiles can improve
physical locality for 5 out of 11 SPLASH2 benchmarks,
enabling 39.3%–77.9% of DSC references to target the local
L2 slice. In addition, we find our homing optimizations
already exploit most of the potential physical locality in the
SPLASH2 benchmarks. Significant improvements can only
come by creating more opportunities for homing, perhaps by
addressing false sharing via smaller virtual memory pages.

REFERENCES

[1] Y. Hoskote, S. Vangal, N. Borkar, and S. Borkar, “Teraflop
Prototype Processor with 80 Cores,” inProc. of the Symp. on
High Performance Chips, 2007.

[2] http://tilera.com/products/processors, “Processors from Tilera
Corporation.”

[3] “Silicon Industry Association Technology Roadmap,” 2009.
[4] A. Agarwal, “Tiled Multicore Processors: The Four Stages of

Reality,” http://groups.csail.mit.edu/cag/raw/documents/tiled-
processors-ieee-micro-keynote-2007.pdf 2007.

[5] B. M. Beckman and D. A. Wood, “Managing Wire Delay in
Large Chip-Multiprocessor Caches,” inProc. of the 37th Int’l
Symp. on Microarchitecture, Portland, OR, December 2004,
pp. 319–330.

[6] J. Chang and G. S. Sohi, “Cooperative Caching for Chip
Multiprocessors,” inProc. of the 33rd Int’l Symp. on Comp.
Arch., June 2006.

[7] Z. Chishti, M. D. Powell, and T. N. Vijaykumar, “Optimiz-
ing Replication, Communication, and Capacity Allocation in
CMPs,” in Proc. of the 32nd Int’l Symp. on Comp. Arch.,
Madison, WI, June 2005.

[8] Z. Guz, I. Keidar, A. Kolodny, and U. C. Weiser, “Utilizing
Shared Data in Chip Multiprocessors with the Nahalal Arch.”
in Proc. of the Int’l Symp. on Parallelism in Algorithms and
Arch., Munich, Germany, June 2008.

[9] E. Herrero, J. Gonzalez, and R. Canal, “Distributed Cooper-
ative Caching,” inProc. of the Int’l Conf. on Parallel Arch.
and Compilation Techniques, Toronto, Canada, October 2008.

[10] J. Huh, C. Kim, H. Shafi, L. Zhang, D. Burger, and S. W.
Keckler, “A NUCA Substrate for Flexible CMP Cache Shar-
ing,” in Proc. of the Int’l Conf. on Supercomputing, Boston,
MA, June 2005.

[11] M. Zhang and K. Asanovic, “Victim Replication: Maximizing
Capacity while Hiding Wire Delay in Tiled Chip Multipro-
cessors,” inProc. of the 32nd Int’l Symp. on Comp. Arch.,
Madison, WI, June 2005.

[12] S. Cho and L. Jin, “Managing Distributed, Shared L2 Caches
through OS-Level Page Allocation,” inProc. of the 39th Int’l
Symp. on Microarchitecture, December 2006.

[13] N. Hardavellas, M. Ferdman, B. Falsafi, and A. Ailamaki,
“Reactive NUCA: Near-Optimal Block Placement and Repli-
cation in Distributed Caches,” inProc. of the Int’l Symp. on
Comp. Arch., Austin, TX, June 2009, pp. 184–195.

[14] L. Jin and S. Cho, “SOS: A Software-Oriented Distributed
Shared Cache Management Approach for Chip Multiproces-
sors,” in Proc. of the 18th Int’l Conf. on Parallel Arch. and
Compilation Techniques, Raleigh, NC, September 2009.

[15] L. Jin, H. Lee, and S. Cho, “A Flexible Data to L2 Cache
Mapping Approach for Future Multicore Processors,” inProc.
of the 2006 ACM SIGPLAN Workshop on Memory System
Performance and Correctness, October 2006.

[16] S. C. Woo, M. Ohara, E. Torrie, J. P. Singh, and A. Gupta,
“The SPLASH-2 Programs: Characterization and Method-
ological Considerations,” inProc. of the 22nd Int’l Symp. on
Comp. Arch., Santa Margherita Ligure, Italy, June 1995.

[17] “Performance Application Programming Interface.”
[18] “The Hardware-Based Performance Monitoring Interface for

Linux.”
[19] T.-F. Chen and J.-L. Baer, “Reducing Memory Latency via

Non-blocking and Prefetching Caches,” University of Wash-
ington, 92-06 03, June 1992.

9

A Formalized Task Migration Framework for
Multiple Configurable Processors Shared Memory

SoC Platforms
Hao Shen Fŕed́eric Ṕetrot

System Level Synthesis Group, TIMA Laboratory,
CNRS/Grenoble INP/UJF

46, Avenue F́elix Viallet, 38031, Grenoble, France
{hao.shen@imag.fr frederic.petrot@imag.fr}

Abstract—In the quest for increasing and ever changing
functionalities, it is expected that the next generation Systems-
on-Chips (SoCs) will embed several clusters of CPUs sharing
the same memory, as flexibility is more easily realized through
software. However, specialized computation engines, such as
ASIC and DSP, have a much better Mips per Watt ratio [11] at
the price of no or much less flexibility. In order to try to benefit
from both flexibility and performance per Watt, one approach
consists of building clusters of configurable processors [24],i.e.
processors that share a common instruction set but can be
individually customized (usually with DSP like instructions) to
accelerate a given computation. Yet, such a cluster of some
processors may be underutilized because of their instruction set
specificities. In order to be able to benefit from the available
computational power by load balancing, we propose and for-
malize a task migration framework for shared memory multiple
configurable processors platforms. With proposed load balancing
algorithms, we experimentally show doubled performance/cost
improvements on a shared memory cluster that includes 3
configurable processors.

I. I NTRODUCTION

Consumer electronics devices, such as cell phones, portable
media-players, high definition TVs, etc, now require a com-
putational power that largely exceeds the abilities of the most
advanced embedded uniprocessor. To satisfy these require-
ments, the solution of choice in the recent years has been
to include different kinds of processing units, MCUs, GPP,
DSPs,Application Specific Instruction-set Processors(ASIPs)
and so on, in the SoCs. In this approach, each processing
unit is dedicated to the kind of computation it performs well.
These heterogeneous platforms, that feature high dedicated
performance, acceptable programmability and good perfor-
mance per Watt, are currently the choice of the industry [22],
[4]. However, next generation SoCs will need to be more
versatile, (due to the cost of masks, fast adaptation to changing
standards, and expected capability to support multiple applica-
tions), and thus will require to be more easily programmable.
In order to benefit from application level parallelism and thread
level parallelism, mainly for power efficiency and area (thus
yield and again power) optimization reasons, one foreseeable
solution is the use of highly parallel clustered architectures,
even for consumer electronic applications [12].

Assuming identical processors, it has long been known that
it may be more efficient in shared-memory multiprocessor
cluster to schedule a task on one processor instead of an
other [9]. Since inevitably some processors will be idle in
a cluster (because of work load changes and non-uniformity
of task deadlines), a trade-off between keeping the workload
balanced among processors and scheduling tasks where they
run most efficiently has to be found [28]. The definition of a
load balancing strategy implicitly relies on the capability to
migrate one task from one processor to another. However, to
benefit from instruction level parallelism at a low power cost,
each cluster could be based on a set of application specific
Configurable Processors.

From the realization point of view, many ASIP solutions
follow the strategy of having a core instruction set and be
extensible with application specific instructions. These ex-
tensions can either be built automatically by profiling and
extracting from the software tasks [1], [20] or be developed
manually with compiler supports [1]. The target of these
extensions is to improveInstruction Level Parallelism(ILP).
Also theThread Level Parallelism(TLP) can be satisfied with
multiprocessors [15]. These ASIP based MPSoC platforms
have both parallelism advantages [14] and may become a
powerful and energy efficient solution.

As both heterogeneity and workload balance ability are es-
sential for future MPSoC platforms, we formalize in this paper
a framework which can support both configurable processing
units and task migration ability. Because the key constraint of
the task migration is that the system software, such as OS and
drivers, should be able to execute on all underlying processors,
we assume that all processors share the same core instruction
set and register file for the system software. Beside this,
instructions and registers related to computations can be totally
different for each processor, in order to provide acceleration
for different applications. In contract to the heterogeneous
MPSoC architecture composed with multiple isolated SMP
subsystems in Fig. 1 (a), Fig. 1 (b) describes a platform in
which all ASIPs share the same memory space which includes
the same OS image and tasks. Therefore tasks can migrate
between different kinds of processors at no other cost than

10

(a) (b)

Fig. 1. Heterogeneous MPSoC Software/Hardware Architectures. (a): the traditional MPSoC architecture based on several isolated subsystem. (b): the
architecture based on multiple different configurable processors with the shared memory and coherent caches.

increasing cache misses. As an additional benefit, the task
migration capability provides some support for fault tolerance,
and this is an important issue with the increasing process
variability.

The rest of this paper is organized as follows: section 2
discusses the related works. In section 3, we formalize the
problem with both hardware and software definition for our
heterogeneous task migration framework. Based on the formal
definitions, we get the compatibilities of processors and tasks
which are used for several load balancing algorithms. The
details of migration realization and of the load balancing
algorithms are given in section 4. Section 5 presents experi-
mental results that demonstrates the feasibility of the approach
and its advantages compared to fully homogeneous and fully
heterogeneous platforms. At last, section 6 concludes this
paper and future works.

II. RELATED WORK

Computation migration frameworks have been heavily re-
searched in the past for parallel and distributed computers.
Smith [26] gives a survey as of 1988 of process migration,
defined as the way oftransferringthe relevant part of the state
of a process in order to be able to continue its execution on
an other processor. Ignoring the low level performance issues,
Smith considers the problem trivial for shared memory ma-
chines. Taking an opposite view, Squillante and Lazowska [27]
advocate the clever use of the affinity of a task for a processor,
in order to avoid trashing the cache while still allowing
migration to balance the workload. Among others, these early
works set the bases for process and task migration strategies.

With the advance in integration, the migration of tasks has
become again an interesting topic for SMP MPSoC architec-
tures. Since small processors have small caches, task migration
using the first-come first served approach was considered a
good enough solution [25]. Later, Bertozzi etal. [8] proposed
a task migration framework for an integrated system that
uses processor local storage for the task data. Their solution
requires the explicit copy of data at identified checkpoints,
as in distributed systems, even though the platform features
caches and access to shared data. Although homogeneous

architectures are more simple to understand and take deci-
sion for, they cannot benefit from differences in application
requirements. It is currently accepted that the pure SMP
solution cannot yet reach the power/performance budget of
the integrated systems of the consumer markets, that thus still
relies on moread-hocsolutions [19].

Some recent works have focused on load balancing through
task migration on heterogeneous platforms. Beltrán etal. [7]
consider this option theoretically while Nollet etal. [21] focus
on some feasibility aspects. These approaches rely on the
definition of checkpoints for which atransferablesub-state
of the system is known, but do not deal with simple but major
problems such as differences in endianness or word length.

As there is a huge complexity gap between homogeneous
and heterogeneous MPSoC, some researchers try to provide
a trade-off solutions which can take advantages of both. R.
Kumar et al. [16], M. Becchi etal. [6], S. Balakrishnan et
al. [5] and S. Ghiasi etal. [13] suggest to integrate several
processors which implement the same instruction set but with
different costs and performances. This limited heterogeneity
can achieve higher performance than strict SMP with similar
costs. Based on this platform, some scheduling algorithms [10]
are designed to achieve higher performance with less power
consumption.

The approach we propose shares the same idea but breaks
the uniform instruction set constraint of pure SMP systems.
ASIP, introduced almost 30 years ago [30], is now a viable
solution. One kind of ASIPs is based on a set of well selected
basic core instructions and registers. Designers can improve
the performance by adding user-defined extended instructions.
Commercial products such as Xtensa [1] and CoWare [2]
are able to produce efficient configurable processors of that
kind, along with stable cross-compilation chains. Our previous
work [25] follows this trend and targets task migration ability
based on this kind of platforms. There is a similar work for
general-purpose computers from [18] which also realizes a
heterogeneous architecture task migration framework relaying
on the processor exception mechanism. Different from this
work, ours is based on predefined extension requirements
before binary compilation. For lack of formalization work [25],

11

Fig. 2. Instruction Set Relationship

[18], to best of our knowledge, this paper is the first work
which formalizes a task migration mechanism based on this
kind of heterogeneous shared memory MPSoC architectures.

III. H ARDWARE AND SOFTWARE DEFINITION

In this section, we define formally the instruction set rela-
tionship and explain our formalism using a simple example.
We also define a compatibility relationship between tasks and
processors of one heterogeneous MPSoC platform based on
this formalism.

A. Instruction set relationship

To explain the relationship between processor instruction
sets and the task migration ability, we use the concise example
of Fig. 2. This diagram represents the instruction set relation-
ship of one configurable heterogeneous MPSoC platform. In
this platform, we have 5 different kinds of instruction sets
which areCore, A, B, C andD. We assume that the instruction
set relationship is the same as the register file relationship and
therefore we have a single relationship. In following parts, we
discuss theCore Instruction SetandExtended Instruction Set
separately.

1) Core Instruction Set:As our work is based on config-
urable processors, a strong prerequisite is that all processors
share the same core instruction set shown in the center
of Fig. 2. Because we need to realize our task migration
framework based on this core instruction set, we define the
following groups of instructions.

• Arithmetic Logic Instructions : which are used for arith-
metic and logic operations.

• Memory Access Instructions: which are used for trans-
ferring data between memories and registers.

• Program Flow Control Instructions : which are used
for changing the program execution flow based on the
processor status.

• Concurrent Access Control Instructions: which are
used to serialize requests and avoid non-coherent shared
memory access cases in multi-processors execution envi-
ronments.

Besides these classes of instructions, we also need the
following 4 groups of core register files for operating system
realization.

• General Purpose Registers: which are used for the
storage of the data and address information.

• Program Counter Registers: which are used to indicate
the current program address.

• Program Status Registers: which are used to store cur-
rent processor statuses and include the exception status,
the interrupt status and so on.

• Program Stack Register: which is used for the current
stack address and can be realized using one of the general
purpose registers.

Due to the generality of operating system software, it is
possible and efficient to build a real operating system in which
tasks can migrate among multiple heterogeneously extended
processors by using only the core instruction set and the
core register file. To ensure this stringent requirement, the
designers should not remove critical components (such as
atomic instruction, interrupt masking and handling) used by
this core instruction set and register file during the processor
configuration process.

2) Extended Instruction Set:As we use extended instruc-
tions to benefit from the data and instruction level parallelism
of the applications, we define extended instruction sets and
the set relationship between them. Most extended instructions
can be divided into either SIMD or MIMD instructions, both
requiring independence between the parallel computations.

Besides extended instructions, it is also often necessary to
extend the register files to improve the performance.

• Very Wide Registers: to improve SIMD instructions
performance, we add very wide register files to store the
instruction operands and results.

• Special Internal Registers: which are used for some
special operations such as accumulator registers for the
multiply-accumulate operation.

Normally, these extended instructions can be chosen by the
application programmer based on the benchmark profiling re-
sults and the existing architecture and area/power constraints.
Automatically extracting the candidate extended instruction set
from one specific application is also the focus of researchesby
both academia and industry for a long time, see for example
the book by Leupers [17]. Among others, recent proposals are
L. Pozzi etal. [23], F. Sun etal. [29] and Xtensa Processor
Extension Synthesis (XPRES) Compiler [1] are such works.
The formalism we propose does not make any assumption
on how the extended instructions are extracted, and thus the
resulting ISA can be classified accordingly.

As both read and write of user extended registers are
crucial for the context switch and related detailed migration
operations, we should also make sure that the extended
instruction sets include specific load and store instructions
to access all these extended registers. In the context related
functions, the extended register files used or required by the
task should be load or stored properly by using this kind of
extended instructions. For example, we have the ARM [3]
processor with the NEON coprocessor extension for media
related applications. The NEON extension integrates thirty-
two 64 bit double word registers which can only be load and
stored by using NEON extended instructions such asVLDn
andVSTn.

12

3) Formal Definition: In one task migration enabled het-
erogeneousP processors MPSoC platform, we haveN 6 P

different instruction sets that all include the core instruction
set Icore and the core register fileRcore. We call Score =
Icore ∪ Rcore the union of the core instruction set and core
register set. Meanwhile, we note the extended instruction set
asEIi and the extended register file asERi.

Definition 1: Sets Relationship.

• For all processors in one heterogeneous MPSoC platform,
we have the instruction setIi and register fileRi defini-
tion:

∀1 6 i 6 N : Ii = EIi ∪ Icore

∀1 6 i 6 N : Ri = ERi ∪Rcore

• For all processors in one heterogeneous MPSoC platform,
we have the extended instruction and register setESi

definition:

∀1 6 i 6 N : ESi = EIi ∪ ERi

• For all processors in one heterogeneous MPSoC platform,
we have the instruction and register setSi definition:

∀1 6 i 6 N : Si = Ii ∪Ri = Score ∪ ESi

• For all instruction sets in one heterogeneous MPSoC
platform, we have the instruction set groupS definition:

S = {S1, S2, ..., SN} = {Si : 1 6 i 6 N}

With these definitions, we can easily express the rela-
tionship of Fig. 2. We note the instruction set groupS =
{Score, SA, SB , SC , SD}. Because the core instruction set is
one part of each processor, we have the requirement that
for P processors in one heterogeneous MPSoC platform:
∀1 6 i 6 N,Score ⊆ Si. Thus, for the special case of Fig. 2,
if all of ESi are not empty, we have following expressions:
SA ⊂ SC , SC ⊂ SD andSB ⊂ SD.

B. Task compilation and migration

As extended instructions are only efficient for some specific
applications, or even more precisely for some kernels of an
application, we compile some application tasks and threads
with the basic instruction set while some others with extended
ones. The basic threads can be migrated for execution on
any available processors while extended application tasksand
threads can only be executed on processors which should
realize this instruction set extension. In the example of Fig. 2,
as the instruction setSA is a subset ofSC andSD, it means
that SA has less extended instructions thanSC andSD. On
one side, if some tasks compiled toSC instruction set and use
instructions which do not belong toSA, they are not able to
be migrated to processors only support theSA type instruction
set. On the other side, if some tasks just use theSA instruction
set, it is no problem for them to run onSC and SD types
processors. This execution relationship is presented in Fig. 3.

The tasks, heterogeneously extended processors and execu-
tion relationship can be represented as a theCompatibility

Processor 1

Set A

Processor 2

Set B

Processor 3

Set C

Processor 4

Set D

Task 1

Set

Core

Task 2

Set A

Task 3

Set B

Task 4

Set C

Task 5

Set D

Fig. 3. Processors and Tasks Compatibility. All tasksTi and processorsPj

realize one ofSk from the total instruction setS. The execution relationship
is represented with connection between tasks and processors.

Graph G shown in Fig. 3.
Definition 2: Migration possibility of the heterogeneous

MPSoCM is defined asM = (S,T,P,G).

• S is the set that includes all instruction sets used in one
heterogeneous MPSoC platform (the same as Definition
1).

• T represents the task set which includeNT tasks for
one application system andNT > 1. We haveT =
{T1, T2, ...TNT }. When taskTi is compiled onto one spe-
cific instruction setSj , we can represent theis compiled
for ISA relationship with the symbol⋆. For this case, we
haveTi ⋆ Sj .

• P is the set of processors which includesNP different
processors for one MPSoC platform andNP > 1. When
processorPi realizes one specific instruction setSj , we
can present therealizes ISArelationship with the symbol
△. For this case, we havePi △ Sj .

• A Bipartite Compatibility Graph G = (T,P,C) repre-
sents the compatibility relationship between eachTi ∈ T

andPj ∈ P. An edge{Ti, Pj} = ck ∈ C ⊆ T× P. This
edgeck means taskTi can be executed by processorPj .

∀i, j, Ti ∈ T, Pj ∈ P

(Ti ⋆ Sk) ∧ (Pj △ Sl) : Sk ⊆ Sl ⇐⇒ c(Ti, Pj)

With both Def. 1 and Def. 2, we clarify the compatibility
relationship among instruction sets, tasks and processors. In
Fig. 3, we have an example of compatibility with 4 processors
and 5 tasks. So we have the task setT = {T1, T2, T3, T4, T5}
and the relationship between tasks and instruction sets
{T1 ⋆ Score, T2 ⋆ SA, T3 ⋆ SB , T4 ⋆ SC , T5 ⋆ SD}. Meanwhile,
we have the processor setP = {P1, P2, P3, P4} and
the relationship between processors and instruction sets
{P1△SA, P2△SB , P3△SC , P4△SD}. For the task compat-
ibility of this example, we have the compatibility relationship:
C = {c(T1, P1), c(T1, P2), c(T1, P3), c(T1, P4), c(T2, P1),
c(T2, P2), c(T2, P3), c(T2, P4), c(T3, P2), c(T3, P3), c(T3, P4),
c(T4, P3), c(T4, P4), c(T5, P4)}. All these instruction
sets, tasks, processors and compatibility relationships
are represented by the compatibility graphG. From this
simple example, we can clearly find tasks compiled with the

13

core instruction set have the best flexibility while the tasks
compiled with extended instruction sets can only be executed
by specific processors.

IV. H ETEROGENEOUSTASK SCHEDULING ALGORITHMS

AND REALIZATION

As the compatibility of tasks and processors is readily
visible with our task migration framework, we now need to
provide a way to choose the right process and thread to migrate
or elect. This is the goal of our heterogeneous task scheduling
algorithms. Based on the instruction set compatibility rules,
we adapt several existing task scheduling algorithms to our
heterogeneous MPSoC task migration framework. Because
different configured processors can execute different classes of
tasks, our task scheduling algorithms try to utilize the extended
instruction set advantage and trade-offs between the scheduler
efficiency and the execution efficiency. The formal descriptions
and realization details of these scheduling algorithms arealso
given in this section.

A. Task scheduling algorithms

With both Def. 1 and Def. 2, for a specific processorPi,
compatible tasks can be grouped into the setTi whereTi =
{Ti1, Ti2, ..., Tij}. Based on thecompatibility graphG, there
should be an edge between eachPi andTij to guarantee the
compatibility. In the following algorithm descriptions, bothPi

andTi are used to present this compatibility property.
Beside the compatibility property, we also need a value to

evaluate the efficiency of processor computation. For a taskTi

running on a processorPj , we have the differenceD(Ti, Pj)
defined as:

∃Si, Sj ∈ S, (Ti ⋆ Si) ∧ (Pj △ Sj) : D(Ti, Pj) = |Sj − Si|

This definition represents the distance between the instructions
and registers that the processorPj provides and theTi

task requires. The bigger number ofD(Ti, Pj) means the
more unused instructions provided by processorPj which
wastes computation ability and power. Two of the following
scheduling algorithms are designed to take account of this
efficiency problem. During the scheduling process,Tqueue is
used to defined all tasks inside the runnable queue structure.
Meanwhile,|Tqueue| is defined as the size of this task queue.

1) FMFS algorithm: First Match First Serve(FMFS) is
one of the simplest algorithms for our heterogeneous MPSoC
platform. The basic idea is just add the compatible constraints
into the traditional FIFO like scheduling algorithms. When a
processor is ready for new tasks execution, it goes through
the task queue and picks up the first compatible task to
execute. Though this algorithm is simple and efficient for the
scheduler realization, it does not fully optimize for extended
instruction sets of heterogeneous processors. With this FMFS
algorithm, tasks with smaller instruction sets generally have
better execution chances which decrease the whole system
performance.

Algorithm :
Search the queue in order to select the first task that is

compatible.
Performance:

Complexity of this algorithm isO(1).

For implementation, we have following abstract code.

Input :
A compatibility graphG = (T,P,C).
A free processorPi and a task queueTqueue in FIFO

order.
Output :

If exist, select a compatible task for the processorPi.
Implementation:
1 for j = 1 to |Tqueue| in FIFO order
2 if c(Tj , Pi) ∈ C // Tj is compatible withPi

3 Tj is the result and finish this scheduling process
4 end if
5 end for
6 Default idle task is the result // No compatible tasks

2) Most compatible algorithm:To fully take the advantage
of powerful extended instruction sets, we define the most com-
patible algorithm. By using this algorithm, when a processor
is ready for new tasks execution, it iterates over the whole task
queue and compares the CPU instruction set with each waiting
task. After the whole task queue is checked, the compatible
task which uses the most instructions is chosen for execution.
As this algorithm emphasizes tasks using extended instruction
sets, in some cases, it may provide better overall performance.
But we should also notice that tasks compiled only with the
core instruction set may be in a starving situation if tasks
making use of extension are always ready to run.

Algorithm :
Search the queue and execute the most compatible task.

Performance:
Complexity of this algorithm isO(|Tqueue|).

For implementation, we have following abstract code.

Input :
A compatibility graphG = (T,P,C).
A free processorPi and a task queueTqueue.

Output :
If exist, select a compatible task for the processorPi.

Implementation:
1 A empty candidate task setTcandidate = φ.
2 forall Tj ∈ Tqueue

3 if c(Tj , Pi) ∈ C // Tj is compatible withPi

//Add Tj to candidate set
4 Tcandidate = Tcandidate ∪ Tj

5 end if
6 end forall
7 if Tcandidate 6= φ

8 choose the first (or any) task from the setT :
T = min(D(Tj ∈ Tcandidate, Pi)).

9 elseDefault idle task is the result // No compatible tasks
10 end if

14

3) Priority based most compatible algorithm:To avoid the
drawbacks of both the FMFS algorithm and the most com-
patible algorithm, we combine these two algorithms together
and create the priority based most compatible algorithm. In
this algorithm, we add a priority level to each task. Instead
of having a single task queue, we have several task queues,
each corresponding to a priority. This allows to limit the
search time and avoids the starving situation, by increasing the
priority of long waiting threads. Meanwhile, for each priority
level, we still use the most compatible algorithm to find the
best candidate for one processor. The priority level for each
task can be adjusted depending on some priority calculation
algorithms to avoid starving situation and decrease the overall
system response time. The drawback of this algorithm is the
complex realization and the scheduler performance heavily
depends on priority setting and adjustment algorithms.
Algorithm :

Search from the highest priority queue and execute the
best

compatible waiting task.
Performance:

Complexity of this algorithm isO(|Tqueue|).

For implementation, we have following abstract code.
Input :

A compatibility graphG = (T,P,C).
A free processorPi.
Multiple task queues{Tqueue 1,Tqueue 2, ...,Tqueue n}

for
n different priorities.

Output :
If exist, select a compatible task for the processorPi.

Implementation:
1 A empty candidate task setTcandidate = φ.
2 for k = 1 to n // n queues with different priorities
3 forall Tj ∈ Tqueue k

4 if c(Tj , Pi) ∈ C // Tj is compatible withPi

// Add Tj to the candidate set
5 Tcandidate = Tcandidate ∪ Tj

6 end if
7 end forall
8 if Tcandidate 6= φ

9 choose the first (or any) task from the setT :
T = min(D(Tj ∈ Tcandidate, Pi)).

10 end if
11 end for
12 Default idle task is the result // No compatible tasks

B. Scheduler realization

To realize all discussed task migration algorithms on one
heterogeneous MPSoC platform, we should well identify
instruction sets provided by processors and used by tasks.
Besides this, we also introduce three some non-realtime task
migration. The target of these algorithms is just to show the
advantages of the taks migration framework.

1) Instruction Set Identification:As the instruction set
representation is important for both processors and tasks,
the scheduler of the operating system should have a special
mechanism to store this information. We haveISA_ID to
represent the instruction set information. Then we assign one
CPU_ISA_ID for each processor and oneTASK_ISA_ID
for each task. The use of specific ID to indicate processor
instruction set differences is a method commonly used in
industry. As the instruction set relationship is complex in
our platform, we would like to have theISA_ID to well
represent the instruction set relationship. By using this ID,
it is convenient for the scheduler to handle the relationship in
run-time environments.

In our framework, we have instruction setsS =
{S1, S2, ..., SNS} and the relationshipR = {S1 ⊇
S2, ..., SNS−1 ⊇ SNS}. We map the instruction set to the
natural number set theN = {1, 2, ...} and the relationship to
Bit OR relationship.

In Fig. 2, we have 4 different extended instruction sets and
the core instruction set. In Table. I, we assigned each separated
instruction group with abit and eachISA_ID with a binary
number with bit validation for each small instruction group.
By using ISA_ID, we replace the complex instruction set
relationship with simple bitwise operations. For each proces-
sor, theCPU_ISA_ID is the same as theISA_ID of the
one realized. Meanwhile, for each task, theTask_ISA_ID
is the instruction setISA_ID used by the compiled binary.
The compatibility relationship betweenCPU_ISA_ID and
TASK_ISA_ID is also illustrated in Table. I.

2) Instruction Set Based Scheduler Realization:With the
definition of both CPU_ISA_ID and TASK_ISA_ID, we
use the bitwiseor operation to handle the instruction set
compatibility test. To test compatibility, we need only this
operation:

(CPU_ISA_ID | TASK_ISA_ID) == CPU_ISA_ID

This test only relies on simple bit and compare operations
to make the computation efficient for the frequent usage
c(Tj , Pi) ∈ C in all heterogeneous task scheduling algorithms.

3) CPU ISA ID and TASKISA ID Integration: In our
task migration framework, each processor should have a
CPU_ISA_ID which presents the instruction set and register
file it realizes. In realization, we add one specific read-only
register to each processor which is hard coded to indicate the
correspondingCPU_ISA_ID. The task migration framework
should access this register during all task operations.

The TASK_ISA_ID is assigned to each task during its
creation. We have modified the POSIX Thread standard
pthread_attr_t structure by adding theTASK_ISA_ID
tag. When a task is created with standardpthread_create,
this ID is transfered to the OS kernel and used for the het-
erogeneous task scheduling described before and the context
related functions realization in the following discussion.

4) Context Related Functions Realization:The context
related functions for heterogeneous MPSoC platforms are

15

TABLE I
PROCESSORS ANDSUPPORTEDTASKS ISA IDENTIFICATION EXAMPLE .

Set CPU ISA ID Compatible Task Compatible TaskISA ID
Core 0x0000 Core 0x0000

A 0x0001 Core and A 0x0000, 0x0001
B 0x0010 Core and B 0x0000, 0x0010
C 0x0101 Core, A and C 0x0000, 0x0001, 0x0101
D 0x1111 Core, A, B, C and D 0x0000, 0x0001, 0x0010, 0x0101, 0x1111

more complex than for homogeneous ones. There are different
extended register filesRi = ERi ∪ Rcore in each processor
i, so we need to handle these extra registersERi in our
context related functions. In contract to loading and storing
all extended registers during these operations, we should only
touch the one used by the previous executed task and required
by the next executed task. For example, the new context switch
function should include following four steps:

• Store all core registers to the stack of the previous
executed task.

• Store the necessary extended registers depending on the
TASK_ISA_ID of the previous executed task.

• Load all core registers from the stack of the next executed
task.

• Load all necessary extended register based on the
TASK_ISA_ID of the next executed task.

