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Early Experience with Profiling and Optimizing
Distributed Shared Cache Performance on Tilera’s Tile Proessor

Inseok Choi, Minshu Zhao, Xu Yang, and Donald Yeung
Department of Electrical and Computer Engineering
University of Maryland at College Park
{inseok,mszhao,yangxu,yegi@umd.edu

Abstract—This paper describes our experience with profiling
and optimizing physical locality for the distributed shared
cache (DSC) in Tilera’s Tile multicore processor. Our apprach
uses the Tile Processor’'s hardware performance measuremen
counters (PMCs) to acquire page-level access pattern profis.
A key problem we address is imprecise PMC interrupts. Our
profiling tools use binary analysis to correct for interrupt
“skid,” thus pinpointing individual memory operations that
incur remote DSC slice references and permitting us to sampl
their access patterns. We use our access pattern profiles toide
page homing optimizations for both heap and static data objects.
Our experiments show we can improve physical locality for 5
out of 11 SPLASH2 benchmarks running on 32 cores, enabling

On processors with distributed caches, higher performance
can potentially be achieved by managing on-chip physical
locality so that data are placed in the cache banks closest to
their referencing cores. Such ban&ming optimizationsan
be controlled either in hardware at cache-block granylarit
or in software at page granularity. Hardware techniques,
which are implemented within the cache coherence protocol,
typically map the cache blocks on different banks based on
memory block addresses. Software techniques typicaly rel
on the operating system to provide homing information via
the virtual memory layer, thus enabling individual pages to

32.9%-77.9% of DSC references to target the local DSC slice.
To our knowledge, this is the first work to demonstrate page
homing optimizations on a real system.

be homed on different banks. Page-based techniques often
require profiling to determine per-page access patterns for
driving the page homing decisions. Apart from homing
optimizations, it is also possible to replicate and/or raigr
data at runtime to further improve physical localig.d, to
Practically all current high-performance commercial{gck dynamically changing access patterns).
CPUs integrate multiple cores on a single chip. Today, Several researchers have explored homing optimizations
multicore chips with 4-8 cores are commonplace. Severgh the past, with significant prior work related to both
companies have also demonstrated that it is possible tRardware cache block-based [5], [6], [7], [8], [9], [10] 11
integrate many 10s of cores on-chip [1], while others arezs well as software page-based [12], [13], [14], [15] tech-
shipping manycores [2] that run standard operating systemgiques. However, all of this prior research was conducted on
and are programmable using familiar shared memory modsimulators. To our knowledge, no study has applied homing
els. And since Moore’s law scaling will continue at historic optimizations on real processors. Such research is imputorta
rates for the foreseeable future [3], even higher core sunthecause it can highlight real-world issues overlooked by
are expected down the road. simulation studies that must be addressed before possible
A key determiner of multicore performance is the on-penefits can be realized.
chip cache. As the number of cores increases, it becomes | the past, processors did not implement distributed
necessary to introduce hierarchy or to distribute the cachgaches, so real-system studies were not possible. But this
across the chip and provide independent access to separgdeno longer the case today. For example, Tilera Corporation
cache banks in order to keep up with the on-chip parallelismpas recently shipped many-core CPUs that use a tiled CMP
A multicore in which the shared cache is distributed amongyrchitecture. In thes@ile Processorg2], the lowest level
the processor's cores is called a distributed shared cach§ cache employs a cache-coherent distributed shared cache
(DSC [4]) architecture. Memory references to such physyrchitecture. A typical Tile processor DSC is composed of
ically distributed shared caches exhibit non-uniform costg4 independent cache "slices” distributed amongst thesgore
since data placed in a cache bank close to a requesting cof@rdware maintains cache coherency and operating system
can be accessed more quickly than data placed in a distagtovide homing information. When a processor makes a
bank. Even when the caches are coherent, the cache miS@%n memory reference and suffers a cache miss, the cache
will exhibit a non-uniform cost. This can affect performanc coherency mechanism directs the miss tboae cachen
each time the distributed cache is accessed-when a  another core on the chip, thereby potentially averting élyos
miss occurs from a cache higher up in the on-chip memorff.chip DRAM access. The coherency hardware then moves
hierarchy. the referenced data automatically to the referencing sore’

I. INTRODUCTION



cache so that subsequent references may be satisfied locally
In this architecture, cache misses incur a variable cache @
access latency, making homing optimizations relevant.
This paper presents our early experience with improving
physical locality in a Tile Processor's DSC. Our work P
focuses on how to apply page-based homing optimizations
on the Tile CPU, making the following contributions. First,
we present a novel technique for acquiring fine-grain page-
level access pattern information for driving page placemen
decisions. Although only information about which threads
access which pages is needed, determining this requires pin
pointing individual memory instructions so that the memory
addresses, and hence pages, each thread accesses can be
profiled. Our solution leverages the Tile Processor's hardEigure 1. A typical Tile Processor is composed of 64 tileshezontaining
ware performance measurement counters (PMCs) to sampi@,\i/tlg:]v_v core * L1 cache, an L2 cache "slice," and an on-chip rekw
the effective addresses of individual memory instructions ] ] o ] o
PMCs enable low-overhead profiling, but they are typicallyPattern p_roﬂles were obtalngd via simulation which is slow
not designed to provide per-instruction sample resolution@"d requires architectural simulators. To enable pageebas
A key part of our solution is to use binary analysis to t_ec_:hnlques on real sy_stems{ it is cruc_lal to develop more ef-
correct the imprecise hardware samples, thus pinpointin&c'er‘t techniques. Th|s sec.tlon describes how accesqpatte
individual memory instructions that reference remoteesiic Profiles can be acquired using hardware PMCs. Section II-A
and permitting us to profile their access patterns. begm_s with an overview of the T|Ie_Processor. architecture
Second, we use our access pattern profiles to drive homir@d its PMC support. Then, Section II-B discusses the
decisions, to place the pages on the tile that accesses thdifpblem of profiling individual memory instructions, and
the most. Specifically, we try to explicitly home and improvedescrlbes how we _address the problgm. Finally, Section II-C
physical locality for pages in the heap and static datdresents the profiling system we built.
memory regio_ns. We currer!tly only optimiz_e pages that arey Tjle Processor
referenced primarily by a single core, placing them on the

DSC slice closest to the core with the most references to A_typ|cal Tile Processor, illustrated in F|gure.1, constsis
a grid of 64 general-purpose VLIW cores and interconnected

the page. Our optimizations do not allow page migration. ) . )

Instead, placement decisions made at memory allocatioRy mulpplte 2D|{nflsh onr;ch|p r(;etwlorksl. LEZaCh %or(ihh?s |tts

time are fixed for the duration of the program’s run. own private spil cache, and a loca cache that acts
as one slice of a distributed shared cache. The core and

Finally, we conduct experiments using programs from.t iated h ted to th hi work
the SPLASH2 benchmark suite [16] that demonstrate oulfs associated cache are connected to the on-chip NEWorks
through a switch. The switch, core, and cache are referred to

profiling and optimization techniques. Our results show we ; : . : o
can improve physical locality for 5 out of 11 SPLASH2 as atile. Core_s can_access_thelr chal L2 sllce_wnh minimal
benchmarks running on 32 cores, enabling 39.3%_77.90}9tency, but incur increasingly higher latencies to access
of DSC references to target the IO(,:aI DSC slice. MoreoverM°re distant L2 slices due to inter-tile communication asro
we find our homing optimizations already exploit most of tht_erlsmg:hed |ntercor|1|nect. | . hich dat

the potential physical locality in the SPLASH2 benchmarks.b '? r(;;cessorsﬂ? osvséeveri wa_ys||r:j_w ich data cabn
Significant improvements can only come by creating more € placec across the caches, Inciuding on a page-by-

. ; . age basis in which each page can be homed on any given
opportunities for homing, perhaps by addressing false-shaP ; ; _ N
ing via smaller virtual memory pages. core. This permits flexible OS-controlled distribution aita.

The remainder of the paper is organized as followss'nce our work focuses on page-based homing, we use the

Section Il presents our access pattern profiling techniqueg_":a Ft’rr]ocessors per-page rp]echanlsm texc,iluswely. .
Then, Section Ill describes how we home pages based on n the per-page approach, every viriual memory page IS

the access pattern profiles. Next, Section IV discusses Ol?I‘ShSIQned 'LS Og;m I?orfne t”ter; The home t"eﬁ I(_jZ cacrr:_e 'T
experiments. Finally, Section V concludes the paper. where cache blocks Irom Ihe page are cached on-chip. in
Section 1ll, we will discuss how software can specify the

1. ACCESSPATTERN PROFILES home for each page, thus controlling data placement on-

Software page-based techniques require access patte‘FH'p-
information to drive page homing decisions. In particular, 10 €nable measurement of low-level hardware events,
the distribution of references performed by cores on 4he Tile Processor supports 2_ 32-bit hardware performance
per-page basis is needed. In previous work, such acce§déasurement counters per tile. Each hardware PMC can
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observe one of 99 pre-defined hardware events at any Event-riggefing load—se PG;: Load rl, (12)

moment in time. These events monitor instruction execution Skid .

in the cores, memory operations in the memory hierarchy, as -

well as traffic across the on-chip network. The Tile Processo PG, Add 3, 11, 15
runs a Linux operating system which supports OProfile, a

UNIX system-level utility for accessing the hardware PMCs. il

In addition, we ported PAPI [17] and Perfmon2 [18] to the PMC interrupt ™ be, sampled

Tile Processot. These are standard APIs that export a fuller

set of PMC features to users compared to OProfile. Figure 2. Imprecise handling of PMC interrupts on the Til®d@ssor

results in sampling of the instruction dependent upon thentetriggering

B. Using PMCs to Profile Memory References load (PC?) rather than the load itseli{C).

For every page in memory, we profile the number of When a PMC interrupt is signaled, the core keeps executing.
references each core makes to the page in the DSC, thég some later time, the interrupt is actually serviced, byt b
identifying the most frequently referencing core(s) on & pe then the core may have executed past the event-triggering
page basis at the DSC level. We only profile read referencegstruction. If so, the PC sampled is not the load performing
(loads) since these are the main source of performandée DSC reference, but rather some other PC further down
degradation. (Stores write to a store buffer on a cache misghe instruction stream. Such PMC sampling “skid” is not
They do stall when a memory fence is performed, but thed problem when trying to locate the function or thread
programs we studye.g.SPLASH2, are coarse grain parallel incurring an event, but it prevents pinpointing individual
programs in which fences are very infrequent. Thereforefnemory instructions which is necessary to profile their
stores rarely stall in such programs). access patterns.

The Tile Processor's PMCs can monitor a remote-read Fortunately, it is possible to correct for sampling skid on
hardware event which is useful for acquiring access patterthe Tile Processor due to certain features of its pipelime T
profiles. A remote-read event occurs each time a core issuddle CPU employs a register file with presence bits [19]
a load instruction that misses in the local L1 cache and thethat allow execution past cache-missing loads, providing
hits in a remote L2 slice. This monitors all DSC referencessome latency tolerance. Rather than the cache-missing load
except for those issued by the core on the referenced pagestalling the pipeline, the first instruction to use the Isad’
home. To get around this problem, during profile runs, wetarget register stalls, as illustrated in Figuré I practice,
home all pages on a spare tile not running any of theve find the delay in signaling a PMC interrupt is larger
compute threads, thus forcing all DSC references to be northan the def-use distance for loads that reference the DSC
local and allowing them to be monitored by the remote-readwe observe a def-to-use of 1-20 VLIW instruction bun-
event. dles), but smaller than the latency for the remote L2 slice

While the PMCs can count DSC references, they alon&ccess. Hence, the PMC interrupt almost always samples the
cannot associate the counts to pages and cores. For thigstructiondependenon the event-triggering load.
we rely onsampling Hardware PMCs can be configured By performing dependence analysis, we can identify the
to deliver an interrupt after a pre-set number of remote-event-triggering load instruction from the sampled PCss it
read events have occurred, allowing an interrupt handler téhe first load preceding the sampled PC whose destination
periodically sample load references to the DSC. In pasicul register matches one of the sampled instruction’s source
each interrupt can identify the core performing the load registers. Usually, we encounter the event-triggering ioa
as well as the particular load instruction involvece( its ~ the same basic block as the sampled instruction. However,
program counter or PC). Moreover, given knowledge ofin some cases, the event-triggering load resides in the
the particular load being sampled, the interrupt handler cabasic block preceding the block containing the sampled
probe the register containing the load’s effective addres#istruction. To handle these cases, we perform dependence
and identify the referenced page. In this fashion, eaclnalysis across basic blocks when necessary.
interrupt/sample can attribute a single page reference to
particular core. After a large number of such samples, we ca - .
determinestatisticallythe frequency with which all pagesin  We perform two profiling runs to acquire the access pat-
a program are referenced by each core. tern profiles. The fII’SF addres_,ses the imprecise PMC interrup

One obstacle to implementing this approach is the Ti|e_0robler_n described in Section II-B. _It collects_ all of the
Processor's PMCs (as well as those on most other coniMPrecisely sampled PCs that occur in the profiled program.
mercial CPUs) does not provide per-instruction samplingThenv after this profiling run completes, we perform binary
resolution. The problem is PMC interrupts are not precise. 2It is possible that the first use does not stall if the cachesrtatency

is completely overlapped, but this is not the common case.

Q. Profiling Tools

1The latest versions of PAPI are implemented on top of Perfinon



Program Binary [1l. PAGE HOMING OPTIMIZATION

: Once the access pattern profile and malloc log have been
Oprofile acquired for a given program, subsequent executions of the
v program can use them to drive page homing optimizations.
'mg;ergipslzspc_, An;)ilr:sn} ol This section presents our optimizations. First, Sectibll
describes the access patterns that we target. Then, Sec-

BAPI Profiler Imprecise-to-Corrected tions llI-B and III-C (_axplain hoyv we drive page homing
PC Table for the heap and static data regions, respectively.

A. Optimization Opportunities

Access

Pattern mLalloc Our page homing optimization tries to home pages resid-
profile o0 ing in the heap and static data memory regions on the tiles
Figure 3. Profiling infrastructure for acquiring accesstqat profiles. where they are referenced most frequently. Currently, our

vsis t ¢ th i kid and identifv th toptimization targets pages in the access pattern profifs th
analysis to correct the sampling skid and identify the even are referenced primarily by single core Figure 4 shows

”'ggef'”tg I(?[ﬁds.' From_ th||s:’§nalytsh|st,hw_e build a tag!e thatan example access pattern profile, illustrating the differe
assoclates the Imprecise .S wi €Il colTesponaing oL ass patterns and objects we optimize.
rected PCs, along with the register containing the effectiv

: : In Figure 4, we graph the access pattern profile for a
address of the event-triggering load at the corrected PC. 16-core execution of Ocean, a program from the SPLASH?2

'I'ff_]le selgon.d prtohfl|llng rl}f? acquires th(:]actuallgccgsts patt?@enchmark suite [16]. Pages are plotted along the X-axis
profiies. buring this protiling run, €ach sampling INterupt e cores are plotted along the Y-axis. The graph plots

consglts the i_mprecise-toTcorr(_-:tcted PC table compl_Jterd fro the normalized number of samples acquired for each page
the f|rst profiling run to |Qent|fy th_e load respons[ble for from each core along the “Z-axis” (extending out of the
the interrupt as well as its effective address register. A aper). Samples that are particularly large are highligbe
discussed in Section 1I-B, the interrupt handler probes th he shaded peaks. As Figure 4 shows, the pages numbered

register to determine the referenced page, and logs tthGt 883 f d orimarilv b inale cg
sample (core ID and page number) in a profile table. At ° are referenced primarily by a single cdre.(

iy . . " at each X-axis point in this range, there is always a single
the er_ld of the second profiling run, '_[h's profile table_Wh'ChY-axis point with a dominant peak). These are the pages our
contains the access pattern profile—is output to the user.