As a processor may run a task that makes use of only a
subset of the extended register, we save the registers depending
on the instruction set used by this task. This save action is
feasible because the registers used by the task is a subset of
the processor registers and the load action is also feasiblefor
the same reason. The context structure has a shared part that
contains theRcore registers, and a private part that depends
on the extended registers used by the taskERi.

Though the realization of the context related functions make
the structure of each task context different depending on
the TASK_ISA_ID, it can avoid much unnecessary stack
memory occupation and save the time of register operations.
We still take the ARM [3] processor example with the NEON
coprocessor extension. As the NEON extension integrates
thirty-two 64 bit double word registers, it should consume
minimal 256 bytes context memory space. Besides the memory
cost, loading and storing all these extra registers wastes some
time and power which are important for embedded systems.
With our task migration framework, we can fix the context size
of the task dependent on itsTASK_ISA_ID when created. If
the task does not use the NEON extended instructions and
registers, the extra memory and operation time are saved with
our task migration framework.

V. EXPERIMENTAL RESULTS

In this section, we introduce the Motion-JPEG example
to present the performance, cost and power advantages of
our task migration framework for on heterogeneous MPSoC
platforms based on the same core instructions.

16%

0%

64%

11%

2%
7%

Conv

Demux

Idct

Iqzz

Libu

Vld

5%

11%

0%

17%

47%

11%

2%

7%

Fig. 5. Performance difference. (a)Computation time with onlythe core
instruction set. (b) Computation time with both core and extended instruction
set.

A. Introduction of the Motion-JPEG case study

The Motion-JPEGis a multimedia format in which a video
sequence is separately compressed as JPEG images. In this
case study, we realize the Motion-JPEG decoder application
with eight initial tasks: TG, DEMUX, VLD, IQZZ, IDCT,
CONV, LIBU and RAMDAC (Fig. 4). It works by reading
a stream of JPEG images with the Traffic Generator (TG)
task and writing the decoded pixels into the Random Access
Memory Digital-to-Analog Convert (RAMDAC).

Mutek [25] is a lightweight SMP POSIX Thread compliant
operating system kernel. To adapt it to our heterogeneous
platform, the scheduler part of this kernel is modified for
heterogeneous MPSoC task migration requirements.

B. Heterogeneous MPSoC Architecture

Beside system software and application software, we use
a heterogeneous MPSoC architecture. In this architecture,all
configured processors use the basic instructions of the Xtensa
LX2 processor. The extended instruction set compiler and the
software compiler are also provided by Tensilica [1].

After the task profiling of the Motion-JPEG example, we
get the left part of Fig. 5 which indicates the computation
time used for each tasks based on the core instruction set.
As we focus on the application optimization, this figure
only shows the 6 software tasks, the operating system and
communication costs are excluded to make the comparison
clearer. In this figure, we find the IDCT and the YUV to
RGB Converter (CONV) are two most time consuming tasks
which consume respectively 64% and 16% of CPU time. The

16

TG DEMUX IQ/ZZ

IDCT

CONV LIBU

IDCT

RAM

DAC
VLD

Fig. 4. Functional Model of the Motion-JPEG Case Study

TABLE II
INSTRUCTIONSET AND REGISTERFILE EXTENSION

IDCT Core CONV Core
New Instructions 10 14
New Registers 4 28

Extra Gates 70,904 63,869
Total Gates 139,904 132,869

Speedup Effect 380% 309%

following instruction set extension work focuses on these two
tasks.

Table. II shows user defined extended instruction sets for
both IDCT and CONV tasks. With extended instructions,
IDCT and CONV tasks speed up more than 3 times and the
new computation times of these 6 tasks is shown at the right of
Fig. 5. In this Figure, the circle represents 100% of the original
CPU load, and the white parts (47%+11% = 58%) represent
the gain in CPU load. It is obvious to identify the efficiency of
extended instructions for real applications. With this table, we
also give the hardware cost of these extended instructions and
registers. This information is useful to show the advantageof
our task migration framework from a Cost/Performance ratio
perspective.

Cache is also an important component of one MPSoC plat-
form. As different cache organizations and sizes can change
the system performance, cache can also become a big part
of heterogeneous platform configuration. In our experiment,
all processors have only instruction caches which are direct
mapping 4KB cache of 256 blocks of 4 words. All data access
are uncached, as the simulation platform we use does not
support cache coherence. Because instruction cache can still
show the effect of task migration, experiment results we get
do not impact our experiment target which is to show the task
migration advantage of heterogeneous MPSoC.

Our heterogeneous MPSoC architecture that makes use of
the extended Xtensa processors and that is utilized in the
following experiments is depicted in Fig. 6. Based on this
architecture, we have two different task migration frameworks.
The traditional one is to port OS separately for each processor
and there are no task migration and scheduling between
different processors. The fixed mapping solution is shown in
Fig. 6. Our task migration framework is to let all processors
share the same OS image and make task migration possible
among different extended processors.

Fig. 6. Motion-JPEG Case Study. This system includes three heterogeneous
processors based on the same Xtensa LX2 core instruction set.Processor A
is just the basic processor without any extended instructions. Processor B and
C include extended instructions for IDCT and CONV separately.

C. Performance and Cost Advantage

As we know task migration can take advantage of CPU
idle time, we use the Motion-JPEG to show, using the same
heterogeneous MPSoC architecture, the difference in execution
efficiency between fixed task mapping and dynamic task
migration.

The results of Table. III compare the performance of
four different scheduling solutions. Three of them use the
architecture presented in Fig. 6, but with different schedul-
ing algorithms. Because of flexibility, performance of both
heterogeneous scheduling algorithms overcomes that of the
traditional fixed task assignment framework. From this table,
we can easily find the performance advantage of the two
task scheduling and migration algorithms that we propose (al-
most 100% higher performance). We also show that different
scheduling algorithms have different performance results. For
this particular case, the FMFS algorithm has better perfor-
mance than the most compatible algorithm because it has a
simple and efficient realization.

In contrast to these heterogeneous architectures, in the last
column, we show the SMP architecture in which each proces-
sor includes all extended instructions and registers. Compared
with the heterogeneous architecture, the SMP architectureis
flexible and high performance. But we should also notice that
the hardware cost of this SMP architecture is much higher
than the heterogeneous one. For the performance/cost ratio
(we normalize the data in Table. III), the heterogeneous archi-
tecture with our task migration framework is much better than
the SMP one. With this case study, the migration algorithms
we propose are better utilizing the extended instruction set
and thus achieve higher performance. This result shall not be

17

TABLE III
COMPARISON OFIDLE TIME FOR DIFFERENTSCHEDULING FRAMEWORKS BASED ON THESAME HETEROGENEOUSARCHITECTURE

Fixed Task Assignment FMFS Algorithm Most Compatible Algorithm SMP Task Scheduling
Frames/second 1.44 2.88 2.70 2.88
Gates number 341,773 341,773 341,773 611,295
Normalized

0.50 1.00 0.94 0.56
Perferformance/Cost

generalized to other examples without caution.

VI. CONCLUSIONS ANDFUTURE WORKS

This paper has formalized a task migration framework based
on the configurable heterogeneous MPSoC architecture. With
the Motion-JPEG example, we show the performance/cost
advantage of our framework over existing SMP architectures
and fixed task mapping framework. Meanwhile we should
also notice that though the heterogeneity property can help
accelerate overall system performance, a large percentageof
application tasks only rely on the core instruction set to be
well scheduled among all execution units. Our formalized task
migration framework can make the heterogeneous architecture
much more flexible for application designers than the tradi-
tional hard mapping one. In the near future, we can improve
performance analyse by using more complex benchmarks.

REFERENCES

[1] Tensilica Inc., Xtensa Microprocessor, 2009. [Online]. Available:
http://www.tensilica.com.

[2] CoWare Processor Designer, 2009. [Online]. Available:
http://www.coware.com/products/processordesigner.php.

[3] ARM Inc., ARM Series Processor, 2009. [Online]. Available:
http://www.arm.com.

[4] J. Augusto de Oliveira. Nexperia computing architecturefor connected
consumer applications. InIn Proceedings of the 20th International
Conference on VLSI Design, page 31, Jan. 2007.

[5] S. Balakrishnan, R. Rajwar, M. Upton, and K. K. Lai. The impact of
performance asymmetry in emerging multicore architectures. InISCA,
pages 506–517. IEEE Computer Society, 2005.

[6] M. Becchi and P. Crowley. Dynamic thread assignment on heterogeneous
multiprocessor architectures. InConf. Computing Frontiers, pages 29–
40. ACM, 2006.

[7] M. Beltrán, A. Guzḿan, and J. L. Bosque. Dealing with heterogeneity
in load balancing algorithms. InProceedings of The Fifth International
Symposium on Parallel and Distributed Computing, pages 123–132,
Timisoara, Romania, july 2006.

[8] S. Bertozzi, A. Acquaviva, D. Bertozzi, and A. Poggiali.Supporting
task migration in multi-processor systems-on-chip: a feasibility study.
In Proceedings of the conference on Design, automation and test in
Europe, pages 15–20, 2006.

[9] S. H. Bokhari. Dual processor scheduling with dynamic reassignment.
Software Engineering, IEEE Transactions on, 5(4):341–349, July 1979.

[10] J. M. Calandrino, D. Baumberger, T. Li, S. Hahn, and J. H. Anderson.
Soft real-time scheduling on performance asymmetric multicore plat-
forms. In RTAS ’07: Proceedings of the 13th IEEE Real Time and
Embedded Technology and Applications Symposium, pages 101–112,
Washington, DC, USA, 2007. IEEE Computer Society.

[11] H. De Man. Ambient intelligence: gigascale dreams and nanoscale
realities. pages 29–35, Feb. 2005.

[12] E. Flamand. Strategic directions towards multicore application specific
computing. InProceedings of the 2009 Design, Automation and Test
in Europe Conference, page 1266, Nice, France, Apr. 2009. Keynote
speach.

[13] S. Ghiasi, T. W. Keller, and F. L. R. III. Scheduling for heterogeneous
processors in server systems. InConf. Computing Frontiers, pages 199–
210. ACM, 2005.

[14] J. L. Hennessy and D. A. Patterson.Computer Architecture : A
Quantitative Approach. Morgan Kaufmann Publishers, fourth edition,
2007. chapter 2 and chapter 4.

[15] A. A. Jerraya and W. Wolf.Multiprocessor Systems-on-Chips. Morgan
Kaufmann Publishers, 2005.

[16] R. Kumar, D. M. Tullsen, P. Ranganathan, N. P. Jouppi, andK. I.
Farkas. Single-isa heterogeneous multi-core architectures for multi-
threaded workload performance. InISCA, pages 64–75. IEEE Computer
Society, 2004.

[17] R. Leupers.Retargetable Code Generation for Digital Signal Proces-
sors. Kluwer Academic Publishers, Norwell, MA, USA, 1997.

[18] T. Li, P. Brett, R. Knauerhase, D. Koufaty, D. Reddy, andS. Hahn.
Operating system support for overlapping-isa heterogeneous multi-core
architectures. pages 1 –12, jan. 2010.

[19] G. Martin. Overview of the mpsoc design challenge. InProceedings of
the 43rd Design Automation Conference, pages 274–279, 2006.

[20] A. Nohl, G. Braun, O. Schliebusch, R. Leupers, H. Meyr, and A. Hoff-
mann. A universal technique for fast and flexible instruction-set
architecture simulation. InProceedings of the 39th Design Automation
Conference, pages 22–27, July 2002.

[21] V. Nollet, P. Avasare, J.-Y. Mignolet, and D. Verkest. Low cost task
migration initiation in a heterogeneous mp-soc. InProceedings of the
conference on Design, automation and test in Europe, pages 252–253,
March 2005.

[22] P. S. Paolucci, A. A. Jerraya, R. Leupers, L. Thiele, andP. Vicini.
Shapes: : a tiled scalable software hardware architecture platform for
embedded systems. InCODES+ISSS, pages 167–172. ACM, 2006.

[23] L. Pozzi, K. Atasu, and P. Ienne. Exact and approximate algorithms for
the extension of embedded processor instruction sets.IEEE Trans. on
CAD of Integrated Circuits and Systems, 25(7):1209–1229, 2006.

[24] J. Sato, M. Imai, T. Hakata, A. Y. Alomary, and N. Hikichi. An inte-
grated design environment for application specific integrated processor.
In ICCD, pages 414–417. IEEE Computer Society, 1991.

[25] H. Shen and F. Ṕetrot. Novel task migration framework on configurable
heterogeneous mpsoc platforms. InASP-DAC, pages 733–738. IEEE,
2009.

[26] J. M. Smith. A survey of process migration mechanisms.ACM SIGOPS
Operating Systems Review, 22(3):28–40, 1988.

[27] M. S. Squillante and E. D. Lazowska. Using processor-cache affinity
information in shared-memory multiprocessor scheduling.IEEE Trans.
Parallel Distrib. Syst., 4(2):131–143, 1993.

[28] M. S. Squillante and R. D. Nelson. Analysis of task migration in shared-
memory multiprocessor scheduling. InProceedings of the 1991 ACM
SIGMETRICS conference on Measurement and modeling of computer
systems, pages 143–155. ACM, 1991.

[29] F. Sun, S. Ravi, A. Raghunathan, and N. K. Jha. A scalablesynthesis
methodology for application-specific processors.IEEE Trans. VLSI Syst.,
14(11):1175–1188, 2006.

[30] G. Zimmermann. The mimola design system a computer aided digital
processor design method. InDAC ’79: Proceedings of the 16th
Conference on Design automation, pages 53–58, Piscataway, NJ, USA,
1979. IEEE Press.

18

Forest Fires: improving a Cache Replacement
Algorithm

Filipe Montefusco Scoton Mario Donato Marino Jorge Mamoru Kobayashi
filipe.scoton@usp.br mdm9uw@virginia.edu jmamoru@regulus.pcs.usp.br

University of Sao Paulo University of Virginia University of Sao Paulo

Abstract—A particular value or quantity of an object or event varying inversely as a power of some of its attributes is said to follow a Power
Law. In other words, Power Laws state that a few percentage of the causes are responsible for a high percentage of the consequences. The
most famous examples are the Pareto Principle, where 20% of a nations population is responsible for 80% of that nations wealth; and the
Zipf’s Law, that says that the frequency of a word on a natural language written text is inversely proportional to its rank in a frequency table.
Another interesting phenomena described by a Power Law is a forest fire caused by a lightning, where there will be few lightnings that will
cause massive destruction and many that will burn a few trees. This way, the state of a forest, composed by its fauna and flora, will change
according to each lightning. We assume that a program in execution is represented by a sequence of cache contexts, and calls and returns
represent changes between different contexts. The adaptation of a cache replacement mechanism should take into a particular context of
a program in order to improve locality, reducing the number of misses when switching contexts. With this goal, this work models the cache
memory of microprocessors as a forest, comparing the lightnings with context switches during the execution of a program. This way, it would
be possible to have a mechanism inside the microprocessor in order to better suit the replacement algorithm of the cache memory to the
new context of execution, improving the efficiency when selecting the lines to be evicted from the cache and this way improving performance.
Without any loss of generality, we employ the forest fire model to the decay functions that control the adaptivity of the Adapted-Discrete-based
Entropy Algorithm - ADEA - cache-replacement mechanism [1]. The adaptivity of the ADEA algorithm can balance between the frequency
and recency of use of the cache lines. The results show that for most of the benchmarks, the Forest Fire Switching Mechanism stays between
the best and the worst result for each of the decay functions implemented with the ADEA algorithm, showing that it is up to 46% better than
the worst ADEA configuration and up to 17% worse than the best ADEA configuration. This means that it is possible to reach a more efficient
and stable algorithm, that can be better suited for most of the common applications.

Index Terms—Locality, Processor, Cache line, Forest Fire, Power Laws, Information Entropy, SimpleScalar.

F

1 INTRODUCTION
According to [4], when the probability of measuring a
particular value of some quantity varies inversely as a
power of that value, that quantity is said to follow a Power
Law, stated by equation 1. Famous examples are known as
Zipf’s Law [5] or the Pareto Principle [4]. Additionally to
those examples, Power Laws can be found in physics, biol-
ogy, earth and planetary sciences, economics and finance,
computer science, demography and the social sciences. [4]
gives examples on the distribution of the sizes of cities,
earthquakes, solar flares, moon craters and wars.

p(x) = Cx−α,with C = ec. (1)

Forest fires can also be modeled as a Power Law [4],
where there is a higher chance of having many forest fires
that will burn a few trees if compared to large forest fires
where most of the trees are burnt. The figure 1 illustrates
this idea. In this paper, large forest fires mean big program
context switches, like calls and returns, that will be reflected
in the way cache memory behaves. The forest fire mech-
anism will signalize when greater data context-switches
happen, helping the replacement algorithm to better replace
old addresses for new ones.

Each region of a program has an adequate data recency.
Based on the forest fire mechanism, we can build a mech-
anism that can set the replacement algorithm to be better

Mario D. Marino started helping with this work while working as a professor at
University of Sao Paulo and now is a doctorate student at University of Virginia.

suited to a specific region of the program, improving data
recency.

Fig. 1. Forest Fire Model - A lightning strikes a random position in
the forest, starting a fire that will cause massive destruction. Figure
taken from [4].

Assuming that a program in execution could be repre-
sented by a sequence of cache contexts, calls and returns
represent changes between different contexts. The cache
replacement algorithm should adapt itself on particular
contexts in order to improve locality, reducing the number
of misses whenever a context switch occurs. The association
between lightnings to program calls and returns represents
how the idea of Forest Fires modeled as Power Laws can
help an adaptive cache replacement mechanism to improve
its performance.

We employed the forest fire model to the decay functions

19

used with ADEA - Adapted Discrete-based Entropy Algo-
rithm [1]. The adaptivity given to ADEA by the model can
balance between frequency and recency of use of the cache
lines. The results show that for most of the benchmarks,
the Forest Fire Switching Mechanism stays between the best
and the worst result for each of the decay functions imple-
mented with ADEA, showing that it is up to 46% better
than the worst ADEA configuration and up to 17% worse
than the best ADEA configuration. This means that it is
possible to reach a more efficient and stable algorithm, that
can be better suited for most of the common applications.

The major contributions of this paper are:
1) Showing how Forest Fires modeled as Power Laws

can be associated to an adaptive cache replacement
technique in dealing with big context switches;

2) Showing that the technique can be applied
with/without the source code, activated on each
call/return;

3) Evaluation of the technique on ADEA algorithm,
showing its benefits.

Section 2 describes the Adapted-Discrete-based Entropy
Algorithm - ADEA - implementation with its decay func-
tions. Then, we have section 3 which describes the For-
est Fire Switching Mechanism and implementation. The
methodology and results are presented in section 4. Final
conclusions will appear at section 5 with some ideas for
future work.

2 INFORMATION ENTROPY AND CONTROLLING
ENTROPY ADAPTATION

As explained by [1] and stated by [3], for each xi that
belongs to a language, the uncertainty measure can be
denoted by the first line of the relation 2. The discrete
entropy of a character h(xi) and the entropy of a character
sequence can be further estimated by 2:

u(xi) = −logb(p(xi)), b = {2, e, 10}
h(xi) = u(xi) ∗ p(xi), i = {1, · · · , n}
H(X = xi) =

∑n
i=1 p(xi) ∗ u(xi)

(2)

2.1 Adapted-Discrete-based Entropy Algorithm
The Adapted-Discrete-based Entropy Algorithm (ADEA)
resides on an independent probability of occurrence of
addresses, modeling the working set of a program as a
sequence of addresses X = {x1, x2, · · · , xn}, where each
address xi is a random variable that can assume any value
in the computer address space. The cache replacement
policy computes the probability of each address that was
referenced during programs execution. This probability
p(xi) is the ratio between the number of times the address
was referenced and the total number of references on the
cache set that maps the address. With this probability, the
algorithm then computes the discrete entropy as h(xi),
described in equations 3, while the original concept of
Information Entropy would compute the uncertainty as
u(xi). This adaptation of the Information Entropy original
concept is based on a threshold parameter that avoids the

inconsistency of the probability of a very frequent access
from being 100%, which is shown in 3 below.

ts = last cache set access− last block access(xi);

decay = 1/(log10(ts+ 1) + 1);

h(xi) =

{
u(xi) ∗ p(xi) ∗ decay if p(xi) < threshold

1− (u(xi) ∗ p(xi) ∗ decay) if p(xi) >= threshold

For the standard ADEA: decay = 1;

For RRF-decay, on replacement: p(xi) = 0; if ts > 106

(3)
As explained by [1], ADEA has an ascending slope

after the probability p(xi) reaches higher values than the
threshold, which is exactly the opposite behavior than
the typical Information Entropy concept. In the case of
oddly distributed probabilities among possible values of
random variables, h((x)i) declines from this threshold and
above. [1] determines empirically that the best value for the
threshold is around 0.38, where the entropy curve presents
its inflexion.

Insertion and replacement in ADEA occur in the same
position of the cache set stream. The line with the lowest
entropy value among lines currently in the cache set will
always be stored at the insertion/replacement position.
Lines with higher values of entropy will be stored at the
other end of the cache set stream.

This way, in ADEA a line is only migrated or promoted to
the protected position if it increases its entropy value, which
happens if it becomes more referenced; actually this is the
greatest dissimilarity between ADEA and LRU algorithms.
While LRU immediately inserts the incoming line at the
most protected position of the cache set stream, ADEA will
wait for more references to the same line to promote it,
relying on the probability of future references to that line.

In other words, ADEA presents a higher inertia than
LRU when promoting lines to protected regions, because
the entropy value increases only with further references.
Compared to LRU, ADEA takes longer to decide to remove
a line. There may be execution scenarios where any inten-
sively accessed line is moved to the protected position of
the cache set and after a while it does not get any further
reference. The incoming lines will present a lower entropy
than this first line for a period of time.

As described by [1], ADEA may cause a cache line to
be indefinitely in the cache, resulting in a waste of space,
which is called pinning. This can happen after a high
intense access to a particular line compared to other lines
and it is the motivation behind the decay functions.

The balance between frequency and recency is controlled
by two different decay functions [1]:

• Frequency-recency FR-decay function: relies on fre-
quency and recency to retire cache lines;

• Recency-rather-frequency RRF-decay function: priori-
tizes recency rather than frequency.

In general, ADEA will assign a discrete entropy value to
a cache line that was intensively accessed. In this case, the
line would be placed in the most protected area of the cache

20

and would not be moved from there unless a new cache
line shows higher frequency of references. In this case p(xi)
is the regular probability of xi calculated by the ratio of
frequency of references for xi and number of references for
the cache set to which that block is mapped. The variable
u(xi) is the uncertainty as calculated by the equation 3
stated by [1].

FR-decay function [1] employs a combination of fre-
quency and recency of access to calculate the discrete value
of entropy. It keeps track of how far in the past the last
line reference happened relative to the last cache set access
through the time stride parameter, so that an intensively
accessed line that is stored in the most protected portion of
cache will have its discrete entropy value decreasing with
an inversion of logarithm of time 3.

RRF-decay function is intended to cover situations where
a highly accessed line was evicted from a cache due to
the decay function and later becomes referenced again by
the program. If the frequency counters are not reset in the
moment where this line is evicted, an extra-offset will be
added, pushing the line directly to a protected portion of
the cache and leveraging the history of accesses and the
newest reference. This may lead to undesirable effects such
as competition for slots in the cache and eviction of other
lines with fewer, but more recent accesses.

RRF-decay function checks if the replaced line was ac-
cessed too far in the past execution and if so, resets its
access counters and entropy value. By employing this new
heuristic on replacements, it is possible to avoid that highly
intensive accessed lines return on the protected portion of
the cache, which can be seen on equation 3.

3 FOREST FIRE SWITCHING MECHANISM

The context switches are represented by calls and returns
during the execution of a program. For every call, there’s a
possible change of the state of the cache, since patterns of
memory accesses tend to change.

As mentioned, the Forest Fire Switching Mechanism
models the cache as a forest with each line being a tree.
In this model, lightnings mean trees getting burned and
disappearing, giving place to other trees, or in the case of
caches, the burnt trees mean evicted lines and the lightnings
represent the replacement of lines.

It is expected that there will be many replacements due
to new addresses accesses, this means that there are lots
of lightnings that will burn few trees, or few isolated lines
will be replaced many times.

The performance improvement will be achieved by un-
derstanding what causes the lightnings that will destroy
lots of trees, or in other words, the context switches that
will make lots of lines to be evicted in order to give space
to new lines. The model explores these changes, helping
the replacement algorithm to select which trees, in our case
which lines should give room to new ones, lowing the miss
rate and improving overall performance.

The forest fire switching mechanism basically switches
between RRF-decay and FR-decay, using call and return
instructions to do that. This way, the replacement algorithm

has its behavior switched to better adapt to those changes.
The return of the corresponding call leads to a similar
change, since the state tends to change again due to a
different pattern of memory accesses. We propose then
switching from RRF-decay to FR-decay and vice-versa as
the two forest fire main mechanisms.

Two models were created to deal with ADEA decay
functions:

1) RRF-FR: for this model, every time there is a call
instruction there will be a switch from the RRF-decay
function to the FR-decay, getting back to RRF-decay
when a return instruction is to be executed;

2) FR-RRF: this behaves in an exactly opposite way from
the first one, changing from FR-decay to RRF-decay
with a call and again to FR-decay with a return
instruction.

4 METHODOLOGY AND TOOLS

The SimpleScalar simulator was used to model and to eval-
uate the performance of each algorithm. All the aforemen-
tioned structures were inserted into SimpleScalar’s cache
module to support ADEA’s operation as demonstrated by
[1]. The switching mechanism was done on top of ADEA’s
implementation. We simulated a common size of L2 cache
while the L1-dcache size remained the same, focusing on
the behavior of the higher associative cache in the modeled
processor.

As in [1], we have used the OOO-core for its intrinsic
higher parallelism. Independently, as the ADEA algorithm,
the switching mechanism can also work in caches of in-
order cores.

To evaluate the technique, the SPEC CPU2000 benchmark
was used with its reference input set. For the matter of
comparison, LRU was assumed as the baseline for all the
simulations and performance comparisons. Table 1 shows
the parameters for the modeled cache.

Parameter Value
L1 I-cache 16kB; 32B line size; 4-way LRU;
L1 D-cache 16kB; 32B line size; 4-way LRU;
L2 Unified 1024kB; 64B line size; 8-way (LRU / LIP / BIP / ADEA);

TABLE 1
Cache Definition

Cache miss rate was used as the criteria to compare the
performance of the cache line replacement algorithms. All
the three implementations of ADEA were used and LRU is
the baseline for comparison purposes, since it is the most
common algorithm.

The results shown on figure 2 were obtained simulating
4 billion instructions of 18 SPEC CPU2000 programs, with
the three different ADEA default setups as presented by
[1] and the two new implementations with the Forest
Fire Switching Mechanism. The numbers presented on the
graphics cover the miss rate results relative to LRU, which
is the baseline for all the performance results. Qureshi’s
LIP and BIP [2] are also presented for comparison as in
[1], but their implementation does not carry the Forest Fire
Switching Mechanism, being the same algorithm created

21

Fig. 2. Miss Rates for an L2 cache with 1024 kB.

by the author and reimplemented on SimpleScalar for this
work.

The switching mechanism was able to improve ADEA
with no decay function for the benchmarks applu, apsi,
crafty, equake, lucas, mesa, mgrid, swim and vpr while has
shown the same performance in the case of eon, fma3d,
gap, gzip and parser. The other benchmarks presented better
results with standard ADEA, even compared with FR-decay
and RRF-decay, as observed by [1].

As mentioned before, the Forest Fire Switching Mech-
anism adapts between FR-decay and RRF-decay, going
from one algorithm to the other by the trigger of calls
and returns. Compared to FR-decay and RRF-decay, the
switching mechanism was always equal or between the best
performance and the worst among these two. This is an
expected result, since both implementations of the Forest
Fire are switching between the two decay functions. It is
interesting to notice that for some benchmarks, the pairs
of similar results change in a way that we can assume that
some programs have many calls or spend more instructions
inside calls. This can be observed with crafty, gcc, mesa,
mgrid, swim, twolf and vpr that have pairs of results indi-
cating that those programs spend a lot of instructions on
calls, for example: the switch from FR-decay to RRF-decay
has almost the same results as the RRF-decay model.

The performance improvement that comes with the For-
est Fire model helps understand how the context switches
affect the behavior of the cache replacement algorithm,
since for ADEA frequency and recency are main aspects
of each decay function.

5 CONCLUSION, FUTURE WORK AND
ACKNOWLEDGEMENTS

Analyzing the behavior of SPEC CPU2000 programs when
simulating the Forest Fire Switching Mechanism with
ADEA and its different decay functions, we could observe
that those models can be improved with a change in the

way the algorithm behaves whenever a context switch oc-
curs. How to apply the model to other adaptive algorithms
is intended for the future. For ADEA we concluded that
we should not prioritize recency or frequency, but switch
between both depending on the impact of a context switch
for a specific program.

The model proposed can help us understand how to
identify important characteristics of a program during its
execution, without clues given by its source code. The
study about how the compiler can help identifying these
characteristics and leaving these clues is a subject for a
future work. Another idea is to verify the intensity of
different kinds of calls, switching between different behav-
iors according to this intensity, and not at every call as
implemented.

In order to improve the analysis, we intend to simulate
more instructions and other cache parameters, changing
size and associativity of the L2 or even a shared cache in
a CMP. With more instructions we want to see not just the
overall execution results, but to print statistics along the
simulation to better understand how the algorithm changes
itself during the switches, or in this case, calls and returns.

The authors would like to thank the feedbacks from
the reviewers, professor Jorge Kinoshita from USP for the
calls/returns idea and Maria A. G. Marino for the help
reviewing the text in english.
REFERENCES
[1] “Adapted Discrete-based Entropy Cache Replacement Algorithm”

Submitted to ISPASS 2011, September 2010.
[2] M. K. Qureshi, A. Jaleel, Y. N. Patt, S. C. Steely, J. Emer, “Adaptive

insertion policies for high performance caching,” in ISCA ’07: Proceed-
ings of the 34th annual international symposium on Computer architecture.
New York, NY, USA: ACM, 2007, pp. 381–391.

[3] C. E. Shannon, “A mathematical theory of communication,” Bell
System Technical, vol. 27, pp. 379–423 and 623–656, 1948.

[4] M. E. J. Newman, “Power laws, Pareto distributions and Zipfs law
,” Contemporary Physics, vol. 46, pp. 323–351, 2005.

[5] I. Kotera, R. Egawa, H. Takizawa, H.Kobayashi, “Modeling of cache
access behavior based on Zipf’s law ,” MEDEA ’08: Proceedings of the
9th workshop on Memory performance, pp. 9–15, 2008.