) . . X - optimization tries to explicitly home.
Figure 3 illustrates the tools involved in profiling. We P PIcity

. - . o - In addition to identifying the pages to optimize, we must
use the OProfile utility (see Section Il-A) in its unmodified - : : ) .
form to collect the imprecise PC samples. We built our ow also identify which program-level objects the pages belong

. . ) _ No. This is particularly important for heap objects because
binary analysis tool to construct the imprecise-to-caeéc

L it determines which malloc calls must be instrumented to
PC table. This binary analyzer extracts a control flow graF.”%ontrol homing (see Section IlI-B). In practice, we find #ner

from the program binary to permit inter-basic block analysi re two different types of objects. The first is illustrated i

\t/vhen se.arcthhlng for the co::ected Pfc_is. F|\;1vally, wgfgs(je E:PPEigure 4 by pages 148-274 and 274-442 which form diag-
0 acquire the access patlern profies. Yve modiiie nal access patterns that increase in core ID with incrgasin

to download the imprecise-to-corrected PC table into thepage number. Each of these two memory regions is a single
kernel. We also modified PAPI's kernel-level PMC counter bject (in this example, they are both on the heap and each

overflow hf”‘”d'er 0 pe.rform- .the.PC sample correction ancrs allocated by a single malloc call). Due to their diagonal
load effective address identification.

o . access pattern, each object is accessed by all the cores,
In addition to profiling access patterns, we als_o log a”but most of the per-core accesses are destined to mutually

calls to malloc, the heap memory allocator. During eac_hexclusive and contiguous pages in the object. These two

malloc call, we record the call site as well as the dynami emory regions are examples distributed arrays They

Lpstanc\eleor that t::a" ﬁ'te (Irlll caése Itis execuget(:] mUItII?.Iecan be optimized by distributing their pages in chunks acros
imes). When each malloc call returns, we record the sgartin neighboring tiles to match their diagonal access patterns.

address and size of the allocated object. This information The second type of object is illustrated in Figure 4 by

allows us tp_associate pages in the access pattern pmﬁl?)%ges 106-127 and 442-883 which form diagonal access
back to individual heap objects, and to identify where (call atterns that decrease in core ID with increasing page

site and dynamig call_instance) jch(_)se Obje.CtS were createfl nper, Again, most of the per-core accesses in these two

As the_ngx_t section W'l.l show, this information can be usedmemory regions are destined to mutually exclusive and

for optimizing heap objects. contiguous pages. But instead of one object containing all
of the pages on the diagonal, each set of pages that are
referenced by the same core is a separate olijectqn the



Core IDS

Page Numbers

Figure 4. Example access pattern profile of a 16-core exatudf Ocean from the SPLASH2 benchmark suite. Page numberglaited along the
X-axis while core IDs are plotted along the Y-axis. Normatizsample count per core/page is plotted along the “Z-axistefiding out of the paper).

heap, each would be allocated by a separate malloc callhext tile—to be the ratio of the distributed array size arel th
These memory regions are examplespdi/ately accessed number of tiles in the machine times the page Si&ince
objects They can be optimized by homing all of their pageseach mspace can only support a single chunking factor, we
on the tile where most of the memory references occur. must create one mspace for every unique chunking factor

The remaining pages in Figure 4 in the ranges 1-106 anécross all of the distributed arrays in the program.

883-950 are primarily accessed by multiple cores, usually In order to select the appropriate mspace for each allo-
2 or 3. Although not shown in Figure 4, another commoncated heap object, our custom malloc function consults the
case is pages that are accessed equally by all the coresalloc log and access pattern profile acquired during the
Our optimization does not try to improve physical locality profiling runs. In particular, as the custom malloc function
for such shared pages. Instead, we simply distribute shardd called at runtime, it matches the call to its correspogdin
pages in round-robin fashion across tiles. call of malloc in the malloc log. (The custom malloc
B. Homing Heap Pages function I_<eeps trgck of the same call s_iFe and dynar_nic call

' instance information logged during profiling, as descrilmed

Page homing in the heap can be controlled via the Tilesection 11-C, to enable matching). Once the corresponding
Processor's mspace abstraction. A standard Linux parametenalloc call from the profiling run is identified, the heap ob-
mspace is a segment, with a particular homing policy fofject being allocated can be determined along with its access
all pages in the segment. By default, the heap resides in gattern. If the heap object is a distributed array or a peiyat
single mspace that homes its pages on the tile performingccessed object, then the custom malloc function allocates
the first malloc to each page. For programs in which core Qne object onto the mspace that supports the object’s access
allocates all of the heap objectse(, most of the SPLASH2  pattern. Otherwise, the custom malloc function allocates t
programs), this default policy places the entire heap @n til gpject onto a default mspace that distributes the object's
0. pages across tiles in round-robin fashion.

To improve physical locality for the different heap objects  Since our optimizations are profile-driven, their effec-
and access patterns described in Section Ill-A, we creatgyeness is sensitive to discrepancies in access patterns
multiple mspaces with different homing policies. We alsopetween the profiling and optimized runs. The chunk size
provide a custom malloc function in a separate optimizationhat each thread accesses will be different if the input
Iibrary that can select between these different mspaces, th data size Changesl In particu|ar, it may be desirable for
binding different homing policies to heap objects as theypptimized runs to use a different input problem or core
are allocated at runtime. Users need only link their prograngount compared to the profile runs. Our optimization library
against our optimization library, and provide the accesgries to compensate for changes to these two parameters. For
pattern profile and malloc log for their program to enableexample, our custom malloc function adjusts the chunking
our heap optimizations. factor for distributed arrays if array size and/or machine

For privately accessed heap objects, our optimization lisize changes from profiling run to optimized run. However,
brary creates one mspace per tile, with each mspace homingide from problem input and core count variation, we do
its pages on a unique tile. At allocation time, the customnot compensate for any other factors that may alter access
malloc function selects one of these mspaces according {gatterns at runtime, for example dynamic work distribution
the access pattern profile, thus homing the entire object ofe.g, using work queues).
the tile where most of its references occur. Our current page homing optimizations for the heap are

For heap-based distributed arrays, our optimizationfipra mostly (though not fully) automatic. As mentioned above,
creates an mspace that distributes pages across tilestso thigers must link their programs against our optimization
each portion of the distributed array resides in its refeiren
core’s local tile. To achieve the desired physical locality °The chunking factor may not be an integral number of pagegabtss

. . . . permit specifying a separate chunking factor per tile in digribution.
we set the dlstrlbutloru:hunklng factori.e., the number of This allows placement of the majority of a distributed aisaglements on
contiguous pages to place on one tile before moving onto thee optimal tile.



[ Benchmark] _input ]| Benchmark] __Tnput ] the highest level of optimization. Table | lists the bench-
FFT 24" points Ocean 1026 grid : : .
Bames 16384 bodies || Water-NS | 1000 molecules marks and the input problems we used in the experiments.
Chglesky tk17.0 ) Waéer-SP 1000 mg)lecules Unfortunately, we encountered some bugs in our page
Radix 2097152 keys|| Radiosity 7832 objects : . .
LU 1024 matrix || Raytrace | balla homing code that prevented us from running with a large
FMM input.2048 number of cores. At the time of writing this paper, we were
Table | unable to perform profiling and optimized runs on more than
SPLASH2BENCHMARKS USED IN OUR STUDY ALONG WITH THEIR 32 cores for a number of SPLASH2 benchmarks. So, we
INPUT PROBLEM SIZES only report experiments on at most 32 cores.

. » ) U For each benchmark binary, we acquire access pattern
I|bra_ry. In aqd't'on’ they must. call our library initializan _ profiles and malloc logs using the profiling tools described
routines Wh'?h requires adding 4 lines of c_c_)de to the'rin Section 1I-C. All of our profiles are acquired on 32-
program. Aside from this, there are no ad‘?"“?’”a_' SOUTC&qre executions of the benchmarks. Then, we instrument
code changes needed to apply our heap optimizations. e penchmark source codes to call our optimization library
C. Homing Static Data Pages initialization routines and to perform the homing optimiza

Unlike heap objects, static data objects are allocated glons for the static data region, as discussed in SeCtlm.”
compile time, and are bound to a particular mspace. Hencéa,nOI i-C. _Lastly, we r.e'f:‘)”?p"e _the benchmarks, linking
they are already assigned a home by the time a progralwem against our optimization library, and. run them to
begins execution. Similar to the heap, the default policy jgneasure Op“”.“zed performance. Thgse optimized runs use
to home all pages from the static data region on tile 0. the same c:_onflguratlons as the profiling runs. -

To control page homing in the static data region, we use To quantify improvements, we compare the optimized and

: : . unoptimized benchmarks. As discussed in Sections IlI-B
memory mapping and unmapping to change the homin . ; :
policy from the default policy. In particular, we identify %nd MI-C, the default homing policy places all pages in the

all pages in the static data region from the access pattergmr'?t'nag) un?pt|m|zeq lzenr(]:_h??rks on tile 0. tTO rﬁ)r.owde a
profile that are referenced primarily by a single core. Next,.e er baseline against which to compare our techniques, we
k the unoptimized benchmarks against our optimization

we copy the contents of these identified pages to an extern . L
Py hag rary, but configure the system to distribute all heap and

file. Then, we unmap the copied pages from the program’ fic dat il ith hunking fact f1
address space, and map into their place the copied data fro]sr[[ﬁ IC data pages across tles with a chunking factor ot L.
is utilizes the DSC capacity fully, but randomly distries

the external file using themap_nbi nd() system call. th hio L2 sli

Similar to mspaces, the mmapbind() system call permits palges across : eon-chip Les |ces.| q ‘

specifying a home tile for the mapped pages. Hence, thish n our results, we report sample page Teterences at
the DSC level. Since we use a sampling frequency of

permits per-page homing control. 000 ! : b ted int ;
In our current implementation, we determine the pages tJ » Sampling counts can be converted into page reference
counts (at least approximately) by multiplying by 7000.€Th

optimize in the static data region manually, and insert the lect ¢ linal f S tant. éf th
unmapping and mapping calls manually into the progran‘lSe ection of a proper sampling frequency IS important.

source code. However, due to the systematic nature of theg@mpling frequency is too small, profiling will incur large
%verhead; but if the sampling frequency is too large, less

analyses and source code instrumentation, we believe it | " ; tb led. O hoi £ 7000
possible to automate them in the future. requent events may not be sampied. Dur choice o
for the sampling frequency was determined experimentally,
IV. EXPERIMENTAL RESULTS and works well for SPLASH2 benchmarks. It may be

This section demonstrates the profiling and optimizatiore€cessary to tune this sampling frequency parameter for
techniques discussed in Sections Il and Ill, and studies th@ther benchmarks.) Lastly, we only report measurements in
potential benefits they can provide. In particular, our expe the parallel region of each benchmark. We exclude program
iments quantify the number of remote L2 slice referencednitialization, which is performed at the beginning of each
that are converted into local L2 slice references by the pag8PLASH2 benchmark on a single core.
homing optimi.zations_. We begin by discusging experimentaly Physical Locality Results
methodology in Section IV-A. Then, Section IV-B presents

our results. Table Il reports our page reference count results. In

particular, the 2¢ and 3¢ columns of Table Il (labeled
A. Experimental Methodology “Total”) report the number of sampled page references in
We conducted all experiments on a Tile Processor runningach benchmark’s profiling run that are destined to the
the Linux operating system from the Tilera MDE version heap and static data memory regions, respectively. Thés dat
2.1. To drive our study, we use the entire SPLASH2 benchshows that across our benchmarks, heap objects receive more
mark suite [16] except for volrend. We useidll e- cc (the =~ memory references than objects in the static data region,
Tile Processor’s C compiler) to compile the benchmarks with



Total Baseline Optimized Potential
H H Heap | Static H Heap | Static | % Total H Heap | Static | % Total H Heap | Static H
FFT 5376 8387 289 536 6.0% 5372 536 42.9% 5376 0
Barnes 8197 | 11324 521 711 6.3% 521 7152 39.3% 246 6920
Cholesky 37361 6735 1890 389 5.2% 1907 389 5.2% 113 2
Radix 4299 79 276 5 6.4% 3404 5 77.9% 3425 15
LU 0 2 0 0 0% 0 0 0% 0 2
FMM 19667 123 1583 9 8.0% 1583 9 8.0% 19667 1
Ocean 90703 | 26030 5400 1387 5.8% 87857 1387 76.5% 88783 0
Water-NS 543 3211 22 190 5.6% 438 190 16.7% 543 0
Water-SP 415 0 1 0 0.2% 1 0 0.2% 415 0
Radiosity 4741 1824 430 68 7.6% 430 68 7.6% 192 259
Raytrace 30750 | 14580 1796 964 6.1% 1796 964 6.1% 5 0
Table I

NUMBER OF SAMPLED PAGE REFERENCES TO THE HEAP AND STATIC DATAEGIONS IN TOTAL, THAT ARE DESTINED TO LOCALL2 SLICES IN THE
BASELINE AND OPTIMIZED BENCHMARKS, AND THAT CAN BE POTENTIALLY OPTIMIZED.

but both types of objects are important. (One case witlstatic data regions, respectively, that are referenceddy
anomalous behavior is LU which we will discuss shortly). more than half the core@.e., 16 cores) in the profiling runs.

The 4" and 3" columns of Table Il (labeled “Baseline”) Although some of these pages can still be “widely shared,”
report the number of sampled page references in the unoptive believe these sampled reference counts are a good
mized benchmarks that are destined to local L2 slices brokeastimate for the potential physical locality improvement.
down into heap and static data references, respectively. Comparing the “Potential” and “Optimized” results in
The 6" column of Table Il reports the percentage of theTable Il, we see our optimizations capture most of the
total sampled references that these baseline local refesen physical locality in the SPLASH2 benchmarkgs; many
representie. (% Total) paseline = (7;‘222igt;§2§;17 X of the optimized heap and static data counts are close to
100. This data shows the unoptimized benchmarks exhibithe corresponding potential heap and static data coumts. (I
poor physical locality. Only 5%—-8% of all DSC referencessome cases, the optimized counts are actually larger than
are to local L2 slices. In other words, more than 90%the potential counts. These are due to references destined
of DSC references must traverse the on-chip network tdo local L2 slices for pages shared by more than half
communicate with a remote L2 slice. This makes sens¢he machine.) The greatest missed potential is in FMM
because page homing in the unoptimized benchmarks ishere there are a large number of heap references none of
essentially randomized across the Tile Processor's DSC. which are optimized. There is also some missed potential in

The 7" and 8" columns of Table Il (labeled “Opti- Water-SP. But overall, our homing optimizations are fairly
mized”) report the number of sampled page references ikomprehensive.
the optimized benchmarks that are destined to local L2 These results suggest that for our optimizations to do
slices broken down into heap and static data referencesubstantially better, we must create more opportunities fo
respectively. The @ column of Table Il reports the per- homing. Comparing the last two columns against tfé 2
centage of the total sampled references that these optind 3¢ columns of Table Il, we see there is a significant
mized local references represerg—~% Total)optimized = discrepancy between the potential and total sampled refer-
(H&‘}le’jsﬁgﬁzitmzd x 100. As this data shows, our page €nce counts, especially for pages in the static data region.
homing optimizations improve physical locality for 5 bench This implies there are a large number of references to pages
marks: FFT, Barnes, Radix, Ocean, and Water-NS. In thesghared by most of the machine. Upon closer examination,
benchmarks, 39.3%—77.9% of DSC references are to locave found a major reason for this is false sharing induced
L2 slices, a 6-12X increase over the baseline. For the redy the Tile Processor’s large page size, 64 KB. We believe
maining 6 benchmarks, our homing optimizations do not findour optimizations can become more effective if page size
many pages to optimizé.¢. that are referenced primarily is reduced. For pages with false sharing, a smaller page
by a single core), so the number of localized DSC reference§ize can create more pages with low-degree sharing that our
does not change compared to the baseline. optimizations can exploit.