22

Integral Parallel Architecture
in System-on-Chip Designs

Gheorghe M. Ştefan

Faculty of Electronics, Tc. and IT, Politehnica University of Bucharest, Bd. Iuliu Maniu, 3-5, Bucharest, Romania
gstefan@arh.pub.ro

Abstract — The ubiquitousness of the parallel computational
resources emerges in the rapid growing market of system-on-
chip. Both, complex and intense computations are requested for
solving the fast expanding functional spectrum of the mobile
products. The current approach is unable to provide low area
and low power solutions for the increased functional hungry. The
proposed Integral Parallel Architecture (IPA) provides >100x
increase for GIPS/Watt and GIPS/mm2 than the current
structures. This new approach is based on ConnexArrayTM
technology, developed and tested on real chips, and on the
Bubble-free Embedded Architecture for Multithreading (BEAM)
execution. It is proposed an IP based model to manage tens of
threads and a number of execution or processing units which
starts from tens and goes up to thousands.

I. INTRODUCTION

The SoC domain is driven by two forces:
 the functional spectrum is enlarging, requesting highly

complex and high data-intense computation,
 the number of transistors per cm2 of silicon increases,

while the possibility to follow this trend is limited by:
 our inability to fill up the size/complexity gap between

making and specifying (the technological developments
help us to have more transistors/die, but do not provide us
with the techniques to write down more lines of code
describing circuits with the corresponding complexity),

 our inability to provide architectural solutions for limiting
the energy waste (only structural solutions are provided).

Our solution is based on the following main decisions:
1. To “move” the complexity from the circuit level to the

informational level, increasing the weight of embedded
computation, substituting as much as possible the ASIC
approach with programmable solutions. The functional
complexity will come mainly from programming.

2. To segregate the complex computation by the intense
computation [13], in order to optimize independently
these two too distinct forms of computation.

3. Because the resulting programmable solution will
competes with circuits - “naturally” parallel structures -
the engine must be a parallel one.

While for the initial stages of developing embedded
computation using sequential architecture was a very good
solution, in the actual stage of development parallel
computation is a must, and the main problem is: what kind of
parallel architecture is the best fit for embedded computing?
Unfortunately, the answer is: we need as many kinds as

possible, because the diversity of circuits to be emulated
efficiently requests a comparable architectural diversity.

Our proposal takes into account the forms of parallelism
which result from the most appropriate computation model to
be used as starting point for defining what parallelism means.
It is the model of partial recursive functions proposed by
Stephan Kleene [6]. Based on Kleene’s model, in [7] and [8]
is proposed a new taxonomy for parallel computation. The
taxonomy proposed by Michael Flynn [3], and the similar
ones, are somehow “artificial”, because are based on formal
constructs derived from the sequential model of Allan Turing.

II. INTEGRAL PARALLEL ARCHITECTURE

In [8] is proved that, according to Kleene’s model, the
building of a parallel model of computation can be exclusively
based on the composition rule having the form:

f(x1, … xm) = g(h1(x1, … xm), …hn(x1, … xm))

which is a n-sized form (see in Fig. 1 its structural version)
which describes two aspects of parallelism: the synchronic
parallelism of computing n functions hi, and the diachronic
parallelism of pipelining hi with the reduction function g.

 x1, … xm

 f(x1, … xm)

Fig.1. The structural representation for Kleene’s composition rule.

Five types of parallel computation can be emphasized:

 Data-parallel computation, characterized by:
hi(x1,… xm) = h(xi), g(h(x1),…h(xm))= {h(x1),…h(xm)}

 Time-parallel computation, characterized by:
 m = 1

 Speculative-parallel computation, characterized by:
hi(x1,… xm) = hi(x), g(h1(x),…hm(x))= {h1(x),…hm(x)}

 Reduction-parallel computation, characterized by:
 hi(x1,… xm) = xi, f(x1,… xm) = g(x1,… xm)

 Thread-parallel computations, characterized by:
hi(x1,… xm) = hi(xi), g(h1(x1),…hm(xm))= {h1(x1),…hm(xm)}

h1 h2 hn

 g

23

Any complex embedded application requests all these types of
parallel computation.

A. Implementing IPA

An IPA is able to perform all types of parallel computation
previously listed. The computation in a system with IPA is
defined on the following data structures: scalar, vector, and
stream of scalars, and uses for defining the computation:
functions on scalars, vectors or streams (f(x,…), f(V,…),
f(S,…)) and function vectors (F = <f1 … fm>).
We know that: (1) any computation can be expressed using a
combination of the following particular forms:

1. data-parallel: f(V1 … Vn) = V
2. reduction-parallel: f(V) = x
3. speculative-parallel:

F(x)=<f1…fm>(x)={f1(x)…fm(x)}=V
4. time-parallel: F(SI)=<f1…fm>([x1…xn])=[y1…yn]=S ;

a stream of scalars [x1…xn] is applied to the pipe of
functions <f1…fm>; the result stream is [y1…yn]

5. thread-parallel: f1(x1…xm)=y1,…fn(x1…xp)=yn

We make the assumption that: (2) most of the frequent
computations are performed efficiently if they are expressed
using a combination of the previously defined functions.
The assumption (2) is investigated in [9] based on [1]. The
sentences (1) and (2) propose a functional approach mixed
with a sort of RISC approach promoted starting with early
1980s. Let’s call this approach: parallel RISC.

B. Intense computing

The first four forms of parallel computation have a common
characteristic: different kinds of patterns characterize them.

1. Data-parallel: each component of the vector results from
the predicated execution of the same program.
2. Reduction-parallel: each vector component is equivalent
related to the reduction function.
3. Speculative-parallel: applies, usually, the same variable to
slightly different function.
4. Time-parallel: a pipe of functions <f1…fm> is applied to
[x1…xn] providing an efficient computation for n >> m.

In all these cases the dominant characteristic of computation is
its intensity, i.e., a big amount of data is processed or is
outputted. Therefore, both, data and program flow are highly
predictable, determining the features of the sub-architecture
we propose for performing the intense computation:
 the computation is done in a cellular structure of many

small & simple processing/execution cells [11]
 array computing is the main type of processing executed

in a linear network of cells
 the computation is a high-latency functional pipe
 buffer memory hierarchy with out-of-core executions.

C. Complex computing

The multi-threaded computation is a form of parallelism
described by: f1(x1…xm)=y1, … fn(x1…xp)=yn, where each
function represents a distinct program running on distinct data.

Each of these computations is pattern-less. Therefore, we will
refer to them as the complex computing, characterized by:
 mono or multi big & complex processor organization
 multi-threaded programming model
 the computation is operating system based
 the memory hierarchy is cache-based.

Faced with intense computation, the current SoCs are
designed with few standard complex cores and/or some
specific accelerators (DSPs or specialized hardware).

D. Integral Parallel Organization

The first embodiment of a system with an IPA is the Connex
System presented in Fig. 2, where we distinguish between the
two kinds of computation, segregating them as:

 ConnexArrayTM: many-cell array of execution units (EU)
or processing elements (PE) for intense computations [12]

 Multi-Thread Processor (MTP) is a mono- or multi-core
BEAM processor for complex computations [2].

MTP uses one of its threads to control ConnexArrayTM in
order to execute an ISA containing instructions for both,
scalars and vectors. The entire system is programmed in C++
using the library VectorC [10]. A GNU C++ compiler is
developed for the current IPA instruction set.

Fig. 2. Integral Parallel Organization: Connex System.

While the intense computation is executed on hundreds or
thousands of cores, the complex computation accepts hardly
more than 4 cores, because Interconnection Fabric limits less
the intense computation. The data stream between Memory
and ConnexArrayTM is more predictable than the data and
program streams flowing between Memory and MTP.

III. THE COMPLEX COMPUTING PART OF IPA

The complex part of the computation in Connex System is
performed by MTP. Each MTP core is able to execute up to 8
cycle-level interleaved threads. Any active thread is in
execution only if its current instruction flow can be executed
bubble free. The main effect of BEAM is the increasing of the

ConnexArrayTM

Multi-Threaded

Processor

Interconnection Fabric

Interface
Memory

24

effective IPC, while saving the area used for the same purpose
in the current processors by the branch predictor, superscalar
execution units, and L2 cache. Preliminary evaluations show
the increasing of performance by 2.5x – 4x, while the area of
the engine is reduced with around 60% [2].

IV. THE INTENSE COMPUTING PART OF IPA

ConnexArrayTM is a cellular array which performs the intense
part of the computation [12], [13]. It is already implemented
on silicon in 3 versions. The last one, CA1024 (a SoC for the
HDTV market, running at 400 MHz, having 1024 EUs,
produced in 65 nm standard process in March 2008, see Fig.
4), has the following characteristics measured on actual chips:
 400 GOPS (Giga 16-bit integer OPerations per Second)
 120 GOPS/Watt and 6.25 GOPS/mm2

 To Controller
 Inner global loop

 IO System

 From Controller

Fig. 3. ConnexArrayTM.

Fig. 4. CA1024.

The block diagram of ConnexArrayTM is presented in Fig. 3,
where a linearly connected array of 1024 EUs receives the
same instruction for each EU. The instruction is executed in
each EU according with its own state. The reduction network,
designed for the most frequently used reduction functions
(add, max, …), sends back to the controller the requested
data. An inner global loop, closed over the array, is used to
classify the EUs according to the selected Boolean. The IO
system works in parallel with and transparent to the main
computation.
The SoC CA1024 contains besides the 1024 EUs (60% of the
chip area) audio/video interfaces, a network of 4 MIPS and a
time-parallel unit (8 16-bit processors).

A. Basic Operations in ConnexArrayTM

Operations on vectors are performed in constant number of
cycles. Generic operations are exemplified in the following:
 full vector ops: {carry, v5} = v4 + v3;the

corresponding integer components of the two operand
vectors are added; carry is a Boolean vector

 Boolean operation: b7 = b3 & b5;the two Boolean
vectors are ANDed component by component

 predicated execution: v1 = b2 ? v3 - v2 : v1;
in any positions where b2 = 1 the corresponding
components are subtracted

 vector rotate: v7 = v7 >> n;the content of vector v7
is rotated n positions right

 strided load: load v5 addr burst stride;the
content of v5 is loaded from the address addr, using
bursts burst, on a stride of size stride

 scattered load: sld v3 v9 addr stride;v3 is
loaded indirectly using the address vector v9

 strided store: store v7 address burst stride;
 gathered store: gst v4 v3 addr stride; it is a sort

of indirect store.

Each cell contains two sub-cells: the scalar unit and the
Boolean unit. For input-output operations there is an IO Plane,
distributed over the array, whose content is transferred from or
to the array’s vector memory in one cycle. On the other hand
its content is loaded from or stored to the external memory in
a number of cycles depending on the IO latency and
bandwidth (around 164 clock cycles for a 400 MHz engine
with 1024 16-bit EUs). The transfer process is transparent to
the computation.

B. VextorC: the programming language of ConnexArrayTM

ConnexArrayTM is programmed in VectorC, a C++ language
extension [10]. The extension is made by adding new
primitive data types and by extending the existing operators to
accept the new data types. In VectorC the conditional
statements have become predication statements.

The new data primitives are, for example:
 int vector: vector of integers
 short vector: vector of shorts
 selection: vector of Booleans

Reduction
network

Array of EUs

Distribution
network

25

Let be the following variable declarations:
 int i1, i2, i3;
 bool b1, b2, b3;
 int vector v1, v2, v3;
 selection s1, s2, s3;
Then a VectorC statement like: v3 = v1 + v2; replaces:

for (int i = 0; i < VECTOR_SIZE; i++)
 v3[i] = v1[i] + v2[i];
and s3 = s1 && s2; replaces this for statement:

for (int i = 0; i < VECTOR_SIZE; i++)
 s3[i] = s1[i] && s2[i];
The scalar statement: if (b1) {i3 = i1 + i2}; has the
correspondent in VectorC the vector predication statement:

WHERE (s1) {v3 = v1 + v2};
replacing this nested for:

for (int i = 0; i < VECTOR_SIZE; i++)
 if (s1[i]) v3[i] = v1[i] + v2[i];

The VectorC library is used as a programming tool for
Connex System and also as a simulation environment.

C. Computational performance

 Connex Architecture implements the infrequent, complex
instructions, such as multiplication, division, floating point
arithmetic instructions using integer resources sequentially.
Thus the specific hardware requested for all infrequent
operations uses less than 10% from the total area of the array.
This mode of implementing complex operations generates a
specific mode of evaluating the performance of the Connex
architecture. Claiming the peak performance is meaningless
for our architecture, and deceitful for any kind of architecture.
Let’s take the example of peak GFLOPS claimed for a typical
general purpose processor: 2-4 GFLOPS. There are two
factors limiting the peak performance to the effective
performance: (1) the weight of float instructions in current
applications (it is maximum 24% for the most intense float
applications, while the medium weight is 18% [4], [5]), (2) the
stalls in the execution pipeline due to the various hazards
(Intel reports from 48% to 85% clock cycles as stall cycles
(see http://www.anandtech.com/print/1909)). Results:

effectiveGFLOPS = 0.06×peakGFLOPS.

For Connex architecture the GFLOPS we claim are effective,
because the engine uses for float operations exactly as much
GOPS as the applications requests. For example, let be a 1024
32-bit cells array running at 1GHz an application which is not
IO bounded. Results peak performance of 1 TOPS. The
degree of parallelism is in the range of 30% - 90%. Let us take
60%. Then the effective performance is 0.6 TOPS. For a
medium float application results the effective performance:
162 GIPS (Giga Instructions Per Second), out of which 29
GFLOPS, and 133 GIPS in integer operations (each floating
point operation is executed in 16 clock cycles). Compared
with a standard technology, the Connex approach provides
more than two magnitude order more effective GFLOPs (from
121x to 243x).

V. CONCLUSIONS

1. The distinction between complex and intense computation
triggers an efficient segregation which allow two magnitude

orders increase for GOPS/Watt and GOPS/mm2 for the intense
computation (in ConnexArrayTM) and one magnitude order
for the complex computation (in BEAM processor).
2. IPA expands efficiently the parallel computation at the level
of embedded computing by following the golden rule of
increasing the size of the design faster than its complexity.
3. Both, intense part and complex part of the system scales
with very small performance penalties.
4. The architectural rule of keeping the logic small & simple,
performing only frequent operations, avoids big, infrequently
used active structures.
6. Programmability deserves an increased attention for
architects also because the technological costs in nano-era
make unmarketable the pure ASIC approach.

ACKNOWLEDGMENT

The author got a lot of support from main technical
contributors to the development of the ConnexArrayTM
technology, the associated language, and the first applications:
Emanuele Altieri, Petronela Bumbăcea, Valeriu Corduneanu,
Frank Ho, Radu Hobincu, Mihaela Maliţa, Bogdan Mîţu,
Lucian Petrică, Victor Radu Rădulescu, Marius Stoian,
Dominique Thiébaut, Tom Thomson, Dan Tomescu.

REFERENCES
[1] K. Asanovic, et al.: The Landscape of Parallel Computing Research: A

View from Berkeley, Technical Report No. UCB/EECS-2006-183.J.
[2] V. Codreanu, R. Hobincu: "Performance Gain from Data and Control

Dependency Elimination in Embedded Processors" accepted at ISETC
2010. http://phd.arh.pub.ro/resources/beam/isetc2010.pdf

[3] M. Flynn: "Very High-Speed Computing Systems", in Proceeding of
the IEEE, 54(12), December 1966, p. 1901-1909.

[4] J. Fritts: Architecture and Compiler Design Issues in Programmable
Media Processors, PhD Thesis, Princeton University, Department of
Electrical Engineering Advisor: Prof. Wayne Wolf, 2000.

[5] J. Hennessy, D. Patterson: Computer Architecture. A Quantitative
Approach, Third edition, Morgan Kaufmann, 2003.

[6] S. Kleene: "General Recursive Functions of Natural Numbers", in
Math. Ann., 1936.

[7] M. Maliţa, G. Ştefan, D. Thiébaut: "Not Multi- but Many-Core:
Designing Integral Parallel Architectures for Embedded Computation"
in International Workshop on Advanced Low Power Systems held in
conjunction with 21st International Conference on Supercomputing
June 17, 2007 Seattle, WA, USA.

[8] M. Maliţa, G. Ştefan: "On the Many-Processor Paradigm", in: H. R.
Arabina (Ed.): Proceedings of the 2008 World Congress in Computer
Science, Computer Engineering and Applied Computing, vol.
PDPTA'08, 2008.

[9] M. Maliţa, G. Ştefan: "Integral Parallel Architecture & Berkeley's
Motifs", in ASAP09 - 20th IEEE International Conference on
Application-Specific Systems, Architectures and Processors, 7-9 July,
2009, Boston, MA, USA, pag. 191-194.

[10] B. Mîţu: “C Language Extension for Parallel Processing”, BrightScale
research report 2008. http://arh.pub.ro/gstefan/VectorC.ppt

[11] G. Ştefan, M. Maliţa: "Granularity and Complexity in Parallel
Systems", in Proceedings of the 15 IASTED International Conf, 2004,
Marina Del Rey, CA, ISBN 0-88986-391-1, p. 442- 447.

[12] G. Ştefan, A. Sheel, B. Mîţu, T. Thomson, D. Tomescu: "The CA1024:
A Fully Programmable System-On-Chip for Cost-Effective HDTV
Media Processing", in Hot Chips: A Symposium on High Performance
Chips, Stanford University, August , 2006

[13] G. Ştefan: "One-Chip TeraArchitecture", in Proceedings of the 8th
Applications and Principles of Information Science Conference,
Okinawa, Japan on 11-12 January 2009.

[14] D. Thiébaut, M. Maliţa: "Pipelining the Connex Array," BARC07,
Boston, Jan., 2007.

26

Session II: Computer Architecture - 2
!

27

Confusion by All Means
Muhammad Faisal Iqbal and Lizy K. John

University of Texas at Austin
{iqbal,ljohn}@ece.utexas.edu

Abstract—Performance of computers is usually measured by
using benchmark suites. There has been a long debate among
computer architects on how to aggregate the individual program
results to present a summary of performance over the entire
suite. Many researchers have criticized the use of Geometric
Mean (GM) but SPEC continues to use it to report performance.
Mashey [9] has strongly supported the use of GM. According
to Mashey, the programs in a benchmark suite like SPEC
are samples of some population of programs. It is important
that we model the distribution of population correctly before
calculating any statistics and making conclusions based on those
statistics. Mashey also conjectures that lognormal distribution is
a better model than the normal distribution for such benchmark
suites. Since GM is the back-transformed average of a lognor-
mal distribution, its use as a measure of central tendency is
statistically correct. In this study, we evaluate the correctness
of this lognormal assumption using the large repository of
performance results for SPEC CPU2006 published on SPEC’s
website. Utilizing different tests for normality, we find out
that although lognormal distribution models the performance
results better than the normal distribution, there is a very large
percentage of machines which are neither normal nor lognormal.
Our study indicates that most of the non-normality is caused by
small number of outliers. We study the causes of these outliers
and evaluate the use ofCoefficient-of-Varianceto identify outliers.
We also present some suggestions on how to deal with these
outliers.

Index Terms—Benchmark Means, Geometric Mean, Normality
Test, Lognormal Distribution

I. I NTRODUCTION

There is a long history of debate on how to summarize
the performance of a benchmark suite and which mean is an
appropriate measure of the central tendency [8], [7], [10],[12],
[5], [9]. There have been strong arguments both in favor of
and against the use of each type of mean. Citron et al. [2]
present a detailed history of this discussion. In this section,
we discuss some of the arguments made in this regard.

According to Lilja [8] arithmetic mean is proportional to
execution time and hence is the right measure for time based
metrics. Lilja [8] and Cragon [3] argue that harmonic mean
should be used for rate based metrics and weighted arithmetic
or harmonic mean should be used for time and rate based
metrics respectively if weights of individual programs are
different. Both Smith [12] and Lilja [8] strongly oppose the
use of geometric mean as a measure of central tendency.
They show that although geometric mean produces consistent
ordering of machines when normalized times are compared,
this ordering is consistently wrong with reference to the total
execution times of the benchmarks. Hence they conclude that
geometric mean is not the appropriate mean for summarizing
times or rates, irrespective of whether they are normalized.

Similarly, John [7] argues that weighted arithmetic or har-
monic mean can be used to correctly represent performance.
She shows with numerical examples that both arithmetic
and harmonic means yield correct orderings with respect to
execution times if these means are appropriately weighted.
She also maintains that geometric mean is not an appropriate
measure since it is not proportional to the execution times of
the benchmarks.

On the other hand Fleming et al. [5] study all three types
of mean and vote in favor of geometric mean since it always
produces consistent rank order among the machines. The most
convincing arguments in favor of geometric mean have come
from Mashey [9]. He has performed detailed characterization
of workload analysis and argues that benchmarks like SPEC’s
CPU benchmarks are examples ofSample Estimation of Rel-
ative Estimation of Programs (SERPOP), i.e., the benchmarks
in these suites are samples representing a population of pro-
grams which might run on a particular machine. He argues
that performance of machines on benchmarks like SPEC can
be better modeled using lognormal distribution than the normal
distribution. Geometric Mean which is theback transformed
average of lognormal distributionis the statistically appropri-
ate measure to be used. Also, the analysis done by Lilja and
John [8], [7] can be considered asWorkload Analysis With
Weights (WAW)where the user knows exactly which programs
will run on the machine and the relative frequency/importance
of the programs. In case of WAW analysis, weighted AM or
HM are indeed the correct measures for algebraic calculations
as pointed out by these researchers. Most of the benchmarking
efforts, however, try to do the SERPOP analysis and hence
we’ll deal with this kind of analysis in the remainder of the
paper. We evaluate the correctness of lognormal assumption
using SPEC CPU2006 data with three different tests for
normality: Lillie Test, Shapiro-Wilks Test and D’Agostino-
Pearson Test. We also evaluate the effectiveness of COV in
identifying the outliers and present some suggestions on how
to deal with these outliers.

II. I S GEOMETRIC MEAN AN APPROPRIATEMETRIC?

When comparing performance of machines based on the
benchmark results, we are actually comparing distributions of
performances. It is important that we understand the nature
of these distributions before calculating any statistics and
making conclusions based on those statistics. In case of
normal distributions, ”mean” can be a good measure of central
tendency. However, if the distribution is not normal then mean
does not give us any useful information about the central
tendency and we should be careful while interpreting the

28

mean. Sometimes a transformation of data can yield a normal
distribution and calculation of statistics in the transformed
domain can be very useful. In the case of a benchmark suite
like SPEC, lognormal distribution is of particular interest.
Lognormal distributionis the distribution of samples whose
logarithm is normally distributed. As Mashey [9] has pointed
out, GM can be thought of as the the back-transformed mean
of a lognormal distribution

GM = xg = (

n∏

i=1

xi)
1

n = exp(
1

n

n∑

i=1

ln(xi)) (1)

i.e., if we take the mean of logarithm of all samples and then
back transform from logarithm, we get the geometric mean.
In other words if

xg =
1

n

n∑

i=1

log10xi (2)

then
Mean = exp(xg) = GM (3)

Thus it is statistically correct to use GM if the data can be
modeled using the lognormal distribution. Furthermore, the
speedup numbers are calculated as the ratio of execution time
of a program on a given machine to execution time on the base
machine. There is nothing in the real world that distinguishes
base machine A from any other machine B. Ratios of A/B are
just as valid as B/A. This is the real fundamental reason why
one has to use some metric that works that way, so that if A
is 2X faster than B, B should be .5X as fast as A, which only
works if we take the logarithms. Arithmetic means of ratios
do not have that property, although with small dispersions,
normal may be a good quick approximation, and the AM and
GM are close anyway. In the case of benchmark suites like
SPEC 2006, lognormal distribution can cater for small outliers
better than the normal distribution and thus should be a better
model for the results. Mashey has shown with one example
from SPEC CPU2000 results that lognormal distribution can
better model the data. In this paper, we utilize the base results
available for SPEC CPU2006 from SPEC’s website for about
2000 machines and test how well the normal or lognormal
distribution models the data.

A. Tests for Normality

The easiest and most obvious way of testing for normality
is to draw the histogram and visually see how well this
histogram resembles the bell-shaped curve. But this is not
the most accurate way of testing for normality, especially
when the sample sizes are very small as in our case (12 data
samples for SPECint and 17 for SPECfp). With small sample
sizes, discerning the shape of the histogram is a difficult
task and the histogram shape can change significantly just
by changing the interval width of the histogram. A better
way of testing for normality is to use the normality tests. We
perform three different normality tests to verify the assumption
of normality for SPEC CPU2006 results. All three tests are
frequentist tests. Frequentist tests use hypothesis testing and
the decision is made using anull hypothesis. Null hypothesis

is the basic assumption that is put forward when making a
statistical inquiry and is usually denoted byH0. The validity
of the null hypothesis is tested using the statistical test which
calculates atest-statistic. In hypothesis testing, thesignificance
level(α) is the criterion used for rejecting the null hypothesis.
First, the difference between the results of the experimentand
the null hypothesis is determined. Then, assuming the null
hypothesis is true, the probability(p-value) is computed that
the difference can be at least as large as observed. If thep-
value is less than or equal to the significance level(α), then
the null hypothesis is rejected. If the test shows that we should
reject the null hypothesis, it is done in favor of analternative
hypothesis, represented asH1. In our study the hypothesis
testing can be formalized as:

H0: Samples are from a Normal Distribution
H1: Samples are not from a Normal Distribution

The three tests that we use have different ways of calculating
the test statistic and differ in how they quantify the deviation
of the actual distribution from a Gaussian distribution. A good
discussion on normality tests can be found in [6]. We present
a summary of the three tests that we are using:

1) Lillie Test: This test is an adaptation of Kolmogrov-
Smirnov test with mean and variance of the normal distribution
not specified in the null hypothesis. This test first estimates
the population mean and variance from the sample data. It
then compares the cumulative distribution of samples with the
expected cumulative normal distribution. The test statistics is
based on the largest discrepancy similar to KS-test, i.e., for a
vector x of samples the test statistic is given as

KS = max|SCDF (x) − CDF (x)| (4)

where SCDF is the empirical cdf estimated from the sample
and CDF is the normal cdf with mean and standard deviation
equal to sample mean and standard deviation. We performed
this test using thelillietest() function available in
Matlab. We performed a two sidedlillietest() with an
α of 0.05. The resulth returned by this test is 1 when we
can safely reject the null hypothesis, i.e., When thep-value
calculated by the test is smaller than the significance levelα.

2) Shapiro-Wilk Test:This test is (semi/non) parametric
analysis of variance and is useful in detecting broad range
of departures from the normality of sampled data. This test is
considered to be more powerful in detecting the non-normality
than the ”distance” tests like the Lillie Test. This test is shown
to work for number of samples between 3 and 5000. Most
authors agree that this is the most reliable test for normality
for small to medium size samples. The test statistic for this
test is given as

W =

(

n∑

i=1

aixi)

2

n∑

i=1

(xi − x)2
(5)

wherexi are the ordered sample values(x1 being the smallest)
andai are the constants generated from the means, variances
and covariances of the ordered statistics of a sample of size

29

n from a normal distribution. The small values of W are
an evidence of departure from normality. This test was also
performed in Matlab withα of 0.05.

3) D’Agostino-Pearson test:This test assesses the normal-
ity using skewness(to quantify the asymmetry of the distri-
bution) andkurtosis(to quantify the shape, i.e, peakedness of
the distribution). A normal distribution is assumed to have
a kurtosis value equal to 0. A higher kurtosis means that
the distribution is peakier and a negative kurtosis means that
the distribution is flatter than the normal distribution. Also, a
normal distribution has a skew of zero. A positive skew means
that there is a long tail to the right of mean and a negative skew
means a tail to the left. D’Agostino-Pearson test first calculates
skew and kurtosis of the sample data and then calculates how
far each of these values differs from the value expected witha
normal distribution. Finally it calculates a single p-value based
on these discrepancies. A smaller p-value means departure
from the normality. Again, we performed this test using an
α of 0.05.

B. Do SPEC CPU2006 results follow a Lognormal Distribu-
tion?

We performed all three normality tests for SPEC CPU2006
(both SPECint and SPECfp) results obtained from SPEC’s
website [1]. The data used in this paper includes all the results
which were published on or before September 9, 2010. For
normality-testing, we apply the tests on speedup data, i.e.,
runtime on machine under test/run time on the base machine
and for Log normality testing, we use logarithm(speedup) data.

Table I lists the results of normality tests. Columns la-
beled ’normal’ and ’lognormal’ represent the number of
machines which passed the normality test for speedup and
logarithm(speedup) numbers respectively. The numbers given
in the two columns are not exclusive, i.e., a machine can be
considered both normal and lognormal. The columns labeled
”None” show number of machines which were identified as
neither normal nor lognormal. We can see that, although
lognormal models data better than the normal distribution
does, the proportion of machines showing lognormal (or
normal) behavior is very small. If the sample values are close
to each other, both normal and lognormal assumptions are
equally correct to model the data. When the standard deviation
increases, i.e., the distributions start having a long tailor a
skew, the fit for normal distribution worsens but the lognormal
distribution still fits in case of small outliers. Figure 1(a) shows
a typical example of a machine whose results (SPECInt in
this particular example) show a non-normal behavior. But the
logarithm of speedup numbers can be considered normal as
identified by Shapiro-Wilk test. Taking logarithm of speedup
numbers decreases both skew and kurtosis and brings the
distribution closer to an ideal normal distribution. This is
typically the case with this category of machines where skew
is caused by presence of a small-medium outliers. Figure 1(b)
shows an example of the second category of machines. Here
the outlier is far away from other programs and even taking
logarithm cannot reduce the skew to the desired values.

We also found very small fraction of machines (12/2125)
which could be modeled by normal distribution but not by

lognormal. In all these cases, taking logarithm made kurtosis
negative, resulting in a a distribution which is flatter than
a normal distribution. Figure 1(c) shows example of such
a machine. Results from D’Agostino-Pearson Test in Table
I for SPECint show that percentage of machines exhibiting
normal or lognormal behavior is only 13% and 19% re-
spectively. Even with Lillie Test, which is considered the
weakest, percentage of normal and lognormal machines is
only 16% and 34% respectively. The percentage of lognormal
machines is a little higher in case of SPECfp, i.e., 50%, 30%
and 25% using Lillie, Shapiro-Wilk and D’Agostino-Pearson
Tests respectively. From these results lognormal seems to be
a better representation of distribution than normal. In these
situations GM is statistically the correct measure of central
tendency. But, lognormality cannot be assumed in general as
suggested by high percentage of non-lognormal machines in
the results. In such situations, the results and statisticsshould
be interpreted very carefully.

C. What are the causes of Non-normality?

In order to analyze our data set, we calculated the first
four moments; Arithmetic Mean, Standard Deviation, Skew
and Kurtosis. Then we performed exploratory data analysis to
hunt for the odd cases.

1) SPECint: Almost all of the machines which show the
non-normal behavior have high standard deviation. This high
standard deviation is usually caused by presence of an outlier.
On a detailed inspection we found that this non-normality is
caused by a single outlier, i.e.,462.libquantum. These
machines compile462.libquantum with -parallel
flag enabled. These machines are multi-core machines and
support multiple threads, so the performance of libquantumon
these machines shoots up.462.libquantum is a C library
for simulation of quantum mechanics and is easy to parallelize.
Part of the speedup also comes from the availability of 64 bit
hardware since the benchmark uses 64-bit arithmetic very ex-
tensively in its algorithm [4]. In fact, all of the top 10 machines
for SPECint have the speedup number for462.libquantum
greater than600. Compiler teams of most of the vendors seem
to have cracked this benchmark with compiler flags and cache
management instructions. They can focus on just this particular
program and get very high values of GM. Thus optimizing
for 462.libquantum is just blowing the numbers away.
Such high numbers for one or two outliers badly wreck any
statistics approach. Similar things have happened in the past.
For example, in the original SPEC89 benchmarks, cache-
blocking compilers achieved similar performance gains for
matrix300. It is important that we identify and isolate the
outliers otherwise any statistics calculated with such a data set
will not be reliable.

2) SPECfp: The situation in SPECfp is not very differ-
ent. There is a high percentage of machines which show
the non-(log)-normal behavior. If we sort the machines with
respect to standard deviation, we can easily find out the two
outliers in non-normal machines namely410.bwaves and
436.CactusADM. Both these programs are compiled using
auto parallelization. The vendors are able to get very high

30

Lillie Test Shapiro-Wilk Test Dagos-Pearson Test
benchmark Total Machines normal lognormal None normal lognormal None normal lognormal None
SPECint 2125 341 709 1415 362 526 1587 266 398 1723
SPECfp 2066 690 1469 597 696 1169 882 565 987 1057

TABLE I
RESULTS OFNORMALITY TESTS FORSPEC CPU2006

(a) Typical Machine which is non-normal but Lognormal (NovaScaleR410 F2 Intel Core i3-540, 3.06 GHz)

(b) Typical Machine which is neither Normal nor Lognormal (ASUS RS300-E6 (P7F-E) Intel Xeon X3470)

(c) Typical machine which is Normal but not Lognormal (IBM System X 3250 Intel Xeon X3220)

Fig. 1. Histograms of Typical Cases from the SPEC CPU2006 (SPECint) Results

31

performance numbers for these programs as compared to the
other programs. In contrast to SPECint programs which are
relatively easy to group, there is a possibility that SPECfppro-
grams need to be categorized into scalar, vectorizable, andpar-
allelizable etc programs. Indeed, programs like410.bwaves
and436.cactusADM do begin to form a second distribution
and should be treated separately from other programs. SPEC
has encountered similar situations in the past. Initially they
began with one single benchmark suite containing both integer
and floating point benchmarks. But as soon as they realized
the existence of bi-modal distribution in case of integer and
floating point programs, they separated the benchmark suite
into separate integer (SPECint) and floating point (SPECfp)
benchmarks. Similarly SPECfp programs may need to further
get split into scalar, vectorizable, parallelizable, and not mixed
together. All it takes is one like410.bwaves to skew results
and badly damage the predictability.

III. H OW TO DEAL WITH NON-NORMALITY ?

Although lognormal distribution is able to model SPEC2006
data better than the normal distribution, it can do so only in
case of small outliers. If the outliers are very far away or
there are multi-modal distributions, data cannot be modeled
correctly even by lognormal distribution. It is important that
we identify these outliers and deal with them accordingly. In
this section we present our recommendations to deal with such
situations.

A. Report a Measure of Dispersion

A measure of dispersion should be very useful in identi-
fying the weird cases. It helps in quantifying the ranges and
confidence within which to expect most of the benchmarks.
Digital Review magazine in 1980s used to report confidence
interval, standard deviation and variances for this purpose. In
our opinion, Coefficient of Variation (COV) should even be a
better measure than standard-deviation and variances. COVis
defined as

COV = standard deviation/mean (6)

COV is a better measure because standard deviation must be
understood relative to the mean and if one is interested in
comparing distributions with different means, co-efficient of
variation should be used.
At the moment SPEC gives just one number (GM) and it
does not provide any measure of dispersion. Although measure
of dispersion can be calculated directly from SPEC’s data,
a single number like COV can really alert the user about
weirdness of results, i.e., outliers or multi-modal distributions.
In fact in our results, all the machines which have co-efficient
of variance greater than 1 are identified as non-lognormal by
all three normality tests. Table II shows the COV of both
lognormal and non-lognormal machines in detail. We have
used the results of Shapiro-Wilk test for table II.

Fig. 2 plots the COV for SPECint for both lognormal and
non-lognormal machines. We can see that COV of all the
lognormal machines is less than 1. We found some cases

SPECint SPECfp
lognormal non-lognormal lognormal non-lognormal

COV(Avg.) 0.41 1.57 0.42 0.95

TABLE II
AVERAGE VALUE OF COV FOR NORMAL AND NON-NORMAL MACHINES

Fig. 2. COV values for Lognormal and non-Lognormal Machines (samples
are in decreasing order of COV)

where non-lognormal machines showed small COV. The non-
lognormality in these cases is due to high kurtosis (more
peakier of distribution) value. This means that more bench-
marks are closer to each other. Obviously, if more benchmarks
are close to each other, then GM (or any other mean) is a
correct measure of central tendency and can be used safely.
High COV value always correctly identifies the weird cases
of outliers.

B. Isolate and treat the outliers separately

Once we have identified the outliers, we need to treat them
separately from other programs. In case of SPECint, since we
find only one outlier, it is easy to just remove it from the stats
and use the mean of remaining benchmarks. We removed the
outliers, 462.libquantum from SPECint,410.bwaves
and 436.cactusADM from SPECfp and ran the normality
tests again. Results are listed in Table III.

From the table we can see that more than 97%, 90% of the
machines in both shapiro and Dagos test are lognormal for
integer and floating point benchmarks respectively. Thus we
can see that after removing the outliers, the distribution can be
considered as lognormal and GM can give a good measure of
central tendency. The non-normality in the remaining cases
is generally due to high kurtosis value. This means that
distributions are peakier than the normal distribution andnow
GM (or any mean) is a good measure of central tendency since
we do not have any outliers.

C. Use a Ranking System not just the Mean

A ranking system can be very useful when a user is
comparing multiple alternative machines. Instead of just using

32

Lillie Test Shapiro-Wilk Test Dagos-Pearson Test
benchmark Total Machines normal lognormal normal lognormal normal lognormal
SPECint 2125 1137 1684 2050 2112 1826 2079
SPECfp 2066 1886 2017 1782 1852 1683 1899

TABLE III
RESULTS OF THE NORMALITYTEST AFTER REMOVING THE OUTLIERS

mean to compare the performance of machines, one can use
a ranking system like ”Borda Counts”[11]. This is a single
winner election method and has roots in French Revolution. In
this method the voters rank candidates in order of preference.
The Borda count selects the winner by giving each candidate
a certain number of points corresponding to the position in
which he or she is ranked by each voter. The person with
most points is declared the winner. In our context, if we are
trying to rankn alternative machines based on performance of
a benchmark suite which hasm programs, we’ll run thesem
programs on all the machines and measure their performances.
For every individual program, we compare the performance of
each machine and assign points accordingly. Finally sum of
points for allm programs will decide machine’s rank among
then alternatives. This type of ranking system is good, since
one outlier does not blow away all the statistics. A machine
has to perform consistently well in order to be declared as
winner. Thus a proper ranking system should be used when
we are rank ordering the machine and a single mean should
not be used for this purpose.

D. Generating a Single Number

Computer architects agree that one number like GM or HM
can not tell the whole story. But it is sometimes important
to get only one number for the purpose of comparisons. We
believe that, in these situations, the dispersion of data should
be incorporated into this number. One way to do it is to
make the final benchmark score inversely proportional to COV.
Something like

BenchmarkScore ∝ (
1

1 + COV
)(GM) (7)

or
BenchmarkScore = (

k

1 + COV
)(GM) (8)

In this way the machines with high Co-efficient of variance
will be penalized more. And the machines in which all the
programs perform almost equally will not be penalized. This
score number will ensure that nobody will be able to rank
better, just by doing program specific optimization on one or
two programs of the benchmark suite. More research needs to
be done in order to find appropriate values ofk and to identify
more variables that can be incorporated in equation 8.

IV. CONCLUSIONS

Evaluating multiple machines based on performance of a
benchmark suite is generally a SERPOP analysis. In case of
small outliers, lognormal is a better model for distribution of
performance than normal distribution. The results of normality
tests show that lognormal distribution can not be assumed in

general. The existence of outliers and multi-modal distribu-
tions can badly wreck any statistics approach. With relatively
small numbers of benchmarks, it is almost inevitable that there
be outliers, and one of the questions raised for future research
is: how many benchmarks do you need to improve confidence?
A measure of dispersion such as COV can be very useful in
identifying such situations. Once an outlier or a multi-modal
distribution is identified, one should treat the weird casesvery
carefully. We also advocate the use of a proper ranking system
instead of just the GM in order to rank order the machines.
Also, even if a single number is extremely important, the score
should take the measure of dispersion into account in addition
to the mean as shown in equation 8. A lot of research needs
to be done in order to find a proper ranking system and fine
tuning the performance score numbers like the one in equation
8.

ACKNOWLEDGEMENTS

The authors would like to thank John R. Mashey for his
valuable feedback. The authors also appreciate the input from
Vincent Davis and Youngtaek Kim which helped in improving
this manuscript. This work is sponsored in part by National
Science Foundation under award 0702694. Any opinions,
findings, conclusions and recommendations expressed in this
material are those of the authors and do not necessarily reflect
the views of National Science Foundation.

REFERENCES

[1] Published results for spec cpu 2006. http://www.spec.org/cpu2006/
results/.

[2] Daniel Citron, Adham Hurani, and Alaa Gnadrey. The harmonic or
geometric mean: does it really matter?SIGARCH Comput. Archit. News,
34(4):18–25, 2006.

[3] H. Cragon. Computer Architecture and Implementation. Cambridge
University Press, 2000.

[4] Dong Ye et al. Performance characterization of spec cpu2006 integer
benchmarks on x86-64 architecture.IISWC, 2006.

[5] Philip J. Fleming and John J. Wallace. How not to lie with statistics:
the correct way to summarize benchmark results.Commun. ACM,
29(3):218–221, 1986.

[6] Zar J. H. Biostatistical Analysis (2nd edition). Prentice-Hall, 1999.
[7] Lizy Kurian John. More on finding a single number to indicate overall

performance of a benchmark suite.ACM Computer Architecture News,
2004.

[8] David J. Lilja. Measuring Computer Performance: A Practitioner’s
Guide. Cambridge University Press, 2000.

[9] John R. Mashey. War of the benchmark means: time for a truce.
SIGARCH Comput. Archit. News, 32(4):1–14, 2004.

[10] Patterson and Hennessy. Computer Architecture: The Hard-
ware/Software approach. Morgan Kaufman Publishers.

[11] Donald G. Sari. Mathematical structure of voting paradoxes, positional
voting. Economic Theory, 15, 2000.

[12] J. E. Smith. Characterizing computer performance by a single number.
Communications of ACM, october 1998.

33

Validation of Synthetic Benchmarks by Measurement

Jungho Jo, Lizy K. John

Department of Electrical and Computer Engineering

University of Texas at Austin

Austin, TX

jungho.jo@mail.utexas.edu, ljohn@ece.utexas.edu

Michele Reese, Jim Holt

Core Architecture & Modeling Team

Freescale Semiconductor Inc.

Austin, TX

{Michele.Reese, Jim.Holt}@freescale.com

Abstract — Most of the widely used modern benchmarks take

weeks to months to finish when executed on cycle accurate

simulators, which make it impossible to use them in pre-silicon

design evaluations. Processor designers usually rely on the short

trace of the workloads or synthetic kernels to determine design

tradeoffs. On the other hand, in the customers’ point of view, it is

impossible to run their realistic applications in the processor

design stage. The customers have to wait until the manufacturers

tape out their product, which makes it hard to choose their

system type.

In this paper, we provide an ISA independent framework to

generate synthetic benchmarks which replicate the performance

characteristics of original programs and validate them on actual

hardware by measurement. The synthetic benchmarks are

provided in a LLVM compiler’s intermediate representative

form which can be used to generate binaries of multiple target

ISAs. Runtime of the synthetic benchmarks are 10000x times

shorter than original while maintaining the performance

characteristics so that one can use the synthetic as a proxy for the

original benchmarks. The miniaturized clones are validated on a

Freescale processor.

Keywords-component; Benchmark, Synthetic Benchmark, ISA

Independent, Backend Code Generator, Pre-silicon Design Stage

I. INTRODUCTION

An ideal set of benchmarks should be representative of
modern workloads to reflect the demand of current programs.
Many benchmark suites usually consist of modern workloads
that are widely-used, representative user programs. For
example, SPEC CPU 2006 suite [1] has 29 programs which
were carefully chosen from real-life applications. The programs
vary in their behavior and language to epitomize concurrent
workloads. However, it is very difficult to use these type of
benchmarks in pre-silicon design stage evaluations.

The first challenge of using such a benchmark suite in pre-
silicon stage is its simulation time. The run time of these
programs in a real machine usually varies from few minutes to
few hours and is increased many orders when run on a
simulator. These days, modern processors have hundreds of
millions of transistors in their design. The simulators in the pre-
silicon design stage run more than 1000 times slower than real
hardware. Previous work shows that it takes months to simulate
SPEC CPU2006 workloads on a cycle accurate simulator [2]. It
is impractical and almost impossible to use benchmark suites
directly with simulators in the pre-silicon design stage.

Another challenge of using the benchmark suite is that how
much the suite can be representative of the target application.
Even though the programs in benchmark suite are chosen to
represent modern workloads, the target application may have
its own unique characteristics that are not captured in the
benchmark suite. Also, it is beneficial to try as many systems
as possible to choose the best platform for the application.
Therefore, the best evaluation will be to directly run the target
application to assess the performance of the different systems;
especially when the application has unique characteristics.
However, many software vendors hesitate to do so since most
of their application is proprietary software. Especially for
software that requires high security, sometimes even giving out
the binary is prohibited, since there is risk of the algorithm
begin revealed by disassembling the binary.

There have been efforts to address both challenges:
simulation time reduction and creating a representative proxy
of target application. Bell et al. [3] and Joshi et al. [4] used a
technique to create an artificial loop populated with instructions
based on a set of profiled metrics of the original program. The
synthesized program was used as a proxy for the original
program to measure the performance in pre-silicon simulators.
These approaches efficiently reduced the number of
instructions and also hid the functionality of the original since
the instructions were populated in a random manner. The
approach can be used to reduce simulation time and also to
create proxies for proprietary applications. Prior research [3]
[4] showed the efficacy of the approach by generating
miniaturized clones of SPEC CPU 2000 suite in the Power
Architecture® technology Power ISA and Alpha ISA. Karthik
et al. [5] used advanced techniques based on [3] and [4] to
create clones of SPEC CPU 2006.

However, results from prior work [3] [4] [5] have a
problem in common. Their synthetic benchmarks were
generated only for a specific ISA. It is not possible to use the
synthetics in other systems that have different ISAs, which
results in lack of portability of using the synthetic benchmarks.
In early stages of designing a system for a particular purpose, it
is important to select the right hardware platform that can
satisfy the performance characteristics of the target workload.
It is desirable to be able to choose among various platforms by
comparing the performance of the target application on each.
The problem is that it takes a lot of time and effort to run the
benchmarks in multiple targets and it gets even worse when the
target processor is still in pre-silicon design stage. It is
impossible to run even one benchmark since a single run would

34

take months. Though pprevious synthetic benchmark
approaches efficiently addressed the execution time problem in
early design stage, the lack of portability extremely limits their
application area to very narrow space, i.e. one specific ISA for
which the synthetic code was generated.

Another limitation of previous work is that the synthetic
clones of the original benchmark were not validated on actual
hardware. All the performance comparison were done using
cycle accurate simulators. However, even if they could achieve
highly accurate results, it is still questionable whether synthetic
clone can be used as a proxy for its original benchmark on a
real hardware platform.

The first contribution of this work is to provide a
framework to generate miniaturized synthetic benchmarks that
can be used in various platforms. As opposed to prior research
[3] [4] [5], we generate the synthetic code in an abstract
assembly language format provided by LLVM [6]. By using
abstract assembly, the synthetic code is not bounded to a
specific ISA. Since the abstract assembly is in fact the
intermediate representation (IR) of LLVM compiler
infrastructure, the synthetic code can be compiled to various
target ISAs by using backend compiler of the tool chain. This
enables to use our framework to provide synthetic benchmarks
in multiple platforms, which enables system designers to
choose most suitable hardware for their system even if the
hardware is in pre-silicon design stage.

The second contribution is that we validated the efficacy of
the synthetic benchmarks on the real hardware platform by
measurement. In this work, we used Freescale QorIQ P4080
communications processor that has an e500mc cores. The
processor is designed to serve high performance workloads
with low power envelope. The e500mc core has four
performance counters that can be configured to measure
various processor activities. We measured performance
characteristics of executions of SPEC CPU 2006 workloads
with reference input, having hundreds of billion dynamic
number of instructions. Based on the measurement, we provide
synthetic clones that have less than 1 million instructions. We
compared the performance characteristics of the synthetic
benchmarks to the original workload to validate the approach.

II. RELATED WORK

One of the most commonly used techniques to reduce
simulation time is sampling techniques such as [7], [8] and [9].
However, these techniques require either fast-forwarding
support from the simulator or huge checkpoint files to
reproduce the output. The problem is that it is very inefficient
to use fast-forwarding when the interval of execution of
interest is located in the later stage of the program execution.
Also, checkpoint file requires huge storage space and it is hard
to distribute to others. On the other hand, the synthetic
benchmark approach provides very small size source
code/execution file which is very efficient in run time and
storage space.

Another approach to reduce the simulation time is
benchmark subsetting [10] which selectively run a subset of
benchmark suite whose characteristics are representative of the
whole set. This approach is useful when hardware is ready and

benchmarking can be finished in a short time. However, in pre-
silicon design stage, it is impractical to run even the subset of
the benchmark since selected programs are too big to directly
run on simulators.

The idea of using statistical simulation to guide the design
space exploration was introduced by Oskin et al. [11] and
Nussbaum et al.[12]. Eeckhout et al. [13] used the execution
frequency of the basic blocks and their transition probability to
characterize the control flow behavior of a program. Wong et al.
[14] proposed synthesizing benchmark by using the profile of
the workload. Joshi et al. [4] proposed creating synthetic
benchmarks with microarchitecture independent characteristics.
Synthetic benchmarks were generated in embedded assembly
format to precisely control the performance.

Low Level Virtual Machine (LLVM) is a compiler
infrastructure that supports multiple ISAs [6]. LLVM consists
of many modular reusable components that can be built to form
a compiler for specific targets. Its core provides source and
target independent optimization. It uses code representation
known as LLVM intermediate representation (IR) which is
human-readable Static Single Assigned (SSA) format based
assembly language. LLVM provides various optimization paths
that users can easily modify for their purposes.

III. SYNTHETIC WORKLOAD GENERATION FRAMEWORK

Synthetic benchmark generation has three major steps. First,
we profile the desired metrics from the original workload.
Based on the metrics, we generate ISA independent synthetic
code in LLVM IR and then generate assembly codes for the
target architectures. Finally, we compile the synthetic clone and
compare the performance with the original. Fig 1. illustrates the
flow of this framework.

Figure 1. ISA independent synthetic benchmark generation framework.

A. Profiling the Metrics

As the first step to capture the characteristics of the original
benchmark programs, we measured properties of the workloads
which are shown in Table I. These metrics are categorized into
five groups to represent the original program’s run-time
behavior. We used Freescale’s Architecture Description
Language (ADL) that models e500mc processor as a profiler.
ADL model gives functional execution of the program where

Synthetic

in ISA 3

Synthetic

in ISA 2

Profiler

Workload

Profile

Code

Generator Synthetic

in ISA 1

Synthetic in

LLVM IR

Modified LLVM

35

we can attach a plug-in to get the detailed information of each
instruction. Some of the microarchitecture dependant
characteristics such as branch prediction rate was measured on
Freescale’s QorIQ P4080 processor by using performance
counters. P4080 processor does not provide instruction level
granularity since we cannot read performance counters for
every instruction.

TABLE I. METRICS PROFILED TO CHARACTERIZE THE WORKLOADS

Metric Category

1 Dynamic execution frequency of basic blocks

2 Successor informatino of basic blocks

3 Transition probabilities in SFG

4 Average basic block size

5 Branch taken rate for each branch

6 Instruction pattern in a basic block

Control flow

predictability

7 Branch transition rate for each branch Branch

predictability

8 % Integer instructions

9 % Flating point instructions

10 % Load instructions

11 % Store instructions

12 % Branch instructions

Instruction mix

13 Dependency distance distribution per type of

instructions

Instruction level

parallism

14 Stride value of load and store instructions Data locality

The branch transition rate captures how quickly a branch
transits between taken and not-taken paths. It indicates how
easy or hard a branch predictor can accurately predict the
branch. A branch with a low transition-rate usually has higher
branch prediction rate since it switches direction less for a
given period of time.

Instruction Level Parallelism (ILP) is a metric to determine
the extent to which the pipeline is used waiting for data
dependency. We capture average register dependency distance
distribution for each type of the instruction. Instructions that
have immediate operand are considered having zero
dependency distance.

Data locality affects the behavior in various levels of
memory hierarchy and it has critical impact on performance of
the synthetic benchmark. We capture stride values of each load
and store instructions and synthesize ten stride values. Data
region is modeled as ten arrays in the synthetic; each stride is
used in load and store instructions to access corresponding
array to capture the characteristics such as cache hit rate in all
the levels of cache.

Since running the full-size benchmarks takes huge amount
of time even in a functional simulator, we cannot profile whole
benchmarks with ADL model. We used Freescale’s QorIQ
P4080 processor that has an e500mc core. The e500mc core
has various performance counters that we can use to
characterize the workloads. Though they do not provide
detailed profile information at a basic block level granularity,
they provide all the required metrics at a whole program
granularity. We profiled execution of SPEC CPU 2006’s
training input set with ADL model to get all the metrics in
Table 1 at basic block level granularity. Then, we profiled the
execution of SPEC CPU 2006 with reference input set on

P4080 processor. We could not capture instruction pattern,
branch transition rate, dependency distance and stride value
information, since we were not able to read performance
counters at such a small granularity.

We used both the results from the ADL profile and the
system measurement to generate the synthetics since our goal is
to generate synthetics for SPEC CPU 2006 reference input
execution. We used all the metrics measured from the P4080
processor and missing metrics are extrapolated from profile
from the ADL model. By extrapolating, we sacrifice some
accuracy compared to prior work [5] which only used detailed
basic block level profiling for a single Simpoint. However, our
goal is to clone and to validate the performance of SPEC CPU
2006 with whole reference input run, whereas prior work [5]
cloned only a part of the workload.

B. Synthetic Code Generation

After measuring the metrics from the original benchmarks,
we parameterize the metrics that are used in the code generator
to synthetize clones. The synthetic code generator takes these
parameters to create synthetic code by the following algorithm:

1. The number of basic blocks to be generated is calculated
based on the instruction footprint (SFG information) of the
original workload.

2. The size of each basic block is determined with the help
of a random number generated based on a distribution using the
average basic block size. Profiled instruction patterns are used
to populate instructions in the synthetic basic block. When
proper pattern is not found, each instruction in the basic block
is randomly generated to match the overall instruction mix.

3. Place branch instructions in the end of the basic blocks to
bind them together. We group branches by their transition rate
and assign each of them with a register. Place a modulo
operation on each register to determine whether a branch is
taken or not. One of the branch target of the last basic block
points to the first basic block so that the whole synthesized
blocks form a single loop.

4. Using the dependency distance distribution for each of
the instruction types, each instruction in each basic block is
assigned with a producer instruction for each of its operands
within the loop. If these producer consumer instructions are not
compatible with each other, the algorithm moves up/down one
or more instructions until it finds a matching producer for each
instruction.

5. Four to eight arrays with size of 40 MB to 80 MB is
created to model data segments of the workload. Each of the
load/store instructions is configured to have a stride value and
assigned to an array. Higher cache miss rate is modeled as a
larger stride value to create larger footprint in a given period.

6. Address generating instruction for each load and store
instructions are populated. The address of the arrays are
incremented by assigned stride value so that the arrays are
accessed linearly in execution time.

7. The synthetic code is generated in LLVM IR form which
is a Static Single Assignment (SSA) based representation. By
using LLVM IR, the synthetic code is not bounded to a specific

36

ISA, but still be able to represent expressions in a higher level
language. The generate code can be compiled in various ISAs
by using LLVM’s backend compiler.

8. Synthetic code is compiled with modified LLVM’s
backend compiler to generate assembly code for targeted ISA.
Since the synthetic code does not contain any functionally
meaningful code, some results from the instructions are not
used. These instructions are eliminated in normal LLVM.
However, since we need all the instructions to match the
performance of the original, we modified the optimization path
in LLVM to generate every instruction we synthesized.

C. Validation of the Synthetic Clone

After all the steps are over, the final output is assembly
code for the target architecture. We can generate multiple
assembly codes if we are to evaluate the synthetic in multiple
platforms. We compile the synthetic assembly file with target
architecture’s general compiler. The synthetic binaries are
executed in either simulator of the target system or directly on
hardware.

The final synthetic clone is configured to have around 300
thousand dynamic instructions which can be run in a few
seconds even in performance model simulators. The results in
terms of various performance metrics are compared to that of
the original workloads.

IV. EXPERIMENTS AND RESULTS

We compiled SPEC CPU 2006 suite for Power ISA to run
with e500mc core that has a 32 KB Instruction and Data L1
Cache and a private 128 KB L2 Cache with 2GB of DRAM
memory. We used gcc-4.5 to compile the binaries and ran them
on the Freescale QorIQ P4080 processor with Linux 2.6.1
kernel. We measured performance with performance counter
monitoring program to get the performance characteristics.
Since the synthetic benchmarks have small number of dynamic
instructions, we averaged ten measurement. Since the QorIQ
P4080 processor and its infrastructure are optimized to run
communication applications, not all of the SPEC CPU 2006
benchmarks can be run on it. We were able to successfully
compile and run 19 benchmarks from the suite. Some of results
are normalized since the purpose of this work not to show the
performance itself but to show comparison between the
original and the synthetic workloads.

Figure 2. Basic block size comparison of SPEC CPU 2006

Fig. 2 shows the basic block size comparison between the
original and the synthetic benchmarks. Some benchmarks with
large basic block size have higher error, due to the fact that
when the code generation algorithm cannot find compatible
dependency for instructions, it reduces the size of the basic
block and tries to match dependency. Also, some of the
instruction patterns captured by running training input does not
appear in the reference input execution or does not have same
execution frequency. However, our instruction populating
algorithm prioritize training input data, there are some
discrepancy in basic block size. Floating point benchmarks
have larger basic block size and smaller number of total
number of basic blocks, thus they are more sensitive to such
errors.

Figure 3. Normalized branch prediction rate comparison of SPEC CPU 2006

In Fig. 3, normalized branch prediction rate is shown. The
numbers in the figure are normalized to the highest branch
prediction rate of the original benchmark. Average error in
branch prediction accuracy is 7.5% with a maximum error of
26.4%. High error occurs in GemsFDTD, lbm and leslie3d
which have small number of integer instructions. The model
requires integer instructions to bookkeeping addresses of data
access and modular operation of branches. However, when the
portion of integer instructions in the original workload is small,
the model finds it difficult to generate all the necessary
operations. We prioritize the instruction mix in the model, thus
we reduce the number of bookkeeping instructions when a
workload does not have enough number of integer instructions.
It can be noted that benchmarks with higher error belong to the
floating point category and reduced bookkeeping information
results in high error in branch prediction rate.

Figure 4. DL1 hit rate comparison of SPEC CPU 2006

0

10

20

30

40

50

60

70

80

b
w

a
v
e
s

b
z
ip

2

c
a
lc

u
lix

g
a

m
e

s
s

g
c
c

G
e
m

s
F

D
T

D

g
o
b
m

k

h
2

6
4
re

f

h
m

m
e
r

lb
m

le
s
lie

3
d

m
c
f

m
ilc

n
a
m

d

o
m

n
e
tp

p

s
je

n
g

s
o
p
le

x

to
n
to

z
e

u
s
m

p

Orig

Synth

00.20.40.60.811.2
bwaves bzip2 calculix gamess gcc GemsFDTD gobmk h264ref hmmer lbm leslie3d mcf milc namd omnetpp sjeng soplex tonto zeusmp

OrigSynth

0.0

0.2

0.4

0.6

0.8

1.0

1.2

b
w

a
v
e
s

b
z
ip

2

c
a
lc

u
lix

g
a
m

e
s
s

g
c
c

G
e
m

s
F

D
T

D

g
o
b
m

k

h
2
6
4
re

f

h
m

m
e
r

lb
m

le
s
lie

3
d

m
c
f

m
ilc

n
a
m

d

o
m

n
e
tp

p

s
je

n
g

s
o
p
le

x

to
n
to

z
e
u
s
m

p

Orig

Synth

37

Fig 4. shows the DL1 hit rate comparison between the
original and the synthetic benchmarks. The average error is
3.8% and the maximum error is 24.1%. The benchmark lbm
has highest error due to its lack of integer instructions as
discussed in the previous section. The model normally
maintains ten stride values for load and store to capture the
memory access behavior. However, Since when modeling lbm,
the number of strides was reduced to 4 and memory access
patterns were not precisely captured.

The benchmark mcf also has high error because the original
workload has very large memory footprint. Henning [15]
characterized memory footprint of SPEC CPU 2006 and found
that mcf has stable resident set size (allocated physical
memory) of 844 MB and virtual set size (total address space) of
845 MB, which means that mcf has very large memory
footprint and it accesses all the memory regions throughout its
execution. Our framework models the data area as four to eight
linear arrays and each of the footprint for the array is 40 to 80
MB. Mcf has seven arrays with size of 80 MB where the total
footprint size is smaller than the original. It is not only the
footprint, but also the memory access pattern that contribute to
the error. We are using a linear access model, where the
load/store instructions access the addresses in a linear fashion,
increasing by their corresponding stride values. This kind of a
stride based access behavior causes cache misses in the
memory hierarchy, which we use to control the cache miss rate.
To achieve high cache miss rate, the stride needs to be very
large so that memory accesses result in cache misses. However,
the size of array is limited and the stride need to be bounded to
prevent overflow, which adds a lower limit to the cache hit rate
in the synthetics.

Figure 5. Normalized IPC comparison of SPEC CPU 2006

Fig. 5 shows normalized IPC comparison between the
original and the synthetic clones. The numbers are normalized
to the highest IPC of the original program. The average error is
37.9% with maximum of 212%. The high errors in IPC mainly
occur where the originals have very low IPC around 0.2, which
is mainly caused by high DL2 misses and memory load
dependencies. Total number of DL2 misses are relatively small
and their impact on performance is usually minimal. However,
some benchmarks have significantly high DL1 miss rate which
causes high DL2 miss rate as well. In that case, access latency
to the main memory causes significant IPC drop in the
workload, which are not accurately captured in the synthetics.
IPC of the synthetic benchmarks are higher than the original for
those kind of workloads.