The remaining columns in Table Il provide insight into ~ Finally, Table II shows LU cannot be optimized because
how much of the potential physical locality in our bench- it does not exhibit any sampled references. This is due to
marks we actually exploit. Since our homing optimizationthe fact that LU performs function calls very frequentlyeTh
must place each page on a specific tile, it is only effectivecalls are so frequent that the interrupt handler skid after a
for pages that are referenced by a small number of coresemote-read event almost always straddles a function call
In particular, pages that are shared by most/all of the coreé-€. all interrupts sample the called code). Unfortunately,
in the machine are unlikely to yield any benefit. Thé”0 our current binary analysis tool cannot analyze across-func
and 11" columns of Table ”. (Iabeled “POte.ntlaln) report 4In fact, the Tile Processor's TLBs can support smaller pabas the
the number of samples destined to pages in the heap angrent 0S doesn't exploit this hardware feature.




tions, so we fail to identify any of the event-triggeringdiza [12]
in LU. We verified by hand that LU does indeed present
significant opportunities for our homing optimizations. In

. .. [13]
the future, we plan to support inter-procedure analysis |r{
our binary analysis to handle cases like LU.

V. CONCLUSIONS [14]

This paper describes our experience with page-level hom-
ing optimizations on a real system, Tilera’s Tile Processor
running a Linux OS. We show hardware PMCs can be use
to acquire page-level access pattern profiles. Moreover, we
show that binary analysis can be used to correct for intérrup
skid—due to imprecise PMC interrupts—to pinpoint indixatu
memory operations incurring remote-core references ant®l
sample their access patterns. We find our page homing opti-
mizations driven by our access pattern profiles can improve
physical locality for 5 out of 11 SPLASH2 benchmarks, [17]
enabling 39.3%—-77.9% of DSC references to target the locdl8]
L2 slice. In addition, we find our homing optimizations
already exploit most of the potential physical locality et
SPLASH2 benchmarks. Significant improvements can only
come by creating more opportunities for homing, perhaps by
addressing false sharing via smaller virtual memory pages.

(19]
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Abstract—In the quest for increasing and ever changing  Assuming identical processors, it has long been known that
functionalities, it is expected that the next generation Systems- jt may be more efficient in shared-memory multiprocessor
on-Chips (SoCs) will embed several clusters of CPUs sharing qster to schedule a task on one processor instead of an

the same memory, as flexibility is more easily realized through th 91 Si - itabl il be idle i
software. However, specialized computation engines, such asOther [9]. Since inevitably some processors will be idle in

ASIC and DSP, have a much better Mips per Watt ratio [11] at @ cluster (because of work load changes and non-uniformity
the price of no or much less flexibility. In order to try to benefit of task deadlines), a trade-off between keeping the wodkloa
from both flexibility and performance per Watt, one approach palanced among processors and scheduling tasks where they
consists of building clusters of configurable processors [24],e. run most efficiently has to be found [28]. The definition of a
processors that share a common instruction set but can be . . - h -
individually customized (usually with DSP like instructions) to Iogd balancing strategy implicitly relies on the capapilio
accelerate a given computation. Yet, such a cluster of someMigrate one task from one processor to another. However, to
processors may be underutilized because of their instruction set benefit from instruction level parallelism at a low powertgos
specificities. In order to be able to benefit from the available each cluster could be based on a set of application specific
computational power by load balancing, we propose and for- Configurable Processors.

malize a task migration framework for shared memory multiple = th lizati int of vi ASIP soluti
configurable processors platforms. With proposed load balancing rom the realization point ot view, many solutions

algorithms, we experimentally show doubled performance/cost follow the strategy of having a core instruction set and be
improvements on a shared memory cluster that includes 3 extensible with application specific instructions. These e

configurable processors. tensions can either be built automatically by profiling and
extracting from the software tasks [1], [20] or be developed
manually with compiler supports [1]. The target of these
Consumer electronics devices, such as cell phones, pertabttensions is to improvénstruction Level Parallelisn{ILP).
media-players, high definition TVs, etc, now require a conilso theThread Level Parallelisn(TLP) can be satisfied with
putational power that largely exceeds the abilities of tlestm multiprocessors [15]. These ASIP based MPSoC platforms
advanced embedded uniprocessor. To satisfy these requitrave both parallelism advantages [14] and may become a
ments, the solution of choice in the recent years has begsmwerful and energy efficient solution.
to include different kinds of processing units, MCUs, GPP, As both heterogeneity and workload balance ability are es-
DSPs,Application Specific Instruction-set Process@sSIPs) sential for future MPSoC platforms, we formalize in this pap
and so on, in the SoCs. In this approach, each processmframework which can support both configurable processing
unit is dedicated to the kind of computation it performs welunits and task migration ability. Because the key constrafin
These heterogeneous platforms, that feature high dedicatige task migration is that the system software, such as OS and
performance, acceptable programmability and good perfairivers, should be able to execute on all underlying praosss
mance per Watt, are currently the choice of the industry,[22}e assume that all processors share the same core ingtructio
[4]. However, next generation SoCs will need to be morget and register file for the system software. Beside this,
versatile, (due to the cost of masks, fast adaptation togihgn instructions and registers related to computations canthadt
standards, and expected capability to support multipléepp different for each processor, in order to provide accei@nat
tions), and thus will require to be more easily programmablor different applications. In contract to the heterogereo
In order to benefit from application level parallelism ancettd MPSoC architecture composed with multiple isolated SMP
level parallelism, mainly for power efficiency and area &husubsystems in Fig. 1 (a), Fig. 1 (b) describes a platform in
yield and again power) optimization reasons, one foredeeatvhich all ASIPs share the same memory space which includes
solution is the use of highly parallel clustered architeesy the same OS image and tasks. Therefore tasks can migrate
even for consumer electronic applications [12]. between different kinds of processors at no other cost than

I. INTRODUCTION

10



OO, 000 @@@---@@@

| | SMP Operating System with the Task Migration Framework

CPU_A CPUA |®@ @ ® | CPUN CPU_N

| Inter-Processor Communication |

| |
Shared Shared
| Memory Memory

| Inter-Subsystem Communication

(a) (b)

Fig. 1. Heterogeneous MPSoC Software/Hardware Architestu(a): the traditional MPSoC architecture based on abvsolated subsystem. (b): the
architecture based on multiple different configurable pssoes with the shared memory and coherent caches.

increasing cache misses. As an additional benefit, the taskhitectures are more simple to understand and take deci-
migration capability provides some support for fault talece, sion for, they cannot benefit from differences in applicatio
and this is an important issue with the increasing processquirements. It is currently accepted that the pure SMP
variability. solution cannot yet reach the power/performance budget of

The rest of this paper is organized as follows: section t@e integrated systems of the consumer markets, that titius st
discusses the related works. In section 3, we formalize thglies on moread-hocsolutions [19].

prOblem with both hardware and software definition for our Some recent works have focused on load ba|ancing through
heterogeneous task migration framework. Based on the formagsk migration on heterogeneous platforms. Beltetal. [7]
definitions, we get the compatibilities of processors amstt¢a consider this option theoretically while Nolletat [21] focus
which are used for several load balancing algorithms. Thg some feasibility aspects. These approaches rely on the
details of migration realization and of the load balancingefinition of checkpoints for which #&ransferablesub-state
algorithms are given in section 4. Section 5 presents expest the system is known, but do not deal with simple but major

mental results that demonstrates the feasibility of the@ah problems such as differences in endianness or word length.

and its advantages compared to fully homogeneous and fully
As there is a huge complexity gap between homogeneous
heterogeneous platforms. At last, section 6 concludes tg 9 piextty gap 9

Rd heterogeneous MPSoC, some researchers try to provide
paper and future works. a trade-off solutions which can take advantages of both. R.
Kumar etal. [16], M. Becchi etal. [6], S. Balakrishnan et
al. [5] and S. Ghiasi eal. [13] suggest to integrate several

Computation migration frameworks have been heav”y r@rocessors which implement the same instruction set bt wit
searched in the past for parallel and distributed computegéfferent costs and performances. This limited heteroijene
Smith [26] gives a survey as of 1988 of process migratiofan achieve higher performance than strict SMP with similar
defined as the way dfansferringthe relevant part of the statecosts. Based on this platform, some scheduling algoritii}s [
of a process in order to be able to continue its execution 8f¢ designed to achieve higher performance with less power
an other processor. Ignoring the low level performanceeissuconsumption.

Smith considers the problem trivial for shared memory ma- The approach we propose shares the same idea but breaks
chines. Taking an opposite view, Squillante and LazowsK [2the uniform instruction set constraint of pure SMP systems.
advocate the clever use of the affinity of a task for a prosessaSIP, introduced almost 30 years ago [30], is now a viable
in order to avoid trashing the cache while still allowingsolution. One kind of ASIPs is based on a set of well selected
migration to balance the workload. Among others, thesg/eaHasic core instructions and registers. Designers can wepro
works set the bases for process and task migration strategihe performance by adding user-defined extended instnsctio

With the advance in integration, the migration of tasks h&ommercial products such as Xtensa [1] and CoWare [2]
become again an interesting topic for SMP MPSoC architeare able to produce efficient configurable processors of that
tures. Since small processors have small caches, tasktimigrakind, along with stable cross-compilation chains. Our ey
using the first-come first served approach was considereavark [25] follows this trend and targets task migration il
good enough solution [25]. Later, Bertozziadt [8] proposed based on this kind of platforms. There is a similar work for
a task migration framework for an integrated system thgeneral-purpose computers from [18] which also realizes a
uses processor local storage for the task data. Their anlutheterogeneous architecture task migration frameworlyireda
requires the explicit copy of data at identified checkpginten the processor exception mechanism. Different from this
as in distributed systems, even though the platform featumgork, ours is based on predefined extension requirements
caches and access to shared data. Although homogendmfere binary compilation. For lack of formalization wo2&g],

Il. RELATED WORK
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o Program Status Registers which are used to store cur-
rent processor statuses and include the exception status,
D the interrupt status and so on.
o Program Stack Register which is used for the current
stack address and can be realized using one of the general
purpose registers.

Fig. 2. Instruction Set Relationship Due to the generality of operating system software, it is

possible and efficient to build a real operating system irctvhi

[18], to best of our knowledge, this paper is the first Worf(asks can migrate among multiple heterogeneously extended
' ! rocessors by using only the core instruction set and the

which formalizes a task migration mechanism based on ths

kind of heterogeneous shared memory MPSoC architectur%g.r? register file. To ensure th|s_ stringent requiremers, th
esigners should not remove critical components (such as

1. HARDWARE AND SOFTWARE DEFINITION atomic instruction, interrupt masking and handling) usgd b

. . ) . : this core instruction set and register file during the prsoes

In this section, we define formally the instruction set rela- " .. .
configuration process.

tionship and explain our formalism using a simple examplé. i ,
We also define a compatibility relationship between tasks an 2) Extended Instruction Seths we use extended instruc-

processors of one heterogeneous MPSoC platform basedtgRS t© benefit from the data and instruction level paritel
this formalism. of the applications, we define extended instruction sets and

the set relationship between them. Most extended instmsti
A. Instruction set relationship can be divided into either SIMD or MIMD instructions, both

To explain the relationship between processor instructiéRduiring independence between the parallel computations
sets and the task migration ability, we use the concise elamp Besides extended instructions, it is also often necessary t
of Fig. 2. This diagram represents the instruction setireiat €xtend the register files to improve the performance.

ship of one configurable heterogeneous MPSoC platform. In, \Very Wide Registers to improve SIMD instructions
this platform, we have 5 different kinds of instruction sets  performance, we add very wide register files to store the
which areCore, A, B, C andD. We assume that the instruction instruction operands and results.

set relationship is the same as the register file relatiprashd « Special Internal Registers which are used for some

therefore we have a single relationship. In following pante special operations such as accumulator registers for the
discuss theCore Instruction Seaind Extended Instruction Set multiply-accumulate operation.

separately. Normally, these extended instructions can be chosen by the

1) Core Instruction Set:As our work is based on config- L .
T application programmer based on the benchmark profiling re-
urable processors, a strong prerequisite is that all psocss L . X
. : . ults and the existing architecture and area/power contstra
share the same core instruction set shown in the cenijgr

of Fig. 2. Because we need to realize our task migratiEnUtomatlca”y extracting the candidate extended instoucset

. . . - rom on ifi lication is al he f fr r
framework based on this core instruction set, we define t gm one specific application is also the focus of researbljes

e . : X
. . : Oth academia and industry for a long time, see for example
following groups of instructions.

_ _ ) _ ) ~ the book by Leupers [17]. Among others, recent proposals are

« Arithmetic Logic Instructions : which are used for arith- | pg7i etal. [23], F. Sun etal. [29] and Xtensa Processor
metic and logic operations. . Extension Synthesis (XPRES) Compiler [1] are such works.

« Memory Access Instructions which are used for trans- The formalism we propose does not make any assumption

ferring data between memories and registers. on how the extended instructions are extracted, and thus the
o Program Flow Control Instructions: which are used resulting ISA can be classified accordingly.

for changing the program execution flow based on theAs both read and write of user extended registers are

processor status. ) _ crucial for the context switch and related detailed migrati
« Concurrent Access Control Instructions which are operations. we should also make sure that the extended
used to serialize requests and avoid non-coherent shairr%(ilruction sets include specific load and store instrastio

memory access cases in multi-processors execution e "access all these extended registers. In the contexedelat
ronments. functions, the extended register files used or required by th
Besides these classes of instructions, we also need {88« should be load or stored properly by using this kind of
following 4 groups of core register files for operating syste extended instructions. For example, we have the ARM [3]
realization. processor with the NEON coprocessor extension for media
o General Purpose Registers which are used for the related applications. The NEON extension integratesythirt
storage of the data and address information. two 64 bit double word registers which can only be load and
« Program Counter Registers which are used to indicate stored by using NEON extended instructions suchvadn
the current program address. andVSTn.
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3) Formal Definition: In one task migration enabled het-
erogeneous” processors MPSoC platform, we hadxe < P
different instruction sets that all include the core instion
set I.,.. and the core register fild&.,... We call S.ore =
I.ore U Reore the union of the core instruction set and core
register set. Meanwhile, we note the extended instructé&n s
as F1; and the extended register file &5%;. y) v, v

Definition 1: Sets Relationship. Processor 1 Processor 2 Processor 3 Processor 4

« For all processors in one heterogeneous MPSoC platfor] __ S®tA - B C e D
we have the instruction sdt and register fileR; defini-
tion: Fig. 3. Processors and Tasks Compatibility. All tagksand processor®;
’ . realize one ofS;, from the total instruction sef. The execution relationship
VISi<N:ILi=ELUIope is represented with connection between tasks and prosessor

VlgigN:Ri:ERiURcore

» Forall processors in one heterogeneous MPSoC platforsaph ¢ shown in Fig. 3.

We_h_a_ve.the extended instruction and register 56} Definition 2: Migration possibility of the heterogeneous
definition: MPSoCM is defined aM = (S, T, P, G).

V1<i< N:ES; =FIL,UER; « S is the set that includes all instruction sets used in one

« For all processors in one heterogeneous MPSoC platform, Q)eterogeneous MPSoC platform (the same as Definition

we have the instruction and register sgtdefinition: o
o T represents the task set which includg- tasks for

VIKi<N:S;=1LUR; = Scre UES; one application system and/z > 1. We haveT =
{T1,T5,...Tn1}. When taskl; is compiled onto one spe-
cific instruction setS;, we can represent thie compiled
for ISArelationship with the symbolt. For this case, we
S:{Sl,SQ,,SN}:{Sz:l<Z<N} haveTlL'*Sj.

P is the set of processors which includég different

processors for one MPSoC platform ang> > 1. When

processorP; realizes one specific instruction s€f, we
can present theealizes ISArelationship with the symbol

A. For this case, we havg;, A §;.

« A Bipartite Compatibility Graph G = (T, P, C) repre-
sents the compatibility relationship between edghke T
and P; € P. An edge{T;, P;} = ¢ € CC T x P. This
edgec, means task’; can be executed by processey.

Vi, 4, T; ET,PJ' eP
(T; * S) A (Pj ANS):S,CS — C(Ti,Pj)

o For all instruction sets in one heterogeneous MPSoC
platform, we have the instruction set groBpdefinition:

With these definitions, we can easily express the rela- "
tionship of Fig. 2. We note the instruction set grofp=
{Score, Sa,5B,S5c,Sp}. Because the core instruction set is
one part of each processor, we have the requirement that
for P processors in one heterogeneous MPSoC platform:
V1 <i<N,Sere CS;. Thus, for the special case of Fig. 2,
if all of ES; are not empty, we have following expressions:
Sas C Sc, Sc € Sp andSp C Sp.