Some benchmarks have pointer-chasing operations that
cause very high latency in some benchmarks since load
instructions have to wait for another load instructions that
causes whole pipeline being stalled. However, we have not yet
modeled them because memory contents in the synthetic is not
initialized, thus using uninitialized value causes segmentation
fault in run time.

Figure 6. Normalized cycle comparison of SPEC CPU 2006 (Measured

cycles shown on Y-axis in logarithmic scale)

Synthetic benchmarks consist of 300 thousand instructions
in average and we can achieve significant speed up by using it.
Fig. 6. shows normalized cycles to finish the workloads in
logarithmic scale. In average, synthetic benchmarks can
achieve a speedup of 880,000 in terms of their execution cycles.
Such significant speed up well meets the goal of reducing
simulation time.

V. FUTURE WORK

Since our model has some limitations to cloning
complicated workloads, in this section, we further discuss how
to improve the accuracy of the synthetics.

Most of the error comes from the memory access modeling.
The model assumes a linearly increasing data address but it
does not correctly capture a high miss rate behavior since the
stride value is limited to prevent out of bound array access. One
way to solve the problem is to make circular memory access
pattern. As the synthetic code is forming a loop, we can place
instructions to reset the pointer of the array at the end of the
loop. By doing so, we can safely use larger stride values to
reproduce high cache miss rates.

One of the major goal of this framework is designed to
deliver ISA independent synthetic benchmarks. We validated
the efficacy of the framework on Power Architecture
technology, but this framework can be used in other platforms
as well. We are in the process of creating synthetic benchmarks
in other ISAs and validating in different platforms.

VI. CONCLUSION

In this paper, we proposed a framework that can generate
ISA independent synthetic benchmarks. Our framework is able
to provide miniaturized synthetic clones to various platforms
where running the original workload would take prohibitive
execution time.

00.20.40.60.811.2
bwaves bzip2 calculix gamess gcc GemsFDTD gobmk h264ref hmmer lbm leslie3d mcf milc namd omnetpp sjeng soplex tonto zeusmp

OrigSynth

38

We evaluated the performance of the generated synthetics
by using Freescale QorIQ P4080 processor. The clones of
SPEC CPU 2006 suite achieved a speedup of 5 orders of
magnitude with an average IPC error of 38%. Further reduction
in error is in progress.

ACKNOWLEDGMENT

This research is an extension of Jo’s internship project at
Freescale. This work also has been supported and partially
funded by SRC under Task ID 1797.001 and NSF under grant
number 0702694. Any opinions, findings, conclusions or
recommendations expressed in this material are those of
authors and do not necessarily reflect the views of the SRC or
other sponsors.

REFERENCES

[1] John L. Henning et al. SPEC CPU2006 Benchmark Descriptions.
Computer Architecture News, Volume 34, No. 4, September 2006.

[2] Karthik Ganesan, Deepak Panwar, and Lizy K John.
Generation,validation and analysis of spec cpu2006 simulation points
based on branch, memory, and tlb characteristics. SPEC

BenchmarkWorkshop 2009, Austin, TX, Lecture Notes in Computer
Science 5419 Springer pages 121-137, January 2009.

[3] Jr Robert H. Bell, Rajiv R. Bhatia, Lizy K. John, Jeff Stuecheli, John
Griswell, Paul Tu, Louis Capps, Anton Blanchard, and Ravel Thai.
Automatic Testcase Synthesis and Performance Model Validation for
High Performance PowerPC Processors. IEEE International Symposium

on Performance Analysis of Systems and Software (ISPASS 2006),
March 2006.

[4] Ajay Joshi, Lieven Eeckhout, Jr. Robert H. Bell, and Lizy K. John.
Distilling the essence of proprietary workloads into miniature
benchmarks. ACM Transactions on Architecture and Code Optimization
(TACO), August 2008.

[5] Karthik Ganesan, Jungho Jo, and Lizy K. John. Synthesizing Memory-
Level Parallelism Aware Miniature Clones for SPEC CPU2006 and

ImplantBench Workloads. 2010 International Symposium on

Performance Analysis of Systems and Software (ISPASS 2010), March
2010.

[6] Chris Lattner and Vikram Adve. LLVM: A Compilation Framework for
Lifelong Program Analysis & Transformation. Proc. of the 2004

International Symposium on Code Generation and Optimization
(CGO'04), Palo Alto, California, Mar. 2004.

[7] Greg Hamerly, Erez Perelman, Jeremy Lau, and Brad Calder. Simpoint
3.0: Faster and more flexible program analysis. Workshop on Modeling,
Benchmarking and Simulation, June 2005.

[8] Greg Hamerly, Erez Perelman, and Brad Calder. How to use simpoint to
pick simulation points. ACM SIGMETRICS Performance Evaluation
Review, March 2004.

[9] Roland E. Wunderlich, Thomas F. Wenisch, Babak Falsafi, and James C.
Hoe. Smarts: Accelerating microarchitecture simulation via rigorous
statistical sampling. Proceedings of the International Symposium on
Computer Architecture, (ISCA 2003), p. 84 - 95.

[10] Aashish Phansalkar, Ajay Joshi, and Lizy K. John. Analysis of
redundancy and application balance in the SPEC CPU2006 benchmark
suite. Proceedings of the International Symposium on Computer
Architecture (ISCA 2007), June 2007.

[11] Mark Oskin, Frederic T. Chong, and Matthew Farrens. Hls: Combining
statistical and symbolic simulation to guide microprocessor design.
Proceedings of the International Symposium on Computer Architecture
(ISCA 2000), 2000.

[12] Sbastien Nussbaum and James E. Smith. Modeling superscalar
processors via statistical simulation. International Conference on
Parallel Architectures and Compilation Techniques (PACT 2001), 2001.

[13] Lieven Eeckhout, Robert H. Bell Jr., Bastiaan Stougie, Koen De
Bosschere, and Lizy K. John. Control flow modeling in statistical
simulation for accurate and efficient processor design studies.
Proceedings of International Symposium on Computer Architecture,
(ISCA 2004), 2004.

[14] Wing Shing Wong and Robert J. T. Morris. Benchmark synthesis using
the lru cache hit function. IEEE Transactions on Computers, 1988.

[15] John L. Henning. SPEC CPU2006 memory footprint. ACM SIGARCH
Computer Architecture News, 2007.

39

Selection of Representative Simulation Point
using Performance Metric-based Similarity

Satish Raghunath and Byeong Kil Lee

Department of Electrical and Computer Engineering
The University of Texas at San Antonio

Email: byeong.lee@utsa.edu

Abstract—Design exploration using full simulation of
industry standard benchmark (e.g., SPEC CPU 2006
benchmarks) takes long time. The major concern in
today’s microarchitecture design is reducing simulation
time. In this paper, we propose the methodologies to select
a single representative simulation point using performance
metric-based similarity: (i) instruction mix based simpoint
ranking; (ii) metric-based similarity rank using Borda
count. We find that the selected single simpoints from the
proposed ranking methods show less error rate than the
existing single simpoint method.

1. Introduction
Early-stage design exploration requires the detailed
simulation, which is executing real world applications on a
cycle-level microprocessor simulator. The real world
applications are represented by industry standard benchmarks
like SPEC CPU 2006 which are called workloads. However,
the full simulation of SPEC CPU 2006 benchmarks takes
several weeks to months to complete. This problem has
motivated several research groups to come up with
methodologies to reduce simulation time while maintaining a
certain level of accuracy.
 Various techniques have been proposed to reduce the
simulation time of SPEC CPU 2006 benchmarks [1][4][5].
Among the various techniques to reduce the simulation time, a
tool called Simpoint [5] which is based on statistical sampling
is popularly used. Simpoint tool employs offline phase classify
cation algorithm which calculates the phases for a
program/input pair, and then chooses a single representative
from each phase and estimates the remaining intervals. The
tool chooses this representative for each phase by finding the
interval closest to the cluster’s centroid using a technique
called k-mean clustering. In this paper, we use a standard
single simulation point which is extracted from the Simpoint
tool that will provide the representative workload as the
method of comparison to our method of finding the
representative workload. The basic drawback with single
simpoint method can be seen in Figure 1, where a standard
single simulation point (right-most bar) does not have the
lowest error rate to full simulation results. Figure 1 shows the
percentage error to the full simulation result with respect to
IPC. Some simulation points such as s0, s2, s3, s5, and s11
show better accuracy than standard single simulation point

(right-most one). On the other hand, s11 shows the smallest
difference (1.7%) while s8 shows the biggest difference
(339.3%). Each individual point has its weight information
(from the SimPoint tool) which is used for calculating overall
metric value with multiple simulation points. In this case,
fortunately, s8 has small weight (0.2) which means their impact
to overall performance from multiple simulation points is not
remarkable. On the other hand, the overall IPC value using
multiple simulation points with weight information shows
12.1% error rate to full simulation result. Performance
evaluation with standard single simulation point is so closed to
the result with multiple simulation points, but it is not the best
choice for all metrics.

Figure 1: Error rate of IPC: individual simulation points vs. single
simulation point (reference: full simulation)

 In this paper, we propose the statistical methodologies to
select a single representative simulation point through the
analysis of metric-based similarity and the workload
characterization of each individual simulation point. A single
simpoint helps in reducing simulation time since it represents
the program and leads to faster design cycle. As shown in
Figure 1, individual simulation point shows totally different
similarity to full simulation result, even though each simulation
point is a representative interval having phase information.
Two bottom lines of our approach include: (i) architectural
behavior of the application is based on probabilistic distribution
of instructions as modern computers are instruction-based
operation. (ii) Architectural behavior of the application can be
expressed as a combination of several performance metrics.

2. Related Work
There have been extensive works to reduce the simulation time
in microprocessor design [12][13][14][15]. KleinOsowski et al.
[10] proposed a method to reduce the simulation time of the

40

SPE
data
Min
inst
SPE
the
(pri
Pha
200
Ma
app
ben
et.
tech
still
from
sim

3. M
All
wit
use
our
to p
col
the
giv
cac
pap
[21
sim
ben
sing
max
gen
sim

4.
In t
sing
sim
stan

4.1
In
beh
Am
to
cha
of t
SPE
inst
cho
inst
full
sim
bra

EC CPU 2000
a sets. They p
nneSPEC that
tead of using
EC. Eeckhout e
impact of inp

incipal comp
ansalkat et al.
06 benchmark
ain idea is that
plications and
nchmarks that

al. [14] exp
hnique for red
l need to hand
m Intel [4][15]

mulation time.

Methodolog
l the simulation
th a Red Hat L
e both SimPoin
r simulation wi
perform simula
lected from th
program need

ves a complete
che miss, IPC,
per for perform
]. In this pap

mulation time n
nchmarks. As a
gle simpoints
xK = 1 in K

nerated depend
mpoint generati

Single Repr
this paper, two
gle representa

mulation more
ndard single sim

 I-Mix based s
general, archi

haviors of ind
mong the instru

have strong i
aracterization.
three types of
EC CPU 2006
truction distrib
oosing approp
truction mix in
l simulation. I-

mpoints or phas
anch instruction

 benchmark su
propose to us
reflect the beh
the reference

et al. [16][17]
put data sets on
ponents analy
 [8] studied th
suite based on
t SPEC CPU
simulation tim
are specific to

plains about
ducing runtime
dle tens of mil
] is also used f

gy
ns were perfor
inux operating
nt [5] and Sim
ith SPEC CPU
ation only at th
he Simpoint to
ds to be fastfo
e report of all
, power, etc.),
ming the simu
er, we use on

needed which is
a reference to o

are collected
-mean clusteri
ds on the va
on, we use ma

resentative S
o methods hav
ative simpoint
e closely as
mpoint.

single represe
itectural behav
dividual instru
uctions, load, st
impacts to th
 Figure 2 show
instruction wi

6 [1]. Conside
bution, it wou
priate simulati
nformation bas
-mix based ana
ses in a program
ns.

uite by using t
e small input

havior of the fu
e input data s
present their an

n program beh
ysis) and c
he redundancy

n principal com
2006 is biased
me can be red
o an applicatio
SMARTS, a

es in simulator
llions of instru
for solving the

rmed on Intel
g system. In ou
mpleScalar [21]
U 2006 Alpha b
he simulation p
ool), number o
orwarded. Sim-

the architectu
, is employed

ulations on all
nly 6 benchma
s required for f
our proposed m

from the Sim
ing. The numb
alue of maxK
xK = 30.

Simulation
ve been propos
t that approx
compared to

entative simpo
viors depend
uctions in a g
tore and branch

he performanc
ws the distribu
ith general–pur
ering its signi
uld be a good
ion points. W
sed on the sim

alysis helps us i
m that have a h

the reduced inp
data sets call

ull input data s
sets provided
nalysis results

havior using PC
cluster analys
y of SPEC CP

mponent analys
d to some of t
duced by taki
on. Wunderlich

trace sampli
rs but executio
uctions. PIN to
 problem of lo

Xeon processo
ur experiment, w
], and perform
binaries. In ord
points (which a
of instructions
-Outorder, whi
ral metrics (e.

d throughout th
the benchmar

arks due to lo
full simulation

methods, standa
mpoint tool w
ber of simpoin
K. For multip

Point
sed for finding
ximates the f
 the tradition

oint
on the dynam
given workloa
h operations te
e and worklo

ution informati
rpose workloa
ficant feature

d criterion wh
We employ t
milarity to that
in identifying t
huge impact fro

put
led
ets
by
on

CA
sis.
PU
sis.
the
ing
het
ing
ons
ool
ong

ors
we

med
der
are
in

ich
g.,
his
rks

ong
n of
ard

with
nts
ple

g a
full
nal

mic
ad.

end
oad
ion
ds,
of

hile
the
of

the
om

Figure 2
individu

4.2 Me
There
simpoin
metric-
method
various
the pro
the met
are usi
ranking
Borda r
that the
many
ranking
differen
simulat
simpoin
highest
conside
simpoin
simpoin
points
modifie
lowest
followi

 Wher

5. Sim
5.1 I-M

In case
most si
the res
simpoin
metric
represe
simulat
method

Repr
Si

2: Comparison
ual simulation poi

etric rank-base
are many w

nt, but we pro
-aware single s
d works becau
s architectural m
ogram behavior
tric values clo
ing a concept
g the simpoints
rule, which is
e selection of i
items on an

g” [18]. The
nce of each me
tion metric v
nt with least p
t priority for th
ering all the m
nt with the lea
nt. In the Bo
or score is the
ed the Borda c
score or rank.

ing equation fo

re k = Number of
 n = Number of

mulation and
MIX ANALYSIS

e of I–mix ba
imilar I-mix pa
sult and the co
nt simulation.
as the metric

ent. We can se
tion shows mor
d. The architec

= =resentative
mpoint

of instruction d
nts

ed single repr
ways to selec
opose an alter
simpoint based
use workloads
metrics. Hence
r and the simpo
se to full simu
called as Bor

s to choose a re
a position bas

item as a winn
average whic
ranking is

etric value for
values for ea
percentage diff
hat metric). Th
metrics, are th
ast rank will be
orda method, t
e winner. How
count by choo
The above me

or a single benc

metrics considere
simpoints within e

d Analysis
S SIMULATION
ased simulation
atterns to full
omparison to
We do not c
values are ver

ee from the Fig
re accurate res
ctural metrics

k

i

simpru
1

((

distribution: full

resentative sim
ct a single r
rnative method
d on ranking m
s can be deco
e, it gives us a b
oint generated
ulation. In our
rda count [18
epresentative s
sed ranking of
er is based on

ch item is the
based on the
each simpoint

ach benchmar
fference will b
he ranks for ea
en added toge

e chosen as a r
the item with

wever, in our c
osing the simpo
ethod can be g
chmark.

d to represent the w
each benchmark

n, we choose
simulation. Fig
full simulatio

consider il1cac
ry small and i
gure 3 that the
sult than the sin

considered ar

knun))(| n = 0 to

simulation vs.

mpoint
representative
d to select a
method. This

omposed into
better idea of
will have all
research, we
][19][20] for

simpoint. The
f items, states

“considering
e highest in
e percentage
from the full

rk (e.g., the
be ranked the
ach simpoint,
ether and the
epresentative

h the highest
ase, we have
oint with the

generalized as

workload

the top four
gure 3 shows
n and single

che miss rate
is difficult to
e I-mix based
ngle simpoint
re dl1 cache,

o N

41

ul2
pow
sing
sma

Figu
stan

 F
In t
sim
wh
(26

5.2
For
ind
the
the
Fig
for
com
the

0.0

0.

1.0

1.

2.0

0.0

0.0

0.

0.

0.

0.0

0.

0.

0.

0.0

0.5

1.0

 cache, IPC an
wer and leakag
gle simpoints s
aller error boun

 (a) IPC

 (b) Bra

 (c) DL

 (d) U

ure 3: Comparis
ndard single repre

Figure 3 (a) sh
the case of 473

mulation and I-
ich is less than

6.50%).

 Metric-rank
r the rank-ba

dicated from th
metrics consid
full simulatio

gure 4 (d) whic
the bzip2 be

mpared to sing
operations i

00

50

00

50

00

400.perlbench

full

00

05

10

15

20

400.perlbench

full

00

10

20

30

400.perlbench

full

00

50

00

400.perlbench

full si

nd Branch miss
ge power can b
simulation, IPC
nd with I-mix b

C values for six di

anch Miss values

L1 cache miss val

UL2 cache miss va

on of I-mix base
esentative

ows the IPC v
3.astar, the perc
-mix based sim
n single simpo

based single s
ased simpoint
he Figure 4. Fo
dered in this m
on than the si
ch represnts th
enchmark, mo
gle simpoint m
n the bzip a

445.gobmk 429.

simulation

445.gobmk 429

l simulation

445.gobmk 429

simulation

445.gobmk 429.

imulation

s, but other met
e considered. C

Cs in most of a
based simpoint

fferent benchmar

for six different b

lues for six differe

alues for six differ

ed similarity vs.

alues for differ
centage differe

mpoint method
oint method an

simpoint Repr
t reordering,
or most of the

method provide
ingle simpoint
e result for ul2

ore error rate
method. This is
application tak

.mcf 401.bzip2

single representa

9.mcf 401.bzip2

single represent

9.mcf 401.bzip2

single represent

.mcf 401.bzip2

single representat

trics like avera
Comparing to t
applications sho
ts.

rks

benchmarks

ent benchmarks

rent benchmarks

full simulation a

rent benchmark
ence between f
d is only 15.94
nd full simulati

resentative
the results a

e benchmarks,
a closer value

t method. In t
2 cache miss ra
can be seen
because most

ke place in t

450.soplex 473

ative I‐mix

450.soplex 47

tative I‐mix

450.soplex 47

tative I‐mix

450.soplex 473

tive I‐mix

age
the
ow

s

and

ks.
full
4%
ion

are
all

e to
the
ate
as
of

the

memor
therefo
for such
miss fo
with ra
miss ra
rank-ba
53.76%
like per
while m

Figure 4
and stan

We now
and we
for the
for the
the geo
values
mean v
other m

3.astar

x

3.astar

x

73.astar

x

3.astar

0.00

0.50

1.00

1.50

2.00

0.00

0.05

0.10

0.15

0.20

0.00

0.10

0.20

0.30

0.00

0.20

0.40

0.60

0.80

ry. Hence it ha
re it is difficu
h a program. S
or the applicat
ank based simp
ate has a perc
ased simpoint,

% compared to
rlbench, soplex

mcf and astar sh

(a) IPC

(b) Branch Mi

(c) DL1 cache m

(d) UL2 cache m

4: Comparison of
ndard single repre

w compare the
eighted simpoin

metric IPC an
metric. The ov

ometric mean
from the full

values for the
metrics also.

400.perlbench 445.g

full simulatio

400.perlbench 445.g

full simulatio

400.perlbench 445.

full simulat

400.perlbench 445.

full simulatio

as more of loa
ult to character
Similar observa
tion bzip2 wit
point. In case
centage differe

while the sing
full simulation

x and gobmk s
how a consider

C values for six d

iss values for six d

miss values for six

miss values for six

f metric-rank bas
esentative

e proposed met
nt method. Tab
nd gives us the
verall quantitat
of percentage
simulation. Ta
metric IPC, b

gobmk 429.mcf

on single repre

gobmk 429.mcf

on single repre

gobmk 429.mcf

ion single repr

gobmk 429.mcf

on single repre

d and store int
rize a represen
ation is also se
th I-mix analy
of 473.astar, t

ence of only
gle simpoint m
n result. Some
show a small i
rable improvem

different benchma

different benchm

x different benchm

x different benchm

sed similarity vs.

thods to the sin
ble 2 shows the
e overall quant
tive figure is o
e difference of
able 2 show th
but it can be

401.bzip2 450

esentative Ran

401.bzip2 450

esentative Ran

401.bzip2 45

resentative Ra

401.bzip2 45

esentative Ran

tructions and
ntative phase
een in branch
ysis, and mcf
the ul2 cache
0.57% using

method shows
e applications
improvement
ment.

arks

marks

marks

marks

full simulation

ngle simpoint
e comparison
titative figure
obtained from
f the metrics
he geometric
extended for

0.soplex 473.astar

k based simpoint

0.soplex 473.astar

nk based simpoint

50.soplex 473.asta

ank based simpoin

50.soplex 473.asta

nk based simpoint

r

t

ar

nt

ar

t

42

Figu
IPC

 W
sim
sing
imp
out
I-m
inte
mix
rep
is a
wh
diff

Fu

W

Sta
I-m

Ra

6. C
Ful
tim
sim
mix
rep
trad
met
mo
sim
oth
wor
pro
per

Re
[1]

[2]

[3]

[4]

0.0

0.5

1.0

1.5

2.0

ure 5: Comparis
C metric

We find that th
milarity (1.57%
gle simpoint h
plication that w
tperforms the I-

mix performs
eresting fact th
x based single
resentative sim
a good alterna
en the design
ficulties to synt

Table 2. C

ull simulation

Weighted simpoint (

andard single simp
mix based simpoin

ank based simpoin

Conclusion
ll simulation o

me, and samp
mulation time.
x based and (i
resentative si
ditional single
thods show m
st of applicat

mpoint method.
her benchmark
rkload tailorin

ocessors are h
rformance eval

ferences
Standard Perform
http://www.spec

A. Nair and L. J
Conference on C

A. Phansalkar, A
Application Bala
International Sym

PIN home page:

00

50

00

50

00

400.perlbench

fu
I‐m

on between bot

he rank based s
%) to the full

has the least
we can find is
-mix based sim
better. From

hat there exists
representative

mpoint. On the
ative in early
is going into l
thesizing the w

Comparison of bot

Method

(with multiple sim

point
nt

nt

of industry stan
ling methodo
In this paper w
i) rank based
impoint, and
simpoint meth

more similarity
tions and met
. These method

ks in SPEC C
ng which are c
highly deman
uation at each

mance Evaluation
c.org/

John, “Simulation
Computer Design (

A. Joshi and L. K
ance in the SPEC
mposium on Comp

 http://rogue.color

445.gobmk 429.

ull simulation
mix

th methods with

impoint metho
simulation, wh
similarity of

s that the rank
mpoint, but for

our observat
s a subtle diffe
simpoint and r
other hand, wo
design explor

ower level, the
workload canno

th methods for m

mpoints)

ndard benchma
ology is used
we propose tw
simpoint for fi

compares t
hod. We find t
to the full sim
trics, compare
ds are now be

CPU 2006. W
customized for
nded for effec

design stage.

Corporation (SPE

n Points for SPEC
(ICCD'08). Octobe

K. John, “Analysis
CPU2006 Benchm
puter Architecture

rado.edu/Pin/

.mcf 401.bzip2

single repr
Rank base

single simpoint

od has the high
hile the standa
4.52%. Anoth

k based simpo
some metrics t
ion, we see

erence between
rank based sing
orkload synthe
ration. Howev
e complexity a
ot be ignored.

metric IPC

Performance
reference

2.23%

4.52%
4.22%

1.57%

arks takes a lo
d to reduce t
wo methods (i)
finding the sing
them with t
that the propos
mulation result
ed to tradition
ing tested on t

We conclude th
general purpo

ctive and fas

EC) website,

C 2006,” Internatio
er 2008.

s of Redundency a
mark Suite,” The 3
e (ISCA). June 200

450.soplex 473

resentative
ed simpoint

for

hest
ard
her

oint
the
an

n i-
gle

esis
ver,
and

ong
the
) i-
gle
the
sed

in
nal
the
hat
ose
ster

onal

and
34th
07.

[5] G.
and
Ben

[6] T.
Cha
Con
Sys

[7] http

[8] A.
App
Inte

[9] L.
“Co
Eff

[10] A.
Ben
Res

[11] K.
Pro
238

[12] K.
Par
Imp

[13] Tim
Pro

[14] R.
acc
sam
Com

[15] H.
“Pi
wit
IEE

[16] L.
Imp
Jou

[17] L.
“Co
Eff

[18] I. M
Bor
Col

[19] C.D
Me
613

[20] R.F
clas
Ma

[21] D.
2.0

[22] Tim
Pro

[23] D.
of
Per

[24] C. L
V.
ana
AC
Imp

[25] R. H
Per
Sup

[26] M.
B.
ben
Cha

3.astar

Hamerly, E. Pere
d More Flexible
nchmarking and S

Sherwood, E. Per
aracterizing Larg
nf. Architectural S
stems (ASPLOS),

p://cseweb.ucsd.ed

Phansalkar, A. Jo
plication Balance
ernational Sympos

Eeckhout, R. H.
ontrol Flow Mod
ficient Processor D

J. KleinOsowski
nchmark Workloa
search,” Computer

Lee, S. Evans, an
ocessor Performan
8~248, Boston, Ma

Ganesan, J. Jo,
rallelism Aware
plantBench Workl

mothy Sherwood
ograms,” UC San D

E. Wunderlich, T
celerating microa
mpling,” Proceedi
mputer Architectu

Patil, R. Cohn, M
npointing Represe

th Dynamic Instru
EE/ACM internatio

Eeckhout, H. Van
pact of Input Data
urnal of Instruction

Eeckhout, R. H.
ontrol Flow Mod
ficient Processor D

McLean and N.She
rda rules in a smal
llege, Oxford OX1

Dwork ,R.Kumar
ethods for the Web
3 – 622, 2001

Fagin R.Kumar an
ssification via R

anagement of Data

C. Burger and To
,” UW Madison C

mothy Sherwood
ograms,” UC San D

B. Noonburg and
Superscalar Pro

rformance Comput

Luk, R. zohn, R. M
Reddi, and K.

alysis tools with
CM SIGPLAN Co
plementation, PLD

H. Bell and L. K.
rformance Model V
percomputing, Jun

R. Guthaus, J. S.
Brown, “Mibenc

nchmark suite,”
aracterization, pp.

lman, J. Lau, and
Program Analy

imulation, June 20

elman, G. Hamerl
e Scale Program

Support for Progra
pp. 45–57, Oct. 20

du/~calder/simpoin

oshi and L. K. Joh
in the SPEC CPU

sium on Computer

Bell, B. Stougie
deling in Statistic
Design Studies,” IS

i and D. J. Lilja
ad for Simulatio
r Architecture Lett

nd S. Cho "Accur
nce from Traces,”
assachusetts, April

and L. K. Joh
Miniature Clon

loads,” ISPASS, M

and Brad Calde
Diego Technical R

T. F. Wenisch, B
architecture simu
ings. 30th Annu

ure, pp. 84-95 ,June

M. Charney, R. Kap
entative Portions
umentation,” In P
onal Symposium o

ndierendonck and
a Sets on Program
n-Level Parallelism

Bell, B. Stougie
deling in Statistic
Design Studies,” IS

ephard,“A program
ll-n election,” Oxf
1 1NF, UK

,M.Naor and D
b,” International W

nd D. Sivakumar,
Rank aggregation
a.pp. 301 – 312, 20

dd M. Austin, “Th
Computer Sciences

and Brad Calde
Diego Technical R

J. P. Shen. “A Fr
cessor Performan
ter Architecture (H

Muth, H. Patil, A.
Hazelwood, “Pin
dynamic instrume

onference on Prog
DI ’05. ACM, pp. 1

John, “Improved
Validation,“ 19th A

ne 2005

Ringenberg, D. E
h: a free, comme

IEEE Internatio
3-14, Dec. 2001.

d B. Calder, “SimP
ysis ,” Workshop
005

ly, and B. Calder.
m Behavior,” Pro
amming Language
002.

nt/single-sim-pion

hn, “Analysis of R
U2006 Benchmark
r Architecture (ISC

e, K. Bosschere a
cal Simulation fo
SCA. pp. 350-361

a, “MinneSPEC:
on-Based Comput
ters, vol.1, May, 2

rately Approximat
Proceedings of t

l, 2009

hn, “Synthesizing
nes for SPEC

March, 2010

er, “Time Varyin
Report UCSD-CS9

. Falsafi, J. C. H
ulation via rigo
ual International
e, 2003.

poor, A. Sun and
of Large Intel Ita
Proceedings of th
on Microarchitectu

d K. Bosschere, “
m Behavior and it
m, vol. 5, pp. 1-33,

e, K. Bosschere a
cal Simulation fo
SCA, pp. 350-361,

m to implement th
ford University. A

D.Sivakumar “Ran
World Wide Web

, “Efficient simila
n,” International
003

he Simplescalar T
s Technical Report

er, “Time Varyin
Report UCSD-CS9

ramework for Stat
nce,” Proc. Int’l
HPCA), pp. 298–3

 Klauser, G. Lown
n: building custo
entation,” In Pro
gramming Langua
190-200, 2005.

Automatic Testca
ACM Internationa

Ernst, T.. Austin, T
ercially represent
onal Workshop

Point 3.0: Faster
on Modeling,

. “Automatically
oc. International
es and Operating

ts.htm

Redundency and
Suite,” The 34th

CA). June 2007.

and L. K. John,
or Accurate and
2004

A New SPEC
ter Architecture
002.

ting Superscalar
the ISPASS, pp.

Memory-Level
CPU2006 and

ng Behavior of
9-630, 1999

Hoe, “SMARTS:
orous statistical
Symposium on

A. Karunanidhi,
anium Programs
he 37th Annual
ure, 2004

“Quantifying the
ts Applications,”
, 2003.

and L. K. John,
or Accurate and
 2004

e Condorcet and
Address: Nuffield

nk Aggregation
Conference. pp.

arity search and
Conference on

ool Set, Version
t #1342, 1997.

ng Behavior of
9-630, 1999

tistical Modeling
l Symp. High-
09, Feb.1997.

ney, S. Wallace,
omized program
ceedings of the
age Design and

ase Synthesis for
al Conference on

T. Mudge and R.
tative embedded

on Workload

43

CC
PP
UU

1 memory unit marching time = CPU’s clock cycle

Marching memory

Information marchingInformation marching

Figure 1. Basic concept of marching memory.

Marching Memory: designing computers to avoid the
Memory Bottleneck

Tadao Nakamura
Dept. of Information and Computer Sci.