B. Task compilation and migration

As extended instructions are only efficient for some specific
applications, or even more precisely for some kernels of an
application, we compile some application tasks and threadswith both Def. 1 and Def. 2, we clarify the compatibility
with the basic instruction set while some others with exéehdrelationship among instruction sets, tasks and procesbors
ones. The basic threads can be migrated for execution Big. 3, we have an example of compatibility with 4 processors
any available processors while extended application taskis and 5 tasks. So we have the task Bet {17, 7, 75,74, T5}
threads can only be executed on processors which shoatdl the relationship between tasks and instruction sets
realize this instruction set extension. In the example gf Bi {7} x Score, T2 * Sa, T35 x Sp, Ty * Sc, Ts » Sp }. Meanwhile,
as the instruction sef 4 is a subset o5 and Sp, it means we have the processor s& = {P, P, P, P} and
that S4 has less extended instructions thépg and Sp. On the relationship between processors and instruction sets
one side, if some tasks compiled $@' instruction set and use {Py A S4, P,ASp, PsASc, PyASp}. For the task compat-
instructions which do not belong t64, they are not able to ibility of this example, we have the compatibility relatsmp:
be migrated to processors only support thetype instruction C = {¢(T1, P1), c(Th, P2), c(T1, P3), c(T1, Ps), c(Ts, P1),
set. On the other side, if some tasks just useSthénstruction (75, Ps), (T, Ps), c(Ta, Py), c(T5, P2), c(T5, P3), c(T5, Py),
set, it is no problem for them to run ofic and Sp types (T4, Ps),c(Ty, Py),c(T5, Py)}.  All  these instruction
processors. This execution relationship is presentedgn3:i sets, tasks, processors and compatibility relationships

The tasks, heterogeneously extended processors and exaoel- represented by the compatibility gragh From this
tion relationship can be represented as a @wnpatibility simple example, we can clearly find tasks compiled with the
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core instruction set have the best flexibility while the mgﬁAlgorithm: _ . '
compiled with extended instruction sets can only be execute Search the queue in order to select the first task that is

by specific processors. compatible.
Performance
IV. HETEROGENEOUSTASK SCHEDULING ALGORITHMS Complexity of this algorithm iO(1).
AND REALIZATION For implementation, we have following abstract code.

As the compatibility of tasks and processors is readi;}npu'[: o
visible with our task migration framework, we now need tp A compatibility graphg = (T, P, C). _
provide a way to choose the right process and thread to reigrat A frée processor; and a task queu&gyeve in FIFO
or elect. This is the goal of our heterogeneous task schregiulj °"der-
algorithms. Based on the instruction set compatibilityesyl | OUtPUL: .
we adapt several existing task scheduling algorithms to qur !f €xist, select a compatible task for the processpr
heterogeneous MPSoC task migration framework. Becayd@plementation: _
different configured processors can execute differensetasf |1 for i = 110 [Tgucuc| in FIFO order .
tasks, our task scheduling algorithms try to utilize theeegted |2 If ¢(Tj, Fi) € C // T} is compatible withP;
instruction set advantage and trade-offs between the stgred| 3 Tj is the result and finish this scheduling process
efficiency and the execution efficiency. The formal desiip 4 end if

and realization details of these scheduling algorithmsatge |° €nd for _ .
given in this section. 6 Default idle task is the result // No compatible tasks

2) Most compatible algorithmTo fully take the advantage
A. Task scheduling algorithms of powerful extended instruction sets, we define the mostcom
patible algorithm. By using this algorithm, when a processo
is ready for new tasks execution, it iterates over the whask t
gueue and compares the CPU instruction set with each waiting
task. After the whole task queue is checked, the compatible
compatibility. In the following algorithm descriptionsoth P; task which uses the most instructions is chosen for exaeutio
*  As this algorithm emphasizes tasks using extended ingtruct

andT; are used to present this compatibility property. . X .
. o ets, in some cases, it may provide better overall perfocean
Beside the compatibility property, we also need a value %)

- . ut we should also notice that tasks compiled only with the
evaluate the efficiency of processor computation. For aTask P y

. ) core instruction set may be in a starving situation if tasks
running on a processaf;, we have the differenc®(7:, ;) making use of extension are always ready to run.

With both Def. 1 and Def. 2, for a specific procesdot
compatible tasks can be grouped into the BetvhereT; =
{T;1,T}2, ..., T;;}. Based on theompatibility graphg, there
should be an edge between edaghand’;; to guarantee the

defined as:
Algorithm :
35:, 85 € S, (T x S;) N (Pj A S;) + D(Ti, Py) = |S; — Si Search the queue and execute the most compatible| task.
Performance

This definition represents the distance between the ingins
and registers that the processéy provides and theT;
task requires. The bigger number &(T;, P;) means the For implementation, we have following abstract code.
more unused instructions provided by procesghrwhich | nput:
wastes computation ability and power. Two of the following A compatibility graphG = (T, P, C).
scheduling algorithms are designed to take account of this A free processor’; and a task qUEUE ,e.e.
efficiency problem. During the scheduling proce®g, ... is | Output:
used to defined all tasks inside the runnable queue structure |f exist, select a compatible task for the procesBar
Meanwhile, | Ty.c.c| is defined as the size of this task queu¢implementation:

1) FMFS algorithm: First Match First ServéFMFS) is |1 A empty candidate task s&..,q4idate = -
one of the simplest algorithms for our heterogeneous MPSOE forall T; € T ycue
platform. The basic idea is just add the compatible corngsai| 3 if ¢(Tj,P;) € C Il T; is compatible withP;
into the traditional FIFO like scheduling algorithms. When a //Add T} to candidate set
processor is ready for new tasks execution, it goes through Teandidate = Teandidate U Tj
the task queue and picks up the first compatible task |6 end if
execute. Though this algorithm is simple and efficient f& thé end forall
scheduler realization, it does not fully optimize for exded |7 if Teandidate # ¢
instruction sets of heterogeneous processors. With this&M) 8 choose the first (or any) task from the §eét
algorithm, tasks with smaller instruction sets generabiyeh T = min(D(T; € Teandidate, Pi))-
better execution chances which decrease the whole sysi@m elseDefault idle task is the result // No compatible ta
performance. 10 end if

Complexity of this algorithm iSO (|Tgucuel)-

ks

Uy
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3) Priority based most compatible algorithno avoid the 1) Instruction Set ldentification:As the instruction set
drawbacks of both the FMFS algorithm and the most comepresentation is important for both processors and tasks,
patible algorithm, we combine these two algorithms togeththe scheduler of the operating system should have a special
and create the priority based most compatible algorithm. mechanism to store this information. We hav8A | D to
this algorithm, we add a priority level to each task. Insteagpresent the instruction set information. Then we assigm o
of having a single task queue, we have several task queugBlU | SA | D for each processor and ofleASK | SA | D
each corresponding to a priority. This allows to limit thdor each task. The use of specific ID to indicate processor
search time and avoids the starving situation, by incrgaia instruction set differences is a method commonly used in
priority of long waiting threads. Meanwhile, for each piigr industry. As the instruction set relationship is complex in
level, we still use the most compatible algorithm to find theur platform, we would like to have theSA | D to well
best candidate for one processor. The priority level fotheacepresent the instruction set relationship. By using thiis |
task can be adjusted depending on some priority calculatibris convenient for the scheduler to handle the relatignsti
algorithms to avoid starving situation and decrease theatlve run-time environments.
system response time. The drawback of this algorithm is theln our framework, we have instruction set§

J

complex realization and the scheduler performance heav{l$;,Ss,....Sys} and the relationshipR = {95

depends on priority setting and adjustment algorithms. Sa,...,98s-1 2 Sns}. We map the instruction set to the

Algorithm : natural number set th&¥ = {1,2,...} and the relationship to
Search from the highest priority queue and execute thdit OR relationship.

best In Fig. 2, we have 4 different extended instruction sets and
compatible waiting task. the core instruction set. In Table. |, we assigned each atgghr

Performance instruction group with &it and each SA | D with a binary
Complexity of this algorithm iSO (|Tqucuel). number with bit validation for each small instruction group

For implementation, we have following abstract code.  BY using I SA_I D, we replace the complex instruction set
Input: relationship with simple bitwise operations. For each psac

A compatibility graphg = (T, P, C). sor, the@PU_I SAID .is the same as theéSA | D of the
A free processor;. pnteh regllzted.t_MeanvtvglE,lfgr eat(:jh btastI;, t'ﬁask_.ll iAE_I D
Multiple task queues Toueue 1, Touene 25 - Touene » is the instruction set SA | D used by the compiled binary.

for P queues Tovewe 1, Taueue 2 queuen} The compatibility relationship betwee6PU | SA_ | D and
n different priorities. TASK | SA | Dis also illustrated in Table. I.