Keio University
Yokohama, 223-8522 Japan

Email: nakamura@pipelining.jp

Michael J. Flynn
Dept. of Electrical Engineering

Stanford University
Stanford, California 94305 USA

Abstract— Marching memory integrates all memory including
cache memory and register files into a single unit to avoid the
memory bottleneck. Marching memory is organized to
synchronize memory columns in minimizing the wire length
between memory cells and the operational units as much as
possible. A side benefit is lower energy consumption in a smaller
packaging format.

Keywords-marching memory; memory bottleneck; bandwidth;
CPU; DRAM

I. INTRODUCTION

This paper introduces a novel memory, the Marching
Memory, and the implications for computer organization,
Section II discusses the concept of Marching Memory.
Section III describes possible Marching Memory circuitry.
Section IV discusses the marching memory uses. Section V
discusses Complex Marching Memory and Section VI
summarizes the future work and challenges ahead to make a
practical realization of this technology.

II. MARCHING MEMORY AND ITS CONCEPT

Marching memory removes the memory bottleneck [1] also
called the memory wall [2] by designing a memory so that its
access time corresponds to the cycle time of the executing
processor. The basic idea is to create a memory structure
wherein the data is scheduled to arrive at a fixed physical
memory port for immediate use by the processor’s functional
units. Essentially the data comes to the processor rather than
the processor searching randomly for the data.

Fig. 1 shows a basic concept of marching memory with the
operation time (column access rate) equal to the CPU’s clock
cycle. The goal is to have the speed of a L1 cache but provide
much larger size. Essentially this memory is designed to
support vector and streaming data processing.

The information flow in the marching memory is arranged
in streams marching bilaterally (either left or right) across
memory columns with one (and only one) column being
available to the CPU at any cycle, so that we have the
information flow has constant bandwidth (bits/sec) [3] through
the organization. The CPU in figure 1 is non specific; it could
be an SIMD array processor, a vector processor, a streaming
graphics processor, etc. While the interface between the

marching memory and the CPU is intended to be as simple and
direct as possible; it may be possible to include an interconnect
network to route data in the memory column to specific
destination functional units as long as cycle time constraints are
met.

The premise of the marching memory is that the access
time to any element in a particular designated memory column
is the same as the processor cycle. Fig. 2 contrasts the
marching memory and a conventional organization.

Essentially memory access speed decrease as its size grows
larger; increasing the memory access latency and decreasing
the bandwidth. On the other hand, in marching memory all
transfers and accesses are local to adjacent memory columns so
there is no change in the available bandwidth as the marching
memory size increases.

III. SCHEME OF MARCHING MEMORY

In its simplest form marching memory can only access
adjacent memory columns. So data structures must be carefully
scheduled before execution. This is not unlike trace scheduling
for instructions in VLIW architectures only here we schedule
the data stream. This scheduling requires the application to
have a well defined, static data flow graph. In cases where this
is not true we need a more general (if slower) form of the
marching memory.

This results in two implementations. One is for pure
streaming data / vector data for SIMD processing mode, and
called simple marching memory. The other one includes a

44

(b) Bandwidths

Memory CPUMarching memory CPU

((a) Computer systemsa) Computer organizations

Memory CPUMemory CPU

Cache

The memory bottleneck as
a memory wall

Increasing bandwidthIncreasing bandwidth

Figure 2. Marching memory and a conventional memory.

To the next chipTo the next chip

From theFrom the
previousprevious
chipchip

Information marchingInformation marching

Memory unitMemory unit

Figure 3. Hardware scheme of marching memory.

Information marchingInformation marching

Information marchingInformation marching

((a) Marching righta) Marching right

((b) Stayingb) Staying

((c) Marching leftc) Marching left

Memory unitMemory unit

Figure 4. Three modes of marching memory.

Space Space

Cell positionCell position
& Time& Time

Cell 1 Cell 2 Cell 3 Cell 4 Cell 1 Cell 2 Cell 3 Cell 4 Cell 5 …

Logical valueLogical value

11

00 TimeTime
t t+τ

Memory shift Memory stay

AND gate
with delay

ClockClock

time=t time = t+1

Capacitor

(a) Clock(a) Clock

((a) Memory schemea) Memory scheme

Memory Read

Memory Write

Figure 5. Logic implementation of a one-way marching memory.

mode for random access in either programs or scalar data, and
is called complex marching memory.

A more detailed description of simple marching memory is
shown in Fig. 3. Information consists of data / instructions is
processed by the marching memory. The three modes of
behavior are in Fig. 4. Information marching proceeds from
left to right or from right to left or the state of staying to
process variations in active operation of program instructions
and scalar data depending on instructions.

The logic implementing the scheme of a one-direction
marching memory of Fig. 3 is drawn in Fig. 5. The circuit
timing between stages (in a DRAM type implementation the
adjacent column to column transfer time) defines the marching
memory stage time. This is assumed to be the same as the
element access time within a column. Note that the marching
memory is simpler than DRAM [4],[5] because of the absence
of long wires for addressing memory units and for accessing
data.

As a result, marching memory has a simpler addressing
procedure contributing to faster access speed. Power
consumption is manageable even though there is significantly
more data transfer each cycle. The data is transferred using
very short adjacent lines where as DRAM uses long wires with
correspondingly large capacitance. The total amount of
capacitance switch each cycle remains the same. Moreover, as

information is marching, it is usually unnecessary to make
refresh the chip (except for long periods in the staying state).

Fig. 6 shows an implementation of marching memory using
a switch for the modes and one more set of AND gates with
delay marching logic circuitry.

Using the circuit in Fig. 6, we have three modes in Fig. 7
for each of program instructions, scalar data and vector /
streaming data processing.

IV. USES OF MARCHING MEMORY

Vector data and streaming data are easily used in the one
directional mode with fewer position indexes corresponding to
addresses than in conventional memory. The staying mode
corresponds to a memory column access and if the column is
buffered at the exit port the buffer acts as a L1 cache.

As mentioned previously marching memory has two types
of hardware. One is for pure streaming data / vector data for
SIMD processing mode, where the position indexes are used on

45

Cell positionCell position
& Time& Time

Space Space

Cell 1 Cell 2 Cell 3 Cell 4 Cell 1 Cell 2 Cell 3 Cell 4 Cell 5 Cell 5 ……

AND gateAND gate
with delaywith delay

time=t time = t+1time=t time = t+1

CapacitorCapacitor

Memory Read/WriMemory Read/Wri

SelectorSelector

ClockClock Clock not issued then Program StayedClock not issued then Program Stayed

ProgramProgram
shiftedshifted
rightright AND gateAND gate

with delaywith delay

Memory Read/WriteMemory Read/Write

Figure 6. Logic implementation of a bilateral marching memory
including a stay mode.

Instructions marchingInstructions marching

Scalar data marchingScalar data marching

Vector data marchingVector data marching

Position usedPosition used
ContentsContents

Position usedPosition used
at the start pointat the start point
of a vector dataof a vector data

PositionPosition
not usednot used

(a) For instructions(a) For instructions

((b) For scalar datab) For scalar data

(c) For vector data(c) For vector data

Instruction to Instruction to the the
CPUCPU, or from/to, or from/to
the next marchingthe next marching
register file memory register file memory

Vector data to Vector data to
an arithmetic pipelinean arithmetic pipeline

Scalar data Scalar data to ALUto ALU,,
or from/to the nextor from/to the next
marching register filemarching register file
memorymemory

Figure 7. Implementation of the computer organization showing the three
modes.

 Instruction position indexInstruction position index
in a programin a program

Scalar / vector instructionScalar / vector instruction

Position index for data ofPosition index for data of
the scalar instructionthe scalar instruction

IIss

aabb

IIvv

ooppqqrrsstt

Starting point position index Starting point position index
for data of the vector instructionfor data of the vector instruction

ContentsContents

((a) For instructionsa) For instructions

((b) For scalar datab) For scalar data

((c) For vector datac) For vector data

Figure 8. Three configurations for position specifications in marching
memory.

the simple marching memory with the counter in the CPU,
which fact is original functionality of marching memory. The
other one is for random access mode in either programs or
scalar data, where the position indexes are used using address
lines on the complex marching memory. In such a case,
address wires remain in DRAM’s structure.

As a goal, the speed of simple marching memory is equal to
that of CPUs machine clock speed. So compared to the speed
with that of conventional DRAM memory, the marching
memory advantage is about 100:1 as in Fig. 9(a) [6].
Therefore within one access cycle in conventional memory, at
most about 100 times the number of operations is possible if all
memory units are used in marching memory. Simple marching
memory has no long wires because information / data moves
synchronously from adjacent memory column to memory
column.

The full uses of all available memory units in marching
memory within the cycle of conventional memory does not
occur EXCEPT in the cases in vector data or streaming data
that fully use the units in marching memory. Now consider
the situation in Fig. 9 (b). This case is similar to multi-
threaded execution. Even though we do not use all the memory
units in marching memory, we save the time compared to the
conventional memory. The conventional L1 cache that has
almost the same speed as CPU’s, however, this speed depends
on data locality with a small size memory. On the other hand,

marching memory is useful in case of lower data locality
because the bandwidth of the memory is almost constant and
the same as CPU’s.

V. COMPLEX MOVING MEMORY

So far we have discussed only the simple marching
memory. There are obviously many applications which require
a more generalized memory structure as they cannot be
perfectly scheduled in a simple marching memory.

The complex marching memory includes a random mode
(somewhat akin to DRAM) to enable the addressing of
arbitrary columns. This potentially significantly increases the
wire lengths as now there is no single fixed physical memory
port accessible to the CPU. Indeed the movement (or jump)
from one column to another unrelated column is similar to the
process to column addressing in a DRAM (the CAS delay). If
we now reenter marching mode the delays are longer than in
the simple case because the column sense lines are longer. We
can partially mitigate this optimizing adjacent column selection
and using multiple sub arrays. In the complex type of marching
memory it may be better to create hybrid structures which
specifically include some simple marching memory arrays.

To address columns in a complex marching memory
position indexes are used. These are additional tags to show the
location of memory units. For example, at least one position
index is necessary for a data item as in Fig. 8(c) if the number
of data items is known. However, the memory access is not
only regular data structures but also random accesses for
program instructions and then scalar data. For these uses, the
position indexes are fully activated in preparation of the area
added to memory units. Fig. 8(a) shows a configuration of
marching memory in storing a program. Here if the program
is fully sequential, then the position indexes are not necessary
except for the starting one. For branch instructions marching
memory has to have position indexes to show the next active
instruction in a bilateral marching memory as in Fig. 8(a). The
way is also used in scalar data corresponding to conventional
instructions. So, the configuration is shown in Fig. 8(b) as
well.

46

Memory unit in existing memoryMemory unit in existing memory’’s speeds speed

Memory units in marching memoryMemory units in marching memory’’s speeds speed

The other 99 memory units of marching The other 99 memory units of marching
memory could be available in 100 memory units.memory could be available in 100 memory units.

1 1 memorymemory
unit timeunit time
in existing in existing
memorymemory

100 100 memorymemory
unit time inunit time in
marchingmarching
memorymemory

(a) The speed gap

Memory unit in existing memoryMemory unit in existing memory’’s speeds speed

Memory units in marching memoryMemory units in marching memory’’s speeds speed

1 1 memorymemory
unit timeunit time
in existing in existing
memorymemory

100 100 memorymemory
unit time inunit time in
marchingmarching
memorymemory

(b) A recent general use

Figure 9. Speed gap between marching memory and conventional
memory.

VI. FUTURE WORK AND CHALLENGES

TThheerree’’ss aa lloott ooff wwoorrkk ttoo bbee ddoonnee ttoo mmaakkee mmaarrcchhiinngg mmeemmoorryy aa
vviiaabbllee ddeessiiggnn aalltteerrnnaattiivvee,, bbuutt tthheerree’’ss aallssoo aa ssiiggnniiffiiccaanntt
ppootteennttiiaall ffoorr iitt..
AAtt tthhee cchhiipp lleevveell wwee eexxppeecctt ttoo::

11)) DDeessiiggnn,, ssiimmuullaattee aanndd rreeaalliizzee aa ssiimmppllee mmaarrcchhiinngg
mmeemmoorryy cchhiipp;; ccoolluummnn ssiizzee lleessss tthhaann 11 KK bbiittss wwiitthh
110000,,000000 ccoolluummnnss..

22)) DDeessiiggnn,, ssiimmuullaattee aanndd rreeaalliizzee aa ccoommpplleexx mmaarrcchhiinngg
mmeemmoorryy ooff aatt lleeaasstt tthhee ssaammee ssiizzee aass ((11)).. TThhiiss iiss tthhee
bbiigg cchhaalllleennggee aass tthhee rreessuullttiinngg ppeerrffoorrmmaannccee ppaarraammeetteerrss
wwiillll ddeetteerrmmiinnee tthhee ddiirreeccttiioonn ooff tthhee mmaarrcchhiinngg mmeemmoorryy
pprroojjeecctt..

33)) CCaarreeffuullllyy ssttuuddyy tthhee ppoowweerr mmaannaaggeemmeenntt pprroobblleemm..

AAtt tthhee ssyysstteemm lleevveell wwee eexxppeecctt ttoo::

11)) CCrreeaattee aa ssyysstteemm ssiimmuullaattoorr ffoorr mmaarrcchhiinngg mmeemmoorryy..
22)) CCrreeaattee aa ccoommppiilleerr ttoo ssuuppppoorrtt tthhee sscchheedduulliinngg rreeqquuiirreedd

ffoorr tthhee uussee ooff tthhee mmaarrcchhiinngg mmeemmoorryy..
33)) DDeettaaiill tthhee ppeerrffoorrmmaannccee ooff tthhee mmaarrcchhiinngg mmeemmoorryy iinn

ccoonnjjuunnccttiioonn wwiitthh vvaarriioouuss pprroocceessssoorr aarrcchhiitteeccttuurreess aanndd
aa vvaarriieettyy ooff aapppplliiccaattiioonnss..

TThhee wwoorrkk hheerree hhaass ooff ccoouurrssee nneexxtt sstteeppss ttoo ffuurrtthheerr ddeevveellooppmmeenntt
ffoorr tthhee ccoommpplleettiioonn ooff tthhiiss cchhiipp iimmpplleemmeennttaattiioonn.. FFiirrsstt,, wwee aarree
ggooiinngg ttoo mmaakkee aa ssiimmuullaattiioonn aatt aa cchhiipp lleevveell ttoo ccoonnffiirrmm tthhee
bbeehhaavviioorr iinn aaccttiioonn aanndd sseeccoonnddllyy aatt aa ssyysstteemmaattiicc lleevveell ttoo
iinnvveessttiiggaattee tthhee wwhhoollee ccoommppuutteerr oorrggaanniizzaattiioonn ssyysstteemm iinncclluuddiinngg
tthhee ccoommppiilleerr rreesseeaarrcchh ttoo ooppttiimmiizzee tthhee mmeemmoorryy aallllooccaattiioonn ffoorr
oobbjjeecctt ccooddeess..

VII. CONCLUSIONS

WWee hhaavvee pprreesseenntteedd aa nnoovveell mmeemmoorryy wwiitthh ssiimmppllee aacccceessss
rreeqquuiirreemmeennttss tthhaatt sshhoouulldd bbee uusseeffuull iinn vveeccttoorr aanndd ssttrreeaammiinngg
ddaattaa ssttrruuccttuurree ffoorr HHiigghh PPeerrffoorrmmaannccee CCoommppuuttiinngg aanndd
mmuullttiimmeeddiiaa pprroocceessssiinngg,, rreessppeeccttiivveellyy.. FFoorr aapppplliiccaattiioonnss tthhaatt
ccaann uussee mmaarrcchhiinngg mmeemmoorryy tthhee mmeemmoorryy wwaallll bbeeffoorree CCPPUUss //
aarriitthhmmeettiicc ppiippeelliinneess iiss ssoollvveedd.. FFuurrtthheerrmmoorree,, tthhiiss mmeemmoorryy
rreedduucceess tthhee eenneerrggyy ccoonnssuummppttiioonn iinn ttoottaall ccoommppuutteerr
oorrggaanniizzaattiioonnss iinn ccoommppaacctt mmeemmoorryy ppaacckkaaggee ssiizzee oowwiinngg ttoo tthhee
ssttrruuccttuurree ooff mmaarrcchhiinngg mmeemmoorryy..

REFERENCES
[1] M. J. Flynn, ”Computer Architecture: Pipelined and parallel processor

Design, John & Bartlett Publications, 1995.

[2] W. A. Wulf and Sally A McKee, “Hitting the Memory wall: Implications
of the Obvious. Computer Architecture News, 23(1), pp. 20-24, March
1995.

[3] D. Burger, J.R. Goodman and A. Kagi, “Memory Bandwidth Limitations
of Future Microprocessors,” Computer Architecture, 1996 Annual
International Symposium on pp. 78-78, May 1996.

[4] H. Zheng and Z. Zhu, “Power and Performance Trade-Offs in
Contemporary DRAM System Designs for Multicore Processors,” IEEE
Trans. on COM., vol. 59, No. 8, pp. 1033-1046, 2010.

[5] E Cooper-Balis & Bruce Jacob, “Fine-Grained Activation for Power
Reduction in DRAM,” IEEE Micro, pp. 34-47, May/Jun 2010.

[6] D. Patterson, T. Anderson, et al, “A Case for Intelligent RAM,” IEEE
Micro vol. 17, no. 2,pp.34-44, Mar.1997..

47

Session III: VLSI Design
!

48

Lightweight Energy Prediction Filters for
Solar-Powered Wireless Sensor Networks

Cory E. Merkel and Dhireesha Kudithipudi and Andres Kwasinski
Department of Computer Engineering

Rochester Institute of Technology
Rochester, New York 14623-5603

Email: {cem1103, dxkeec, axkeec}@rit.edu

Abstract—This research studies lightweight energy prediction
filters for solar-powered wireless sensor networks. A generalized
prediction filter is developed from the empirical analysis of
several solar intensity datasets. The Array of Beta Coefficients
(ABC) energy prediction filter is proposed. A comparison metric
is also proposed to evaluate different filters based on their
accuracy, storage requirements, and calculation complexity. Sim-
ulation results show that the ABC filter has up to 8-fold accuracy
improvement over other published filters.

I. INTRODUCTION

Wireless sensor networks (WSNs) have been proposed for
several applications where sensor nodes must be deployed
in remote or hostile environments. Some examples are vol-
canic activity tracking [1], remote habitat monitoring [2], and
surveillance of battlefield conditions [3]. In each of these
applications, sensor nodes have low physical accessibility.
Furthermore, sensor nodes that rely solely on battery power
severely limit the longevity of their aggregate network. There-
fore, sensor nodes for these applications must be able to
harvest energy from an environmental source such as the
sun. Figure 1(a) generalizes a wireless sensor node with
solar energy harvesting capabilities [4–6]. The solar harvesting
circuit converts sunlight to usable energy for the sensor node.
Solar panels perform the energy transduction and energy
buffers store the converted energy. Other components may
be used to track the solar panels’ maximum power point
(MPP), control the charging/discharging of energy buffers, and
convert the stored energy to a usable voltage. The sensor node
circuit contains various sensors, a microcontroller, a radio for
wireless communication, and interface circuitry such as analog
to digital converters.

The sun is a spatially and temporally dynamic energy
source. To illustrate this, consider the WSN in Figure 1(b).
At the time shown, node C is able to harvest less energy than
the other nodes because of the shadow from the tree. Later
in the day, however, the shadow may be cast over one of
the other sensor nodes. In general, the solar energy available
for each sensor node will be a random function of time and
space. Therefore, sensor nodes such as those in Figure 1(a)
must always be able to estimate the energy that they will have
available for a given task. This estimate must be an input to
the scheduling, routing, and other WSN algorithms. Otherwise,
sensors could be over-utilized (causing them to completely

drain their stored energy) or under-utilized (reducing network
throughput). Previous works have developed energy estimation
algorithms. In [7] the authors developed the Environmental
Energy Harvesting Framework (EEHF). In EEHF, an energy
estimation is based on two factors. The first is a measurement
of the energy already stored in the node. The second is a
prediction of how much energy the node can harvest in some
future time frame. Again, consider Figure 1(b). If, at the
time shown, each sensor node has the same amount of stored
energy, then routing data from node A to node D through paths
A-B-D or A-C-D has equal overall effect on the total network
energy. However, if the path A-C-D is chosen, then the energy
lost at C cannot be regained until the shadow moves. If B and
C could both predict how much energy they can harvest in a
future time frame, then the network will be able to determine
that A-B-D is a better route. The prediction method in [7] is
a simple autoregressive filter, which exponentially reduces the
weight of past energy statistics. In [8], the authors develop
the Enhanced-Environmental Energy Harvesting Framework
(E-EEHF). E-EEHF improves upon EEHF in several ways,
including a more accurate prediction filter.

This work focuses on lightweight prediction filters for
solar-powered WSN nodes. We emphasize lightweight because
complex prediction methods, such as those in the frequency
domain or those based on adaptive filtering, are not well-
suited for extremely energy-constrained WSNs. To the best of
our knowledge, this is the first work that provides a thorough
analysis and comparison of lightweight solar energy prediction
filters. We also present a new filter called the Array of Beta
Coefficients (ABC) filter. The ABC filter is based on the
prediction filter used in the E-EEHF framework, but has better
accuracy, smaller storage requirements, and less computational
demand.

II. SOLAR INTENSITY ANALYSIS AND PREDICTION

In this section we will give a detailed empirical analysis of
solar intensity data. A generalized prediction filter is presented
for the prediction of solar intensity. Since solar intensity is
directly related to solar energy, the generalized prediction filter
and all of the filters presented in the following sections can be
readily applied to energy prediction rather than solar intensity
prediction. The value of solar intensity, I(t, l), at a given time
t and location l can be expressed as the sum of its periodic

49

(a) (b)

Fig. 1. Solar-powered wireless sensor node and example use scenario. In (a), a solar harvesting circuit converts sunlight to voltage for powering the wireless
sensor node. In (b) several solar-powered sensor nodes form a network. If node A wishes to transmit to node D, then it must choose the best route based on
how much energy will be available to nodes B and C in a future time frame.

and random components:

I(t, l) = Per{I(t, l)}+Ran{I(t, l)} (1)

Periodic components result from highly predictable events
such as solar and lunar cycles, the movement of shadows
from stationary objects (e.g. trees), and the changing of
seasons. Random components result from highly unpredictable
events such as the movement of shadows from non-stationary
objects, cloud movement, and abrupt changes in weather. Solar
intensity variation with location may be useful for network
algorithms. Our work, however, focuses on individual sensor
nodes and, therefore, does not consider the location parameter.
Discretizing (1) and ignoring the location parameter l yields

I[i] = Per{I[i]}+Ran{I[i]}. (2)

In (2), i is a discrete timeslot representing a time interval 4t
and is defined as i = b t

4tc. In this work, we will consider
I[i] to be the average solar intensity for the ith timeslot.
Solar intensity depends on the location of the sun. Therefore,
it is periodic with period T = 24 hours. We also define
NR = T

4t as the number of discrete timeslots within T . The
R subscript in NR stands for rounds, a term borrowed from
[8]. Figure 2 illustrates the relationship between the defined
parameters. The i+1 timeslot’s intensity can be predicted from
its periodic and random components, which can be defined
as functions of intensities from previous periods and recent
timeslots. Specifically,

Per{I[i]} = p(I, i), (3)

Ran{I[t]} = r(I, i), (4)

and

Ip[i+ 1] = f(p, r), (5)

where p and r are functions that operate on the past data, f
is a function that combines the periodic and random data, and
Ip[i+1] is the predicted intensity in the next timeslot. Now, we
can completely specify an arbitrary filter by defining f , p, r,
NR, and T . The functions f , p, and r are chosen by the filter
designer based on different design constraints. The period of
the data T will typically be 24 hours for solar applications. In
the next section, we will discuss how to choose the parameter
NR based on the consideration of several tradeoffs.

III. CHOOSING A TIMESLOT SIZE

Choosing an optimal time interval or timeslot size 4t is
a multivariable problem. Figure 3(a) shows some costs as
functions of the timeslot size. Calculating an optimal 4t in
real-time could be very costly. Therefore, we propose a pre-
deployment empirical solution based on the usefulness (how
much it aids our prediction) of periodic and random data. Due
to time correlation in the light intensity, recent data is more
useful when the size of the timeslot is small. Conversely, data
from past periods is generally more useful when the size of

50

(a) (b)

Fig. 3. The choice of 4t as a multivariable optimization problem. Several costs as functions of timeslot size are given in (a), and (b) gives an example of
how very small timeslot sizes are more sensitive to variation among periods.

Fig. 2. Solar intensity characteristics. Solar intensity statistics from past
periods (periodic data) and recent timeslots (random data) can be used to
predict solar intensity in a future timeslot.

the timeslot is larger. The latter concept is illustrated in Figure
3(b). In the first period shown, there is a sudden drop in solar
intensity, which could be the result of a cloud. If the smaller
timeslot size is used (narrower box) to characterize the average
intensity for that time, then the random variation caused by
the cloud will be weighed too heavily in a prediction for the
same time in the second period. However, this issue can be
resolved by using the larger timeslot size (wider box) to mask
random variations between periods.

To determine how the usefulness of recent and past data
varies with timeslot size, we studied the periodic (cycle-to-
cycle) and round-to-round variations of three solar intensity
datasets for several different timeslot sizes. The variations for
several different timeslot sizes were calculated as follows:

errorr =

∑N
i=2

|I[i]−I[i−1]|
I[i−1]

N − 1
(6)

and

errorp =

∑N
i=NR+1

|I[i]−I[i−NR]|
I[i−NR]

N −NR
, (7)

0 5 10 15 20 25
0

100

200

300

Timeslot Size

E
rr

or
 (

%
)

Percent Error vs. Timeslot Size for Two Different Prediction Filters

Prediction Based on Last Cycle Only
Prediction Based on Last Round Only

0 5 10 15 20 25
0

100

200

300

400

Timeslot Size (hours)

C
os

t

Cost of Using a Combination of the Filters

Fig. 4. Usefulness of periodic and random data for dataset 1.

where N = |I| and NR varied from 1 to 96. errorr is the
average error between intensities in consecutive rounds and
errorp is the average error beween intensities in consecutive
periods. Essentially, we have predicted solar intensity based
on either the last cycle only (periodic data) or the last round
only (random data) and found the average prediction errors.
Prediction filters in the form of (5) will use a combination
of periodic and random data to infer the intensity of a future
timeslot. The sum of the above error functions was computed
to determine the cost (in terms of error) of using a combination
of periodic and random data with varying timeslot sizes. The
results are shown in Figure 4. The bottom subplot shows the
error of using a combination of the filters. A local minimum
is reached at approximately 4t = 1h. Similar results are
obtained from the other two datasets. Therefore, we will use
NR = 24. This method may be improved by using a weighted
average or even product of the error functions to determine
the cost. However, this would yield timeslot sizes that are

51

optimized for a specific filter function f(p, r). Here, we will
only compare prediction filters with equal timeslot sizes.

IV. EXISTING FILTERS

In this section, we will redefine the prediction filters used in
the EEHF [7] and E-EEHF [8] frameworks using our formal
filter specification. We will later compare these two filters to
four filters developed in this work. These two filters were
chosen for comparison because of their simplicity.

A. EEHF Filter

The autoregressive prediction filter used in the environmen-
tal energy harvesting framework (EEHF) [7] can be described
using our filter specification as

fEEHF = pEEHF (I, i) + rEEHF (I, i), (8)

pEEHF (I, i) = 0, (9)

rEEHF (I, i) = αI[i] + (1− α)rEEHF (I, i− 1)], (10)

NREEHF
= 24, (11)

and
TEEHF = 24 hours. (12)

The EEHF filter does not explicitly incorporate periodic data
into its prediction. Instead, it bases its prediction solely on an
exponentially-weighted moving average of random data. The
weight factor α controls the decay rate.

B. E-EEHF Filter

The authors of [8] have developed a prediction filter with
better accuracy than the one incorporated into EEHF. Their fil-
ter is described as part of their enhanced environmental energy
harvesting framework (E-EEHF). Using our filter specification,
the E-EEHF prediction filter is defined as

fE−EEHF = pE−EEHF (I, i+1)+βrEEHF (I, i+1), (13)

pE−EEHF (I, i) =αI[i−NRE−EEHF
]

+ (1− α)pE−EEHF (I, i−NRE−EEHF
),

(14)

rE−EEHF [i+ 1] = I[i]− pE−EEHF (I, i− 1), (15)

NRE−EEHF
= 24, (16)

and
TE−EEHF = 24 hours. (17)

The β coefficient is defined as

β =
I[i−NRE−EEHF

]
I[i−NRE−EEHF

− 1]
. (18)

The E-EEHF filter improves upon the EEHF filter by consid-
ering both periodic and random data.

V. PROPOSED FILTERS

This section presents four filter designs with varying com-
plexity and design philosophies. The Last-Round-Only (LRO)
and Last-Cycle-Only (LCO) filters are the simplest base cases.
The ”Mixture of Cycles and Rounds” (MCR) filter combines
data from previous rounds and previous cycles for better ac-
curacy than the LRO and LCO filters. The ABC filter is based
on the prediction filter utilized in the E-EEHF framework.
However, it has better accuracy, and smaller energy demands.

A. Last-Round-Only (LRO) Filter

The Last-Round-Only (LRO) filter assumes that the solar
intensity at time t will be close to the solar intensity at time
t−4t. We define the LRO filter as

fLRO = pLRO(I, i+ 1) + rLRO(I, i+ 1), (19)

pLRO(I, i+ 1) = 0, (20)

rLRO(I, i+ 1) = I[i], (21)

NRLRO
= 24, (22)

and

TLRO = 24 hours. (23)

The LRO filter represents one extreme where only random
(recent) data is used and periodic data is ignored. This type
of filter is most useful when the dataset which it is applied to
has a large cycle-to-cycle variance.

B. Last-Cycle-Only (LCO) Filter

The Last-Cycle-Only (LCO) filter assumes that the light
intensity at time t will be close to the light intensity at time
t−NRLCO

4t. We define the LCO filter as

fLCO = pLCO(I, i+ 1) + rLCO(I, i+ 1), (24)

pLCO(I, i+ 1) = I[i+ 1−NRLCO
], (25)

rLCO[i+ 1] = 0, (26)

NRLCO
= 24, (27)

and

TLCO = 24 hours. (28)

The LCO filter represents the opposite extreme where only
periodic intensity data is considered, and random data is
ignored. This type of filter is most useful when the dataset
which it is applied to has a small cycle-to-cycle variance.

52

C. Mixture of Cycles and Rounds (MCR) Filter

The ”Mixture of Cycles and Rounds” (MCR) filter assumes
that the light intensity at time t will be a weighted average
of intensities from recent rounds and intensities from past
periods. We define the MCR filter as

fMCR = βpMCR(I, i+ 1) + (1− β)rMCR(I, i), (29)

pMCR(I, i+1) = α1pMCR(I, i+1−NRMCR
)+(1−α1)I[i],

(30)

rMCR(I, i) = α2rMCR(I, i− 1) + (1− α2)I[i], (31)

NRMCR
= 24, (32)

and

TMCR = 24 hours. (33)

The three factors α1, α2, and β adjust how heavily past and
recent data are weighted, and are between 0 and 1. Since
pMCR and rMCR are exponentially-weighted moving average
filters, α1 and α2 will control the rate of decay of data from
past cycles and past rounds, respectively. The LRO and LCO
filters are each special cases of the MCR filter when α2 = 0,
β = 0 and α1 = 0, β = 1, respectively. The MCR filter is
most useful when there is low round-to-round and cycle-to-
cycle variance.

D. Array of Beta Coefficients (ABC) Filter

The authors of [8] recognized that the ratio of the solar
intensities in two subsequent rounds is approximately constant
among different periods (days). This idea is leveraged in the
ABC filter, which tracks the ratio of each round to its previous
round in an array of exponentially-weighted moving averages
(called betas). The ABC filter is defined as

fABC = pABC(I, i+ 1)rABC(I, i), (34)

pABC(I, i) = β[i] = αβ[i−NRABC
]+(1−α)

I[i]
I[i− 1]

, (35)

rABC(I, i) = I[i], (36)

NRABC
= 24, (37)

and

TABC = 24 hours. (38)

In the ABC filter, the periodic component is the beta co-
efficient for a particular round, and the random component
is the intensity of the current round. From the definition, it
can be seen that the ABC filter requires only six operations:
three multiplications, a division, and two additions. The ABC
filter’s storage requirements depend on the number of rounds,
NRABC

. In this case, since NRABC
= 24, the filter needs to

store 24 beta coefficients.

TABLE I
FILTER SIMULATION RESULTS

Mean Prediction Error Percentage
Filter DS1 DS2 DS3 Avg.
EEHF 85.73 1262.60 129.35 651.75

E-EEHF 68.75 115.72 51.40 82.49
LRO 80.40 994.62 105.23 515.91
LCO 60.77 125.19 75.54 97.50
MCR 60.40 683.35 90.42 363.23
ABC 70.96 96.60 50.94 73.57

VI. FILTER COMPARISON METRIC

In past works, such as [7] and [8], prediction filters were
indirectly compared by examining the lifetime of the network
on which they were utilized. This metric depends heavily
on the WSN algorithms and topology. Here, we introduce a
new metric that is independent of a specific WSN and allows
filters to be compared directly. At minimum, a fair metric
should include the accuracy of the filter, the filter’s storage
requirements, the filter’s calculation complexity, the filter’s
broadcast rate, and perhaps most importantly, the cost of the
filter’s misprediction.

We will define our filter metric as a cost function:

Cf = ω1CP + ω2CMP + ω3CS + ω4CC + ω5CB , (39)

where Cf is the cost of using filter f , CP is the cost of using
the filter’s prediction, CMP is the cost of a misprediction, CS

is the cost of the filter’s storage requirements, CC is the cost
of the filter’s calculation, and CB is the cost of the filter’s
prediction broadcast. The costs CP and CMP are related to
the filter’s accuracy. The costs CS and CC are related to the
performance degradation caused by using the filter, as well as
any extra power consumption from reading/writing memory
or performing calculations. The cost CB is related to the extra
power consumption and any performance degradation caused
by extra radio usage when broadcasting prediction values to
the rest of the WSN. The weights ωn should be chosen such
that more emphasis is given to costs that result in higher energy
consumption or larger performance degradation. For example,
CB should be weighed heavily because radio usage consumes
a lot of power relative to the other components in a wireless
sensor node. We have not derived any specific weights in this
work.

In (39), CP ∝ errorf , CMP ∝ 1
NR

, CS ∝ kNvalues, CC ∝
γaA+ γmM + γdD, and CB ∝ NR, where

errorf =

∑N
i=1

|I[i]−Ip[i]|
I[i]

N
, (40)

k is the size of a typical stored value in bits (e.g. 32 bits
for integers), Nvalues is the number of values that the filter
needs to store, γa, γm and γd are the number of additions,
multiplications, and divisions required by the filter operation,
and A, M , and D are the energy costs associated with
additions, multiplications, and divisions, respectively.

53

TABLE II
FILTER COSTS

Sensitivity of Cost
Filter Prediction (CP) Misprediction (CMP) Storage (CS) Calculation (CC) Broadcast (CB)
EEHF 651.7522 1

NR
2k 2M + 2A NR

E-EEHF 82.4898 1
NR

2k(NR + 1) 3M + 1D + 4A NR

LRO 515.9050 1
NR

k 0 NR

LCO 97.4965 1
NR

kNR 0 NR

MCR 363.2256 1
NR

k(NR + 4) 6M + 6A NR

ABC 73.5685 1
NR

kNR 3M + 1D + 2A NR

0 5 10 15 20 25 30
0

1

t (Days)

Solar Intensity vs. Time

100 200 300 400 500 600 700
0

1

Round

Round Solar Intensity Average vs. Round

100 200 300 400 500 600 700

0

1

Round

Predicted Round Intensity vs. Round

100 200 300 400 500 600 700
0

5000

Round

E
rr

or
 (

%
)

Error vs. Round

Fig. 5. Simulation run of the ABC filter on dataset 3.

VII. RESULTS

The six filters defined in Section IV and Section V were
simulated on three datasets. The first dataset (DS1) is from
the data published in [7], and the other two (DS2 and DS3)
are composed of data collected at RIT. As specified in their
definitions, each filter utilized 24 rounds per period. For the
EEHF filter, α = 0.9. For the E-EEHF filter, α = 0.5. For
the MCR filter, α1 = 0.9, α2 = 0.1, and β = 0.5. For the
ABC filter, α = 0.9. Figure 5 shows an example simulation
run for the ABC filter with DS3. The top subplot is the actual
intensity data from RIT over a 32-day period with samples
taken every ten minutes. The next subplot is a bargraph of the
average intensity in each round. Since NR = 24, each bar is
an hourly average. The third subplot shows the ABC filter’s
intensity prediction for each round, and the final subplot shows
the relative error between the prediction and the actual average
intensity. There is a very large error between round 600 and
round 700 that would most likely be calculated as an outlier.

To be fair, however, these data were not removed from any of
the filter results, as they could represent mispredictions that
cause a node to be completely drained of its residual energy.
Simulations like the one shown in Figure 5 were run for each
of the six filters and each of the three datasets, resulting in 18
total simulations.

Table I summarizes the results. For DS1, the MCR filter
had the lowest mean prediction error. The ABC filter had the
lowest mean prediction error for datasets 2 and 3. The final
average in the last column is a weighted average with weights
equal to the number of days in each dataset divided by the sum
of the number of days across all three datasets. The E-EEHF
and ABC filters, on average, have better accuracy than the
other filters. The high error percentages show the difficulty
in making highly accurate predictions with low-complexity
filters, a fact that should be considered in the design of other
WSN components. Table II summarizes sensitivity of the costs
associated with each filter; each cost is proportional to the
given factor(s). The ABC filter requires about half of the
storage required for the E-EEHF filter and also has smaller
calculation and prediction costs.

VIII. CONCLUSIONS

In this work we have analyzed the characteristics of typical
solar intensity data. Using those characteristics, we developed
a general form for a solar intensity prediction filter. Since solar
panel electrical current output is proportional to solar intensity,
the filters can be used to predict the energy harvesting capa-
bilities of solar-powered wireless sensor nodes. A comparison
metric was also developed and used to compare two existing
and four proposed filters based on their storage requirements,
calculation complexity, and accuracy. Results show that the
Array of Beta Coefficients (ABC) filter is less expensive in
terms of computation and storage than all other analyzed
filters. It also has an ∼8-fold improvement in accuracy over
the EEHF filter.

IX. ACKNOWLEDGMENTS

The authors wish to acknowledge Richard Stein and RIT
Facilities Management Services for the collection of solar
intensity data.

54

REFERENCES

[1] G. Werner-Allen, K. Lorincz, M. Ruiz, O. Marcillo,
J. Johnson, J. Lees, and M. Welsh, “Deploying a wireless
sensor network on an active volcano,” Internet Computing,
IEEE, vol. 10, no. 2, pp. 18–25, March-April 2006.

[2] A. Mainwaring, D. Culler, J. Polastre, R. Szewczyk,
and J. Anderson, “Wireless sensor networks for habitat
monitoring,” in WSNA ’02: Proceedings of the 1st ACM
international workshop on Wireless sensor networks and
applications. New York, NY, USA: ACM, 2002, pp. 88–
97.

[3] I. F. Akyildiz, W. Su, Y. Sankarasubramaniam,
and E. Cayirci, “Wireless sensor networks: a
survey,” Computer Networks, vol. 38, no. 4,
pp. 393 – 422, 2002. [Online]. Available:
http://www.sciencedirect.com/science/article/B6VRG-
44W46D4-1/2/f18cba34a1b0407e24e97fa7918cdfdc

[4] D. Brunelli, L. Benini, C. Moser, and L. Thiele, “An
efficient solar energy harvester for wireless sensor nodes,”
in DATE ’08: Proceedings of the conference on Design,
automation and test in Europe. New York, NY, USA:
ACM, 2008, pp. 104–109.

[5] X. Jiang, J. Polastre, and D. Culler, “Perpetual envi-
ronmentally powered sensor networks,” in Information
Processing in Sensor Networks, 2005. IPSN 2005. Fourth
International Symposium on, April 2005, pp. 463–468.

[6] F. Simjee and P. H. Chou, “Everlast: long-life,
supercapacitor-operated wireless sensor node,” in ISLPED
’06: Proceedings of the 2006 international symposium on
Low power electronics and design. New York, NY, USA:
ACM, 2006, pp. 197–202.

[7] A. Kansal and M. B. Srivastava, “An environmental energy
harvesting framework for sensor networks,” in ISLPED
’03: Proceedings of the 2003 international symposium on
Low power electronics and design. New York, NY, USA:
ACM, 2003, pp. 481–486.

[8] K. Kinoshita, T. Okazaki, H. Tode, and K. Murakami,
“A data gathering scheme for environmental energy-based
wireless sensor networks,” in Consumer Communications
and Networking Conference, 2008. CCNC 2008. 5th IEEE,
Jan. 2008, pp. 719–723.

55

An Ultra Low Power Digitally Controlled Oscillator

with low jitter and high resolution

Authors Name/s per 1st Affiliation (Author)

line 1 (of Affiliation): dept. name of organization

line 2: name of organization, acronyms acceptable

line 3: City, Country

line 4: e-mail address if desired

Authors Name/s per 2nd Affiliation (Author)

line 1 (of Affiliation): dept. name of organization

line 2: name of organization, acronyms acceptable

line 3: City, Country

line 4: e-mail address if desired

Abstract— In this paper, an ultra low power and low jitter 12bit

CMOS digitally controlled oscillator (DCO) design is presented.

Based on a ring oscillator implemented with low power Schmitt
trigger based inverters. Simulation of the proposed DCO using

32nm CMOS Predictive Transistor Model (PTM) achieves
controllable frequency range of 550MHz~830MHz with a wide
linearity and high resolution. Monte Carlo simulation

demonstrates that the time-period jitter due to random power
supply fluctuation is under 31ps and the power consumption is

0.5677mW at 750MHz with 1.2V power supply and 0.53-ps

resolution. The proposed DCO has a good robustness to voltage
and temperature variations and better linearity comparing to the
conventional design.

Keywords- digitally controlled oscillator (DCO); low power; jitter;

linearity; robust;

I. INTRODUCTION

PHASE-LOCKED loops (PLLs) are widely used in many

communication systems to clock and data recovery or

frequency synthesis [1]. Typical analog PLLs include a phase-

frequency detector, a charge pump, a loop filter, a voltage

controlled or current controlled oscillator, and a frequency

divider [2, 3]. The controlled oscillator is the key component

in the core of PLL. Recently, efforts have been made toward

the development of fully digital PLLs. Compared to their

analog counterparts, fully digital PLLs exhibit better noise

immunity and they are invulnerable to DC offset and drift

phenomena [4, 5, 6]. Digitally controlled oscillator (DCO) is

a replacement of the conventional voltage or current

controlled oscillator in the fully digital PLLs. DCO is the heart
of the ADPLL that shows higher noise immunity and

robustness than the conventional PLLs [1]. DCO dominates

the major performances of ADPLL such as power

consumption and jitter, and hence is the most important

component of such clocking circuits [4, 6, 7]. Since DCO

occupies 50% power consumption of an ADPLL [7], the

power consumption of DCO should be reduced further to save

overall power dissipation to meet low power demands in SOC

designs.

The Block diagram of the ring oscillator based DCO which

is used in this paper is shown in Fig 1. It consists of digitally
controlled delay elements which are controlled by coarse and

fine bits and a control logic block for enabling DCO and

linearization circuit for linearizing the DCO period by

increasing the input code. DCO starts to work by applying the

initial value to the circuit.
Basically, two main techniques exist for designing the DCO

as shown in fig. 2. One technique changes the MOS driving
strength dynamically using a fixed capacitance loading and
achieves a fine resolution [8, 9]. While the other uses shunt
capacitor technique to tune the capacitance loading [10, 11].
They both have good linear frequency response and a
reasonable frequency operating range. Power consumption is
an important problem for portable battery charged computing
systems, so the reduction of the power consumption has
become a major concern.

A simple DCO that directly uses an inverter ring is
presented in [12], but has insufficient resolution for most
applications. Another DCO example consists of bank of tri-
state inverter buffers [13]. The delay resolution in this case can
be controlled by the number of enable buffers. However, [13]
has the disadvantages of large silicon area and high power
consumption. Another means of fine resolution enhancement,
implemented by an Or-And-Inverter (OAI) cell shunted with
two tri-state inverters to enhance driving capability, was

Nasser Erfani Majd, Mojtaba Lotfizad, Arash Abadian Mohammad Bagher Ghaznavi Ghoushchi

Department of Electrical and Computer Engineering Department of engineering

Tarbiat Modares University (TMU) Shahed University

Tehran, Iran Tehran, Iran

Email: n.alboghobiesh@modares.ac.ir Email: Ghaznavi AT shahed.ac.ir

 lotfizad@modares.ac.ir

 abadian@modares.ac.ir

Figure 1.Block diagram of the ring oscillator DCO

Figure 2.Standard Cell of Digitally controlled oscillator. (a) Driving strength
controlled. (b) Shunt capacitance controlled.

56

proposed in [3]. The proposed DCO in [3] has less area and
power consumption than [13]. However, the resolution step of
the proposed DCO is nonuniform and sensitive to power-
supply variation because it uses OAI cell to change the delay
resolution, this technique also requires an additional decoder
for mapping OAI cell control input.

 This paper presents a low power, low jitter and high

resolution DCO using binary controlled pass transistors and

low power Schmitt trigger. The DCO is designed using the

32nm CMOS Predictive Transistor Model (PTM) and HSPICE

simulator.

II. CONVENTIONAL AND PROPOSED DCO ARCHITECTURE

DCO should generate an oscillation period of TDCO, which
is a function of digital input word D and given by:

the DCO transfer function is defined such that the period of
oscillation TDCO is linearly proportional to digital word D with
an offset

where Toffset is a constant offset period and Tstep is the period of

quantization step. For the conventional driving strength

controlled DCO shown in Fig. 3, the delay tuning range of this

standard cell is obtained as follows:

where R1 is the equivalent resistance of M1 and W1 is the
width of M1. In order to have a good linear tuning range, the
width of transistor M1 has to be increased as can be seen in
Equation (5). Consequently, the equivalent resistance R1 will
decrease resulting in a smaller delay tuning range. One way to
increase the tuning range while keeping the linear response is
to increase the capacitance loading. However this will
minimize the maximum frequency that the DCO can
accomplish and the power consumption will also be increased.

The proposed DCO is based on ring oscillator

implemented with low power Schmitt trigger based inverters.

It uses binary controlled pass transistor arrays to control the

period of DCO. Schmitt trigger based inverter has a higher

low to high switching threshold and lower high to low
switching threshold compared to the conventional As a result,

the proposed DCO circuit provides the same tuning range with

smaller capacitance loading, which is beneficial for power

consumption reduction. Moreover, in conventional DCO

circuit, the slope of the input signal to each stage decreases

gradually due to the large delay between each stage. This

result in not only non-ideal rail-to-rail switch but also a poor

power performance. The steep slope of the output signal from

the Schmitt trigger based inverter minimizes this problem to

certain extend. The improved DCO has two coarse delay cells

and two fine delay cells and a NAND gate for reset. We don’t

use the Schmitt trigger in fine delay cells of DCO, because

Schmitt trigger transistors are switched in each cycle, so they

themselves consume a lot of power in the DCO therefore

omission of Schmitt trigger from fine delay cells can decrease

the power consumption of the circuit. Since fine delay cells of

DCO do not have a capacitance loading thus fine delay cells

output signal is still sharp and omission of the Schmitt trigger

from fine delay cells does not disturb the DCO performance.

Furthermore we use the low power Schmitt trigger in coarse

delay cells which has two inverters in its structure and these
inverters act as buffers in the signal path and by reconstructing

the signal, reduce the jitter of the DCO. This Schmitt trigger

is reported in [14]. The high to low and low to high switching

threshold of the Schmitt trigger is obtained as follows

Where Kn and Kp are the transconductance factors of Mninv

and Mpinv, and Vtn and Vtp are their respective threshold

voltages. The circuit diagrams of the conventional DCO and

proposed DCO are showed in Fig. 4. In order to compare the

power consumption, both circuits must be equally sized.

III. COMPARSION OF POWER CONSUMPTION BETWEEN THE

CONVENTIONAL AND PROPOSED DCO STRUCTURES

 Two structures of DCO are simulated and compared using
32nm CMOS PTM (Predictive Transistor Model) with a supply
voltage of 1.2Volts and HSPICE simulator. The impact of each
control bit on the period of the two DCO structures is shown in
table 1. Both structures have the same linear tuning range until
5

th
 bit is asserted. This is due to the fact that the requirement

for linear tuning range fails when D.∆W becomes too large
comparing to W1 so these structures are linear for the first 32
input coarse codes. In order to compare the power
consumption, the first 5 control bits are chosen instead of 6,
since the last control bits contributes to non-linear tuning range

Figure 3. Equivalent circuit for the calculation of delay tuning range.

57

which is not desired for DCO. Moreover, since two DCO
structures have the same operation ranges, it is more reasonable
for us to compare their power consumption. Compared to the
conventional DCO, the proposed DCO saves approximately
70% power consumption as shown in fig 5. As discussed in
section II, this reduction is due to the comparatively smaller
capacitance loading for the Schmitt trigger based inverter than
the conventional inverter at the same operating frequency and
the using the low power Schmitt trigger in the inverters of
coarse delay cells. The proposed DCO is more power efficient
than the conventional DCO.

TABLE I. Impact Of Each Control Bit On The DCO Period

IV. IMPROVING LINEAR OPERATING RANGE OF THE

PROPOSED DCO AND SIMULATION RESULTS

The proposed DCO which is explained in section II has a

limited linear operating range as discussed above. In this paper

, three stage constant delay chains and 4:1 multiplexer are

used to increase the operating range, the proposed DCO and

its linearization circuit are shown in Fig. 6. The 6
th

 bit is taken

off for better linear response and the 1st bit is also taken off for

larger coarse resolution. So this structure is linear for 64 input

coarse codes instead of 32 input coarse codes. The proposed

DCO structure with increased operating range is designed and
simulated using 32nm CMOS PTM model and HSPICE

simulator. The frequency ranges of the coarse and fine tuning

loops are shown in Fig. 7. The curves have a good linearity

which is a key factor of the PLL performance. The operational

frequency response to the process, temperature and voltage

variations are shown in Fig. 8. The curves show the

normalized data with respect to the center frequency. Fig. 8

shows that the relative delay per code is almost the same

regardless of the process, temperature and voltage variations,

which means this DCO design is robust to PVT variations. We

can extend the linearization circuit to achieve a 14-bit DCO
which is linear for 128 input coarse codes. Extended

linearization circuit is shown in Fig. 9. It consists of a seven

stage constant delay chain and 8:1 Mux. The 7
th

 and 6
th

 bits

are taken off for better linear response and 1
st
 bit is also taken

off for better coarse resolution. The simulation results show

that the DCO curve has a good linearity. The frequency ranges

of the coarse tuning loop are shown in Fig. 10.

DCO Proposed

DCO Conventional

Control bits

Delta
(ps)

Period
(ns)

Delta
(ps)

Period
 (ns)

242.8 1.1902 246.7 1.1905 100000

134.8 1.4330 124.5 1.4372 010000

91.6 1.5678 84.5 1.5617 001000

32.7 1.6594 42 1.6462 000100

18.1 1.6921 20.1 1.6882 000010

19.9 1.7102 21.9 1.7083 000001

- 1.7301 - 1.7302 000000

(a)

(b)

Figure 4. Digitally Controlled Oscillator. (a) Conventional DCO structure, (b)

proposed DCO structure.

Figure 5. Power consumption of the two DCO structures

Figure 6. The proposed DCO structure with improved linear operating

range

Low power

Schmitt

trigger

58

TABLE II. Characteristic Of The Proposed DCO

 The time-period jitter is the time difference between the

measured cycle period and the ideal cycle period. The jitter

performance of the proposed DCO is simulated by Monte

Carlo analysis using a Gaussian distribution function taking

into account 10% variation in supply voltage. The results are

shown in Fig. 11 by overlapping every cycle period. A 31ps

time-period Jitter is measured.

Table 3 shows the measurement results to compare with a

few recent state-of-the-arts DCO designs [1, 3, 10, 13]. The

proposed DCO achieves the finest LSB resolution and the

highest operating frequency. In addition, the proposed DCO

consumes less power than the others.

V. CONCLUOSION

A low power 12 bit digitally controlled CMOS oscillator

(DCO) design for low power consumption and low jitter are

presented. The presented DCO demonstrate a good robustness

to voltage and temperature variations and better linearity

comparing to the conventional design. Simulation of the

proposed DCOs using 32 nm CMOS Predictive Transistor

Model and HSPICE simulator achieves a frequency of

550~830 MHz and power consumption of 0.5677mW at 750

MHz and 1.2V power supply. The performance, flexibility,

and robustness make the proposed DCO viable for high

performance fully digital PLL application.

Fine delay Coarse delay Items

6bit 6 bit Resolution

0.53ps 13ps Max. DCO Gain

0.25ps 9ps Avg. DCO Gain

550~830 MHz Operation range

0.5677mW @ 750 MHz Operation range

(a)

(b)

Figure 7. Operating range of the proposed DCO. (a) Coarse loop (b) Fine loop

(a)

(b)

(c)

Figure 8. Delay characteristics of the coarse loop according to Process,

Voltage and Temperature variations. (a) Temperature Variation, (b) Voltage
Variation, (c) Process Variation

Figure 10. 14-bit DCO structure operating range.

59

.

TABLE III. COMPARISON WITH EXISTING DCOS.

[1] P.-L. Chen, C.-C. Chung, and C.-Y. Lee, “A portable digitally
controlled oscillator using novel varactors,” IEEE
Transactions on Circuits and Systems II, vol. 52, no. 5, pp.
233–237, 2005.

[2] Roland E. Best: “Phase-locked loops. Theory, Design, and
applications,” McGraw-Hill Book Company, 1984.

[3] B. Razavi, “Monolithic Phase-Locked Loops and
Clock-Recovery Circuits,” IEEE Press, 1996. Collection of
IEEE PLL papers.

[4] C. Chung and C. Lee, “An all-digital phase-locked loop for
high-speed clock generation,” IEEE J. Solid-State Circuits,
vol. 38, pp. 347–351, Feb. 2003

[5] P. Nilsson and M. Torkelson, “A monolithic digital clock-
generator for on-chip clocking of custom DSP’s,” IEEE J.
Solid-State Circuits, vol.31, pp. 700–706, May 1996

[6] J. Dunning, G. Garcia, J. Lundberg, and E. Nuckolls,
“An all-digital phase-locked loop with 50-cycle lock time
suitable for high performance microprocessors,” IEEE J.
Solid-State Circuits, vol. 30, pp. 412–422, Apr. 1995.

[7] T.Olsson and P.nilsson, “A digitally controlled PLL for SoC
application,” IEEE j. Solid-state Circuits, Vol.39, no.
5,pp.751-760, May 2004.

[8] R. B. Staszewski and P. T. Balsar, “ Phase-Domain All-
Digital Phase- Locked Loop,”IEEE Trans. Circuits and
Systems II, Vol. 52, pp. 159- 163, Mar. 2005.

[9] M. Saint-Laurent et al, “A Digitally Controlled Oscillator
Constructed Using Adjustable Resistor,” IEEE Southwest
Symposium on Mixed- Signal Design, 2001.

[10] P. Raha, S. Randall, R. Jennings, B. Helmick, A.
Amerasekera, and B.Haroun, “A robust digital delay line
architecture in a 0.13-_m CMOS technology node for reduced
design and process sensitivities,” in Proc. ISQED’02, pp.
148–153, Mar. 2002.

[11] P. Andreani, F. Bigongiari, R Roncella, R. Saletti and
P.Tenini, “A Digitally Controlled Shunt Capacitor CMOS
Delay Line,” Analog Circuits and Signal Processing, Kluwer
Academic Publishers, Volume 18, pp. 89-96. 1999.

[12] T. Olsson and P. Nilsson, “Portable digital clock generator for
digital signal processing applications,” Electron. Lett., vol.
39, pp. 1372–1374, Sep. 2003.

[13] E. Roth, M. Thalmann, N. Felber, and W. Fichtner, “A delay-
line based DCO for multimedia applications using digital
standard cells only,” in Dig. Tech. Papers ISSCC’03, Feb.
2003, pp. 432–433.

[14] V.A. Pedroni,” Low-voltage high-speed Schmitt trigger and
compact window comparator,“ Electronics Letters, vol. 41
no. 22, Oct 2005.

Function [1] [10] [13] [4] Proposed

DCO

Process 0.35um @
3.3V

0.13 um @
1.65V

0.6 um @
5V

0.35 um @
3.3V

32nm@
1.2V

DCO control

word length

15 bits 8bits 10 bits 12 bits 12 bits

Coarse

Resolution

385 ps - 550 ps 300 ps 12 ps

LSB(Fine)

Resolution

1.55 ps 40 ps 10 ps 5ps 0.53 ps

DCO output

frequency

18 ~214

(MHz)

150(MHz) 10 ~12.5

(MHz)

45~450

(MHz)

550 ~830

(MHz)

Power

consumption

18mW@

200MHz

1mW @

150MHz

164mW @

100MHz

100 mW @

450 MHz

0.5677mW@

750MHz

Figure 9. 14-bit proposed DCO structure

Figure 11. Time-period jitter of the proposed DCO (Monte Carlo analysis)

60

Early Stage Trade-offs Analysis in Reconfigurable H.264 Video Design

Youngsoo Kim
North Carolina State University
Dept. of Electrical Engineering

Raleigh, NC, 27695 USA
youngsoo kim@ncsu.edu

Kyungsu Kim, Seongmo Park
Electronics and Telecommunications Research Institute(ETRI)

SoC Research Department
Daejon, South Korea 305-700

{kimks0326, smpark}@etri.re.kr

Abstract

Current video compression algorithms such as H.264
and MPEG are increasingly complicated and difficult to an-
alyze and profile. Although the tools and system level lan-
guages speed up the design process, they often prove to be
inefficient and incapable of providing complexity analysis
as a first step aiming at the implementation of video com-
pression algorithms. The proposed profiling framework will
help to develop a methodology that facilitates the deriva-
tion of analytical models. The framework proposes analyti-
cal CAL models for quantifying the underlying algorithm’s
memory complexity, related timing considerations, and ver-
ification of the correctness of the video compression algo-
rithm. The methodology has been validated by applying it
to an H.264 motion estimation algorithm. The experimental
results present a speed 7x faster than required for assessing
design metrics compared to conventional methodologies.

1. Introduction

Presently system engineers begin their design with
C/C++ which are difficult to assess for hardware design-
ers. Design choices, including algorithm-architecture se-
lection, must be determined in the very early stages of
design. There is a need to reduce duplication of effort
from algorithm-architecture selections for specific appli-
cation scenarios within the global tradeoffs context. In
consideration of these observations, a conflicting environ-
ment for designers is presented. Additionally, there exists a
wide cognitive gap between the algorithm designer and the
hardware/software designers whose role is to determine the
hardware/software architecture for implementation of these
algorithms. This gap prohibits estimation of finally imple-
mented performance values at high levels of abstraction. In
particular, hardware designers face challenges when decid-
ing on implementation choices for a specific algorithm since
the resulting performance values are not available. In short,

to help designers, a profiling methodology should provide
early analysis features of final hardware, and should bridge
the system level-implemented hardware gap by providing
complexity metrics.

In this work, we propose an analytical profiling frame-
work for memory related costs based on reconfigurable
CAL modeling. The overall design trade-off metrics are
calculated interactively with the consideration of memory
complexities and performance parameters. The following
contributions are made in this work.

• Analytical Models for Trade-off analysis: An ana-
lytical analysis between input parameters and perfor-
mance parameters is presented based on CAL model-
ing.

• Trade-offs Analysis of video compression algorithms:
We use the proposed profiling framework to investi-
gate the cost of hardware implementation as well as
memory related costs and performance values.

This paper is organized as follows. Section 1.1 describes
state-of-the-art literature survey relevant to this work. In
section 2, we present video compression applications as
well as CAL modeling for the framework. Additionally, this
section deals with analytical modeling methodology. Sec-
tion 3 provides preliminary results and comparisons with
conventional methods in terms of design metrics.

1.1. Relevant Work

There are several tools for traditional profiling including
software profiling. The basic idea of these tools is that ap-
plications spend a large share of execution time in a kernel
or inner loop. Intel VTune and GNU Prof are the standard
tools for this purpose but they are focused more on instruc-
tion level complexity in a program rather than on a potential
measure for the final implemented system in terms of mem-
ory complexity or other timing considerations [1]. Based
on open literature survey, these common tools do not pro-
vide customized design metrics such as memory complexity

61

and bandwidth information beyond memory access counts
for hardware implementation alternatives selection. There-
fore, designers are hesitant to utilize these tools to assess
algorithm candidates or to provide to the architecture can-
didates for the application. Hardware/software co-design
and compiler groups’ focus has been directed toward es-
timating the early performance of applications. The work
of HW/SW codesign tools such as Ptolemy II and Synop-
sys CoWARE tools leads to effective design environments
which co-simulate and/or co-synthesize heterogeneous sys-
tems and techniques for optimizing and reducing mem-
ory requirements [2][3][4][5]. However, these tools rely
on dynamic simulation with incremental refinement. They
focus on more accurate memory metrics with the latest-
possible algorithm-architecture binding. Compiler directed
approaches solve this problem by providing the instruction
level complexity analysis of C/C++ references and by pro-
viding semi-static information [6][7][8]. The estimations
produced by the compiler and profiler depend on a specific
general purpose processor platform, lacking representative
metrics for custom hardware or hardware/software systems
design.

2. Proposed Profiling Framework

We will present a case study of H.264, using our profiling
framework flow. Before discussing the profiling framework
methodology, let us briefly summarize the H.264 standard
which is the video encoding/decoding standard that replaces
the current MPEG4 video standard.

2.1. H.264 Video Compression Algorithm

In its H.264 video coding layer, some of the impor-
tant enhancements include the use of a small block-size,
an exact match transform, adaptive in-loop deblocking fil-
ter and motion prediction capabilities. A typical decod-
ing process begins with entropy decoding. After receiv-
ing the data from the NAL (Network Adaptation Layer),
the data are processed by the entropy decoder. Next, the
IT/IQ (Integer transform/Inverse quantization) block is used
to generate the reference frame data which will be added to
the reference frame image or intra-predicted image based
on its header information. Then, the original image is re-
constructed through the deblocking filter. The reference C
source code is built by pruning the H.264 standard C model
originally from the H.264 standard committee. Extra func-
tionality beyond the selected H.264 profile was removed
from C code. Therefore, the C model that we use has been
optimized at the source code level by designers. This C ref-
erence model plays the role of providing the specification
and test streams for hardware implementation of H.264.

2.2. Reconfigurable CAL Framework

It is our observation that video coding algorithm models
typically involve two stream memories and control condi-
tions with regards to those stream memories. In this con-
text, Petri nets are good candidates for studying and ana-
lyzing the behavior of video compression models for early
estimation. Petri net is the one of models which represent
interacting concurrent components and used as a design and
analysis tool of systems. To implement this model and mod-
eling in the framework, CAL has best modeling capability
since it comes with language property and automated tool
sets [9]. CAL Actor Dataflow Language has been chosen
as the analytical modeling language for the operation of the
Function Units(FUs) in the analytical model library. CAL
was initially developed as a specification for the Ptolemy
project [9]. RVC-CAL is a subset of the original CAL lan-
guage and is being used for developing the RVC standard
Video Tool Library by the IET working group.

CAL actor language can describe algorithms with inter-
acting actors. Each of actors has its own state and functions.
Communications and interactions among actors can be pro-
cessed through channels or FIFOs. Actors define functions
described by a set of actions. Actions typically consume
input tokens, generate output tokens and modify the inter-
nal states which are very similar to Petri net’s nature. CAL
has expression capabilities sufficient to specify a wide range
of video compression algorithms that follow a variety of
dataflow models.

The proposed framework is the development of analyt-
ical models which are able to model the underlying algo-
rithms’ memory complexity in the very early design stage
for video compression applications. Furthermore, it is nec-
essary to develop a methodology that facilitates the analyt-
ical models’ derivation process and verifies the accuracy of
models for video algorithms. Starting from an application
written in CAL behavioral description, annotations will be
made with a pre-processor to embed input parameters in al-
gorithm code. The fundamental equations for basic process-
ing (e.g. data fetching operations and elements processing)
in an algorithm (e.g. motion estimation) is derived and CAL
equation libraries will be built for reusability. The objective
is to offer a tool which contains a relevant basic set of CAL
equations from existing algorithms. Designers who want
to build extended equations for different encoding/decoding
algorithms can benefit by reusing these analytical frame-
work models. Therefore, the profiler is able to deliver a re-
duction of system-RTL(Register Transfer Level) level gaps
with rapid estimation times. Fig. 1 presents an overall view
of the design flow which is employed in a H.264 design
space exploration loop. A CAL description will be defined
to model an application instance. The description includes
input parameters including maximum width of frame size in
macroblock, size in bits of macroblock, horizontal and ver-

62

Application
CAL Description

Application CAL
Pre-processing

User
Pragma

Input Parameters
(e.g. Vision Algorithm)H/V frame size in pixelFrame RateSize of Motion Block (MB)Search RangeLocal/External Memory Parameters

Analytical
Profiler

Xilinx FPGA
Libraries

Parameters

Presynthesized
Netlist and

cores
Parameters

CAL Basic
equation
Libraries

.mhs

.mss
Statistic

Files

Trade-offs curves
 (Area, Power,
Speed, PSNR)

Simulation based
Verification

Output Parameters
(e.g. Vision Algorithm)

Visual Quality (PSNR)
Processing Speed

Regularity of Address, Data
Area Memory Bandwidth, IO Bandwidth

FPGA Area
Model

FPGA
Power
Model

Figure 1. Design Flow for Reconfigurable CAL Framework

tical search range in pixels, etc., in H.264 algorithm. The
extended sets of CAL model equations will be generated in
an automated manner by the profiler, user pragma compiler.
Input parameters are parsed by the utility compiler and gen-
erate extended CAL model equations by referring to user
defined parameters. For example, based on the distance
criteria in motion estimation algorithm, different sets of
equations for blocks will be generated (e.g. Sum of Abso-
lute Difference (SAD), Mean Absolute Error (MAE), Mini-
mized Maximum Error (MME), Cross Correlation Function
(CCF), etc.)[10]. This will allow designers to reuse an ana-
lytical model for different video algorithms and will provide
designers with trade-off curves based upon design metrics
(e.g visual quality (PSNR), memory bandwidth, I/O band-
width, regularity of address and data, etc.). Trade-off curves
with design space exploration statistics files will be gener-
ated for designers to assess different algorithms for differ-
ent architectures in the early stage of design. This design
methodology accomplishes reuse of CAL equation libraries
by expanding basic CAL model sets. Basic CAL models
are described using an atomic action such as data fetching
or pixel processing. In addition to atomic mark up, extended
CAL models are composed of one or more combined atomic
CAL basic models which are derived from algorithms. The
key feature of the methodology is the generation of mem-
ory complexity metrics for designers based on input param-
eters. Memory complexity trade-offs among those factors
will help designers achieve an efficient compromise among
design alternatives. We illustrate the framework with a Mo-
tion Estimation (ME) case study. Beginning with high level
CAL specifications, a designer must choose a candidate ar-
chitecture with reference to the ultimate design implemen-
tation.

The core problem here is to evaluate ME algorithms in
order to have an idea of memory complexity. The pro-

posed design flow begins with building basic CAL model
equations. The cost of LRTB (Left-Right-Top-Bottom) ac-
cessing an image pixel in terms of the number of mem-
ory accesses can be computed as a function of window
memory(W) and frame memory(M) assuming an 8x8 pixel
block. Consider now that the cost of meandering access of
an image pixel in terms of the number of memory accesses
can be similarly computed. Memory fetching must occur
when direction changes to the opposite. Meandering does
not have to fill window memory in contrast to the LRTB
method. In short, it will be clear that the meandering ac-
cess has a lower memory bandwidth because the meander-
ing method requires fewer refills than LRTB method based
CAL atomic models.

These basic CAL model equations can be used to com-
pute the associated costs for processing an image of a given
size in the following way. When the two memory schemes
are used with ME blocks in a video algorithm, the memory
complexity metric must be offered to designers in order to
select memory access schemes as well as motion estimation
schemes with configuration parameters. To see the mem-
ory access cost for distance criteria in ME, the following
extended equation (1) can be built by using basic sets of
equations with the help of the framework.

NAME = 2∗N(MEscheme)∗NA(Memscheme)∗Framerate

(1)
We use this extended equation to compute mem-

ory access metrics by changing N(MEScheme),
NA(MemScheme), and FrameRate. Suppose that
N(MEScheme) is defined by motion estimation schemes,
e.g. 1:Full pel ME, 0.5:Half pel ME, and NA(MemScheme)
as defined by basic CAL models. Configuration parameters
such as FrameRate, and horizontal and vertical image
size are values provided by the user and the framework.
Exploration trade-off curves which include a memory
complexity metric against DSE parameters is presented to
designers.

3. Preliminary Results
This profiling design flow begins by building basic CAL

models. These basic CAL equations are used to compute
the associated costs for processing memory fetch operation.
In order to see the computational complexity cost for op-
erations in overall motion estimation, the extended equa-
tion can be built by using basic sets of equations with the
help of the profiler. Exploration trade-off curves which in-
clude a customized complexity metric with various output
parameters are presented to designers. Figure 2 shows re-
sults of design space exploration curves of H.264 encoding
in terms of Quantization Parameters(QP) and reconstructed
image frame quality. This also shows Peak Signal to Noise

63

Figure 2. DSE curve of PSNR vs. QP

Table 1. Early Estimation TAT Reduction
HDL modeling This framework

Estimation Time 4 weeks 3 days
Lines of code 3,900(verilog) 920

Ratio(PSNR) in variations of QPs. Table 1 confirms the ef-
fect of use of analytical models for early estimation gain.
Using equation based models reduces Turn Around Time
(TAT) of building simulation models and performance es-
timation time. The time for modifying simulation model
description and simulating it grows in a linear manner with
reference to the size of the description. Also, it is time con-
suming and error prone to build test benches and verifica-
tion scripts to run conventional simulation models. The re-
sults show the advantage of using CAL models approach as
a initial specification for video compression standards. De-
velopment of CAL models require less time and the CAL
model can be easily expanded or reused than Verilog/C lan-
guages for early estimation. This is due to data flow nature
of CAL descriptions well suited for video compression al-
gorithms. Furthermore, when it comes to video compres-
sion applications, this approach is domain specific can be
easily extended to evolving video compression standards
such as Scalable Video Codecs (SVC) and H.265 which is
in its inception stage. This profiling framework can link all
of these design space exploration steps by offering a central-
ized framework to the community and reducing the design
efforts among communities of design engineers.

4. Conclusions and Future Work
The proposed design flow will provide an analytical and

efficient design profiling methodology, capable of accu-
rately profiling many different H.264 variants. This ben-
efits various classes of designers including algorithm de-
velopers who are standardization committee members and
hardware designers. In particular, designers use the profil-

ing to derive extended CAL equations for existing different
video compression algorithms since video compression al-
gorithms share similar extended functions which have dis-
tance criteria and control strategies. This design flow can
link all of these design space exploration steps by offering a
centralized profiler to the community and reducing the de-
sign efforts among communities of design engineers.

Additionally, this design flow can integrate research and
teaching activities including coursework development for
design competition style classes. This will lead to revision
of the current curriculum encouraging discussion of emerg-
ing design issues beyond conventional design metrics such
as area, power and timing. This will provide students with
an opportunity to understand the concept of system design
tradeoffs by gaining hands-on experience using the profiler.

References
[1] J.G. Tong and M.A.S. Khalid. A comparison of profiling

tools for fpga-based embedded systems. In Electrical and
Computer Engineering, 2007. CCECE 2007. Canadian Con-
ference on, pages 1687 –1690, 22-26 2007.

[2] A. Gerstlauer, J. Peng, D. Shin, D. Gajski, A. Nakamura,
D. Araki, and Y. Nishihara. Specify-explore-refine (ser):
From specification to implementation. In Design Automa-
tion Conference, 2008. DAC 2008. 45th ACM/IEEE, pages
586 –591, 8-13 2008.

[3] F. Angiolini, L. Benini, and A. Caprara. An efficient
profile-based algorithm for scratchpad memory partitioning.
Computer-Aided Design of Integrated Circuits and Systems,
IEEE Transactions on, 24(11):1660 – 1676, nov. 2005.

[4] P. Grun, N. Dutt, and A. Nicolau. Access pattern based local
memory customization for low power embedded systems. In
Design, Automation and Test in Europe, 2001. Conference
and Exhibition 2001. Proceedings, pages 778 –784, 2001.

[5] http://www.synopsys.com/Systems/.
[6] Qubo Hu, E. Brockmeyer, M. Palkovic, P.G. Kjeldsberg, and

F. Catthoor. Memory hierarchy usage estimation for global
loop transformations. In Norchip Conference, 2004. Pro-
ceedings, pages 301 – 304, 8-9 2004.

[7] O. Ozturk, M. Kandemir, M.J. Irwin, and S. Tosun. Multi-
level on-chip memory hierarchy design for embedded chip
multiprocessors. In Parallel and Distributed Systems, 2006.
ICPADS 2006. 12th International Conference on, volume 1,
pages 8–14, 2006.

[8] P. Schaumont, D. Hwang, and I. Verbauwhede. Platform-
based design for an embedded-fingerprint-authentication de-
vice. Computer-Aided Design of Integrated Circuits and Sys-
tems, IEEE Transactions on, 24(12):1929 – 1936, dec. 2005.

[9] http://embedded.eecs.berkeley.edu/caltrop.
[10] E. Ogura, Y. Ikenaga, Y. Iida, Y. Hosoya, M. Takashima, and

K. Yamash. A cost effective motion estimation processor lsi
using a simple and efficient algorithm. In Consumer Elec-
tronics, 1995., Proceedings of International Conference on,
page 248, 7-9 1995.

64

RSA Cryptography Acceleration for Embedded

System
Rolando Duarte Chen Liu Xinwei Niu

Computer Architecture and Microprocessor Engineering Lab (CAMEL)

Department of Electrical and Computer Engineering

Florida International University

Miami, FL 33174, U.S.A.

{rduar002, cliu, xniu001}@fiu.edu

Abstract—Cryptography plays an important role for data

security and integrity and is widely adopted, especially in

embedded systems. On one hand, we want to reduce the

computation overhead of cryptography algorithms; on the other

hand, we also want to reduce the energy consumption associated

with this computation overhead. In this paper, we explore

techniques to improve the overall throughput and energy

consumption of RSA (Rivest, Shamir and Adleman) public-key

cryptography. Instead of implementing the entire algorithm into

hardware format, we carefully implemented a custom

coprocessor design to accelerate a single hotspot function of RSA

algorithm on a Virtex5 FPGA platform. Then, we compare the

effectiveness of the coprocessor design against the software

implementation of RSA. The hardware accelerates the execution

time by 10% thus minimizing the energy by 9%, achieving our

goal.

Keywords-Coprocessor; cryptography; RSA; hardware accelerator.

I. INTRODUCTION

The Internet has evolved so fast that it not only provides

information but also permits to communicate and make

electronic transactions around the world. Hence, we want our

personal data to be secured, reliable, and efficient over the

Internet. Many cryptography algorithms have been

implemented to prevent intruders from stealing information

during an electronic transaction. They are widely used in

applications such as ATM cards, computer password, e-mails

and even within the world of electronic commerce. As secure

communication bandwidth demands continue to grow, it

requires faster cryptographic processing. This serves as the

motivation for our hardware acceleration approach. Hardware

acceleration hastens some specific operations, allowing the

overall system, including the general purpose processor and

the coprocessor, to execute concurrently in order to achieve

performance improvement. The processor assigns specific

function to the coprocessor while the processor executes its

own instructions. For example, Irwansyah et al. [2] and Hodjat

et al. [3] integrated the AES cryptography [4] as a complete

system and interfaced it with the microprocessor. This

technique is very efficient to accelerate as most as you can to

finish executing the process as fast as possible. However, we

need to take into consideration that adding more hardware to

the system implies that it will consume more power. Clearly,

there is a trade-off between performance improvement and

power consumption. Also, what if the system requires some

other hardware accelerator? Then it can be a critical part since

this will incur even more power consumption.

Our design is based on FPGA platform, which allows us to

customize our hardware implementation without going

through the process of realizing the hardware into a physical

chip. However, the resources on the FPGA are limited. If the

system is complex enough with multiple accelerators needed

and has occupied most of the FPGA resources, we might run

out of space and probably will end up using several FPGAs to

accommodate the customized hardware. Thus, we want a

system that not only executes faster but also consumes less

power and takes less space or resources in the FPGA platform.

Nuan et al. [11], Hani et al. [12] and Zutter et al. [13] focused

on speeding up the RSA [1] cryptography core by enhancing

the modular exponentiation of square and multiplication.

However, they implemented the whole RSA algorithm as a

coprocessor. We followed a similar path, but instead of

implementing the RSA cryptography core in its entirety, we

selectively implemented only a single hardware accelerator

targeted at a single hotspot function of the algorithm. We

employed hardware in the form of a customized IP that

accelerates the computation, so that we can observe a

performance improvement when we execute the software code

with the new integrated hardware.

The rest of the paper is organized as following: Section II

will cover the system architecture of our design, which

describes all the components that are used during the

implementation of the hardware accelerator. This section also

provides information why we chose to accelerate specific

function as a custom IP and how it interfaces with the

microprocessor. Section III presents the experiment results we

obtained when we added the new peripheral to our system.

Finally, the conclusion is drawn in Section IV.

II. SYSTEM ARCHITECTURE

FPGA are widely used because its reconfigurability and

reprogrammability can meet the different needs of the user.

Thus, we chose FPGA because of its flexibility to add a

hardware component into the device and its ease to reprogram

the device. We could implement the same design using a

simulator-based approach. However, we believe FPGA

65

platform could generate more accurate performance and

energy consumption readings. We used the Virtex5 FPGA

board [7] to interface our IP with Microblaze processor [8].

The overall system architecture is shown in Figure 1. Our

system contains the following microprocessor, peripherals,

and buses for intercommunication: Microblaze, BRAM, Local

Memory Bus (LMB), Processor Local Bus (PLB), RS232,

Timer, Interrupt and our customized accelerator. Microblaze

is a soft-core microprocessor and it is of RISC architecture

optimized for Xilinx FPGA boards. Microblaze is the only

soft-core processor Virtex5 supports and it runs at 125 MHz.

This processor is responsible for the execution of all

instructions and communication among peripherals. BRAM is

a Block RAM memory system with 64 KB memory space and

the main purpose of this peripheral is to hold all instructions

and data to be executed during the process. Microblaze access

either instruction through ILMB or data through DLMB.

These two buses are 32-bit wide. The LMBs are only

connected to the Microblaze because it is the only component

responsible for executing instruction and its data. The PLB

provides communication between Microblaze and all the

peripherals. If any peripheral needs to access another

peripheral, PLB is the one accountable for this communication

as well. RS232 is in charge of receiving and sending data to

the user via HyperTerminal. Thus, we use RS232 to verify the

results of RSA encryption/decryption between with

acceleration and without acceleration approaches. We use a

timer to gather information about how many clock cycles

certain process takes. The interrupt peripheral is needed since

we want our process to be interruptible because in an event

that Microblaze needs to execute an instruction with higher

priority, then any other peripheral can be interrupted. Finally,

we have Power_HW(2, n) IP, which is our customized

accelerator. It requires 12 slices and 133 LUTs. Thus adding

the custom hardware, as shown in Figure 1, increased the

usage of overall FPGA resource by 6% with respect to the

hardware platform without acceleration. Microblaze will

determine when our customized peripheral will be used and

will be responsible for collecting the data provided by the

customized hardware and sending the data to other peripherals

connected through the same PLB bus.

Microblaze

125 MHz

BRAM

64 KB

ILMB DLMB

Timer

P
LB

 B
u

s 3
2

-b
its

Power_HW(2,n)

RS232

Interrupt

Figure 1. Power_HW IP Interfacing Microblaze

Since FPGA is reconfigurable, Microblaze can be specified

to run up to 125 MHz, its maximum speed. Moreover, any

peripheral connected through PLB has dual-port

communication, meaning that each peripheral can send data to

and receive data from the PLB. Then, if any other peripheral

or another customized hardware should be connected, it would

be listed at the right side of the bus like the other peripherals.

It also should be kept in mind that the PLB runs at the same

speed as Microblaze to keep reliability consistent. Hence, our

customized IP will also run at 125 MHz since it is also

connected to the PLB.

RSA Main()

PrimeNum()

GCD() Encrypt()

Power()

Figure 2. RSA Functions

The key point of our design is to identify which function

executes most of the time and how long the entire process

takes. The RSA software code in this specific design has four

functions which are PrimeNum(), GCD(), Encrypt() and

Power(), as shown in Figure 2. PrimeNum() provides a prime

number every time it is called. RSA uses the multiplication of

two prime numbers to decrypt and encrypt the data. The

GCD() function determines the greatest common divisor since

we know that two numbers are coprime if their greatest

common divisor equals 1. This function is used in the process

of generating the public key and private key. The Encrypt()

method takes on the core mathematical operation of RSA

algorithm, which is to calculate X to the power of Y modulo

N. It performs either the encryption of the original data to

convert it into a cipher data or the decryption of the cipher

data to produce back the original data, depending on the

parameter. Power() calculates 2 to the power of n, where n =

0, 1,…, 31. Based on the specific software implementation we

use in this design, Power() actually is called by Encrypt() and

its main functionality is to prepare the data into a specific

format in order to calculate X to the power of Y modulo N. In

[9], Chang et al. profiled the RSA algorithm using

Intel® VTune™ Performance Analyzer [5] to gather

information about which part of the software code takes most

of the execution time, defined as hotspot function. They

indicated Power() function as the hotspot function for RSA.

Thus, we implemented a hardware accelerator that performs

the same operation as software function Power() but the only

difference is that our customized hardware will complete its

task in fewer clock cycles. Consequently, it requires less

execution time as we will see in the next section. Realizing all

the RSA functions in hardware implies that the overall

execution time will be faster. However, this will increase the

usage of system resource, thus increasing the total power

consumption. Our focus is to achieve the best speedup for the

66

overall system while minimizing the power and energy

consumption, which naturally leads to the hotspot function

acceleration.

III. EXPERIMENTAL RESULTS

The experiment consists of encrypting and decrypting 32-

bit (4-byte) data. At first, the pure software code is executed

without the existence of the customized hardware, and we

observe that it takes approximately 39100 clock cycles to

finish the process of encrypting and decrypting a 4-byte data,

as shown in Table I. Since, Microblaze runs at 125 MHz, it

takes about 0.31 ms to execute the entire process. Then, we

followed the same process of encrypting/decrypting data, but

each time the data size is incremented by multiple of ten to be

consistent. Thus, the test set consists of data size from 4, 40,

and all the way to 40000 bytes. As the data size increases, the

number of clock cycles hence the execution time increases

accordingly. They keep almost a constant relationship since

the number of cycles for each data encryption/decryption is

the same. The data-flow of the RSA software code is shown in

Figure 3.

Figure 3. RSA Flow _ without Acceleration

Figure 4. RSA Flow _ with Acceleration

Next, the Microblaze interfaces with our customized IP

which is embedded into the FPGA. Partial of the RSA

software code is now replaced by the corresponding hardware

part. Here, the native software function Power() that computes

2 to the Nth power is replaced by a coprocessor Power_HW().

The FPGA system is a memory-mapped system, thus each

peripheral or embedded IP [6] is accessed by providing its

corresponding memory address location. Hence, the

Power_HW() is called upon by providing its memory location

and the integer N. We execute the modified RSA software

code to call the Power_HW() instead, as shown in Figure 4.

Now, the same data is loaded to Power_HW() as the one we

used to call native software function Power(). The observation

is that encrypting/decrypting 4 bytes of data takes 35000 clock

cycles as shown in Table II. This leads to an execution time of

0.28 ms. The overhead of accessing the hardware accelerator

through the PLB bus is 7 clock cycles plus 2 to 3 cycles to

perform a load or store operation. The Power_HW() takes

about 58 clock cycles to perform the operation of two to the

power of N. RSA pure software function Power() takes about

118 clock cycle to finish the same execution and return the

result. Hence, the custom IP performs 2 times faster than its

pure software counterpart. If we compare the execution time

of pure software approach with the hardware accelerator

approach, we can examine that the overall speedup of our

customize hardware is more than 10%, and as we increase the

input size data, the speedup we achieves converges to a

constant reading of 10.58%, as illustrated in Figure 5. We can

apply Amdahl’s Law [14] to verify the speedup we obtained

while adding the custom hardware. Based on our observation,

22% of total execution time of RSA code is spent on Power()

function, which is converted into hardware and this

conversion acquires a speedup of 2, then we can see that the

overall speedup =
�

������	� �⁄
, where p = 0.2 and s = 2. Then,

the overall speedup is 1.1235, which also means the ideal

speedup that can be obtained is 12.35%. We obtained an

overall speedup of 10.58%. But we need to take into

consideration that the timer is also connected to the PLB bus;

thus it takes about 7 cycles to access the timer over the PLB

bus. Therefore, this affects the overall execution time of the

system and the overall speedup we achieve.

 We utilized XPower Analyzer [10] to get the power

consumption of the system. Xilinx claims that XPower

Analyzer provides accurate power analysis after design

implementation. The power consumption for the hardware

system without the customized IP is 1. 2519 Watts and with

the added IP is 1.2653 Watts, a 1% increase. Table I and

Table II show the number of clock cycles and execution time

of the two different implementations. Since we know the

power consumed, we can calculate the energy for the RSA

without customized IP approach and with the customized IP

approach respectively. From these two tables, we can observe

that our design executed the RSA algorithm effectively and

the energy consumption is reduced after adding the embedded

peripheral. Figure 6 shows the energy reduction of our

hardware design over software. Moreover, the energy

reduction converges to a constant reading of 9.62% with

increased input data size. Hence, our hardware acceleration

design not only gained speedup but also reduced the energy

consumption. Figure 7 illustrates the normalized energy

consumed per byte over the 4-byte input case, based on the

data from Table II. We examined that the energy consumption

per byte decreased as the data size increased.

TABLE I. RSA WITHOUT ACCELERATION

of

Bytes

Clk Cycles

(10^6)

Exec Time

(ms)

Energy

(mJoules)

uJoules /

Byte

4 0.0391 0.3127 0.3915 97.8795

40 0.3905 3.1241 3.9110 97.7756

400 3.8764 31.0109 38.8219 97.0547

4000 38.8182 310.5456 388.7658 97.1915

40000 388.2355 3105.8842 3888.1944 97.2049

TABLE II. RSA WITH ACCELERATION

of

Bytes

Clk Cycles

(10^6)
Exec Time

(ms)
Energy

(mJoules)
uJoules /

Byte

4 0.0350 0.2799 0.3541 88.5358

40 0.3494 2.7955 3.5372 88.4308

400 3.4656 27.7245 35.0809 87.7022

4000 34.7102 277.6816 351.3616 87.8404

40000 347.1555 2777.2442 3514.1582 87.8540

67

However, the energy consumption converges if data size is

over 1 Kbytes. This is due to the factor that our system

speedup also converges once the data size is above 1 Kbytes.

Therefore, we can estimate how long it can take to encrypt

and decrypt a larger data size of 400 Kbytes, 4 Mbytes, or

even more. Basically we would expect the same speedup and

energy reduction as shown in Figure 5 and Figure 6

respectively. If input data set is greater than BRAM capacity,

it is required to put it into off-chip memory. In this case we

employ a 256MB DDR memory. It takes 1074225 and 916194

clock cycles to encrypt/decrypt 4-byte data with and without

acceleration respectively. If we compare with the BRAM case,

BRAM-based design is more than 26 times faster than DDR-

based design in both scenarios.

Figure 5. Speedup of with-Acceleration over without-Acceleration

Figure 6. Energy Reduction of with-Acceleration over without-Acceleration

IV. CONCLUSION

The implementation of an entire software algorithm into

hardware is not always the best choice since we lose the

reconfigurability and reprogrammability. We do not just want

to accelerate our process but also want to reduce the energy

consumption. In this paper, we explore the technique of

identifying the hotspot function of a program and then

realizing it as a hardware accelerator using RSA cryptography

as an example design. The coprocessor helped the system to

execute the specific function while the main processor

executed the remaining of the code. We achieve an overall

speedup of more than 10% and reduced its energy

consumption by more than 9%. This technique can be

implemented in other systems to explore ways of minimizing

the hardware overhead and energy consumption as to

maximizing its overall throughput. For future work, we are

going to explore the hotspot functions for AES, Blowfish,

MD5, 3DES and IDEA cryptography and implement them as

customized hardware so that we can compare their execution

time and energy reduction the same way we accomplished for

the RSA cryptography.

Figure 7. Normalized Energy per Byte Consumption with-Acceleration

REFERENCES

[1] Introduction of RSA for public-key cryptography. [Online]. Available:

http://en.wikipedia.org/wiki/RSA

[2] Arif Irwansyah, Vishnu P. Nambiar, and Mohamed Khalil-Hani, “An
AES Tightly Coupled Hardware Accelerator in an FPGA-based

Embedded Processor Core,” Proc. ICCET’09, vol. 02, p. 521-525,

2009.
[3] SAlireza Hodjat, and Ingrid Verbauwhede, “Interfacing a High Speed

Crypto Accelerator to an Embedded CPU,” Asilomar SSC’04,vol. 1, p.

488-492, Nov. 2004.

[4] Announcing the Advanced Encryption Standard (AES). [Online].

Available: http://csrc.nist.gov/publications/fips/fips197/fips-197.pdf
[5] Intel® VTune™ Performance Analyzer. [Online]. Available:

http://software.intel.com/en-us/intel-vtune/

[6] Paolo Giusto and Grant Martin, “Reliable Estimation of Execution

Time of Embedded Software,” Proc. DATE’01, p. 580-588, Mar. 2001.

[7] MicroBlaze Processor Reference Guide. [Online]. Available:

http://www.xilinx.com/support/documentation/sw_manuals/mb_ref_gu

ide.pdf

[8] Virtex-5 FPGA User Guide. [Online]. Available:

http://www.xilinx.com/support/documentation/user_guides/ug190.pdf
[9] Jed Chang, Chen Liu, Shaoshan Liu and Jean-Luc Gaudiot, “The

Performance Analysis and Hardware Acceleration of Crypto-

Computations for Enhanced Security,” PRDC’2010, (accepted).
[10] Xilinx Xpower Analyzer [Online]. Available:

http://www.xilinx.com/products/design_tools/logic_design/verification

/xpower_an.htm.
[11] Wen Nuan, Dai Zi Bin, and Shang Yong Fu, “FPGA Implementation

of Alterable Parameters RSA Public-Key Cryptographic Coprocessor,”

ASIC’05, vol. 2, p. 769-773, 2005.

[12] Mohamed Khalil Hani, Tan Siang Lin, and Nasir Shaikh-Husin,

“FPGA Implementation of RSA Public-Key Cryptographic

Coprocessor,” TENCON’00, vol.3, p. 6-11, 2000.

[13] Jan Zutter, Max Thalmaier, Martin Klein, and Karsten-Olaf Laux,

“Acceleration of RSA Cryptographic Operations using FPGA

Technology,” DEXA’09, vol. 1, p. 20-25, 2009.
[14] The description and explanation of Amdahl’s Law. [Online].

Available: http://en.wikipedia.org/wiki/Amdahl's_law

10.4

10.45

10.5

10.55

10.6

4 40 400 4000 40000

S
p

e
e

d
u

p
 %

Input Size (Byte)

9.5

9.55

9.6

9.65

9.7

4 40 400 4000 40000

E
n

e
rg

y
 R

e
d

u
d

ct
io

n
 %

Input Size (Byte)

0.98

0.985

0.99

0.995

1

4 40 400 4000 40000

N
o

rm
a

li
ze

d
 E

n
e

rg
y

 p
e

r
B

y
te

Input Size (Byte)

68

	cover.pdf
	frontmatter.pdf
	session1.pdf
	1_1.pdf
	1_2.pdf
	1_3.pdf
	1_4.pdf
	session2.pdf
	2_1.pdf
	2_2.pdf
	2_3.pdf
	2_4.pdf
	session3.pdf
	3_1.pdf
	3_2.pdf
	3_3.pdf
	3_4.pdf