Output: 2) Instruction Set Based Scheduler Realizatidhith the
If exist, select a compatible task for the processar definition of both CPU_I SA_|I D and TASK_I SA_I D, we
Implementation: use the bitwiseor operation to handle the instruction set
1 A empty candidate task S&..,qidate = . compa_tibility test. To test compatibility, we need only ghi
2 for k = 1ton // n queues with different priorities operation:
3 forall Tj € Touewe o (CPUISAID | TASK_ISA ID) == CPU_ISA ID
4 if ¢(Tj, P;) € C Il T; is compatible withP;
I Add T; to the candidate set This test only relies on simple bit and compare operations
5 Teandidate = Teandidate U T to make the computation efficient for the frequent usage
6 end if c(T;, P;) € Cin all heterogeneous task scheduling algorithms.
7 end forall 3) CPUISA ID and TASKISA ID Integration: In our
8 if Teandidate 7 ¢ task migration framework, each processor should have a
9 choose the first (or any) task from the §ét CPU_I SA_| D which presents the instruction set and register
T = min(D(T; € Teandidate; Pi))- file it realizes. In realization, we add one specific readronl
10 endif register to each processor which is hard coded to indicate th
11 end for correspondingCPU_| SA | D. The task migration framework

should access this register during all task operations.

The TASK | SA | D is assigned to each task during its
creation. We have modified the POSIX Thread standard
pt hread _attr _t structure by adding th& ASK | SA | D

To realize all discussed task migration algorithms on orieg. When a task is created with standatdhr ead_cr eat e,
heterogeneous MPSoC platform, we should well identifipis ID is transfered to the OS kernel and used for the het-
instruction sets provided by processors and used by taskeggeneous task scheduling described before and the tontex
Besides this, we also introduce three some non-realtinie taglated functions realization in the following discussion
migration. The target of these algorithms is just to show the 4) Context Related Functions RealizatioThe context
advantages of the taks migration framework. related functions for heterogeneous MPSoC platforms are

12 Default idle task is the result // No compatible task

n

B. Scheduler realization
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TABLE |
PROCESSORS ANDSUPPORTEDTASKS ISA IDENTIFICATION EXAMPLE.

Set | CPUISA_ID Compatible Task Compatible TaskSA_ID
Core 0x0000 Core 0x0000
A 0x0001 Core and A 0x0000, 0x0001
B 0x0010 Core and B 0x0000, 0x0010
C 0x0101 Core, Aand C 0x0000, 0x0001, 0x0101
D 0x1111 Core, A, B, C and D| 0x0000, 0x0001, 0x0010, 0x0101, 0x1111

more complex than for homogeneous ones. There are different
extended register file®; = FR; U R, In each processor
i, SO we need to handle these extra registBi®; in our
context related functions. In contract to loading and satpri
all extended registers during these operations, we shouid o l
touch the one used by the previous executed task and requir
by the next executed task. For example, the new contextlswitc
function should include following four steps:

29% 7%

o
(055 T
BERTEELN
[0
oot te et te e tere
1505050S505002500
05905800S850305000
] 0000000000000
R 0000000000500
KRR
= e

11%

47%

o Store all core registers to the stack of the previous 64%
executed task. (a) (b)
« Store the necessary extended registers depending on the
TASK | SA | D of the previous executed task Fig. 5. Performance difference. (a)Computation time with othlg core
- - . ’ instruction set. (b) Computation time with both core and edéehinstruction
« Load all core registers from the stack of the next executegg:
task.
o Load all necessary extended register based on the
TASK_| SA_| D of the next executed task. A. Introduction of the Motion-JPEG case study

As a processor may run a task that makes_ use of only arne Motion-JPEGis a multimedia format in which a video
subset of the extended register, we save the reg|sters(diegens_equence is separately compressed as JPEG images. In this

on the instruction set used by this task. This save actiondgse study, we realize the Motion-JPEG decoder application
feasible because the registers used by the task is a subsef;af eight initial tasks: TG, DEMUX, VLD, 1QZZ, IDCT

the processor registers and the load action is also fedsible CONV. LIBU and RAMDAé (Fig. 4)_' It wo,rks by,readin’g
the same reason. The context structure has a shared part $h§fre:a\m of JPEG images with the Traffic Generator (TG)
contains theki..,. registers, and a private part that dependgsy and writing the decoded pixels into the Random Access
on the extended registers used by the t&sk;. , Memory Digital-to-Analog Convert (RAMDAC).

Though the realization of the context related functions enak Mutek [25] is a lightweight SMP POSIX Thread compliant

the structure of each task context different depending %Berating system kernel. To adapt it to our heterogeneous

the TASK_I SA_I D, it can avoid much unnecessary StacK|aiorm. the scheduler part of this kernel is modified for
memory occupation and save the time of register operatiofSsa oqeneous MPSoC task migration requirements.
We still take the ARM [3] processor example with the NEON

coprocessor extension. As the NEON extension integratgs
thirty-two 64 bit double word registers, it should consume’
minimal 256 bytes context memory space. Besides the memonBeside system software and application software, we use
cost, loading and storing all these extra registers wastee s a heterogeneous MPSoC architecture. In this architecalire,
time and power which are important for embedded systentenfigured processors use the basic instructions of thesAten
With our task migration framework, we can fix the context sizeX2 processor. The extended instruction set compiler ard th
of the task dependent on ASK_| SA | D when created. If software compiler are also provided by Tensilica [1].
the task does not use the NEON extended instructions andifter the task profiling of the Motion-JPEG example, we
registers, the extra memory and operation time are savdd wget the left part of Fig. 5 which indicates the computation
our task migration framework. time used for each tasks based on the core instruction set.
As we focus on the application optimization, this figure
only shows the 6 software tasks, the operating system and
In this section, we introduce the Motion-JPEG exampleommunication costs are excluded to make the comparison
to present the performance, cost and power advantagesclefrer. In this figure, we find the IDCT and the YUV to
our task migration framework for on heterogeneous MPSdR®GB Converter (CONV) are two most time consuming tasks
platforms based on the same core instructions. which consume respectively 64% and 16% of CPU time. The

Heterogeneous MPSoC Architecture

V. EXPERIMENTAL RESULTS
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Fig. 4. Functional Model of the Motion-JPEG Case Study

TABLE Il
INSTRUCTIONSET AND REGISTERFILE EXTENSION

_ IDCT Core | CONV Core | Local Sched | | Local Task Scheduling | | Local Sched |
New Instructions 10 14

New Registers 4 28
Extra Gates 70,904 63,869 1 3 3
C D)

Total Gates 139,904 132,869 Simple Xtensa Bus

| Speedup Effect] 380% [ 309% | @
[ 16 ] [Memory | [ TTYs | [ RAMDAC |

. . . . Fig. 6. Motion-JPEG Case Study. This system includes the¢erbgeneous
following instruction set extension work focuses on these t processors based on the same Xtensa LX2 core instructioPmetessor A

tasks. is just the basic processor without any extended instrostiBrocessor B and

. . . C include extended instructions for IDCT and CONV sepayatel
Table. 1l shows user defined extended instruction sets for

both IDCT and CONV tasks. With extended instructions,

IDCT and CONV tasks speed up more than 3 times and tie performance and Cost Advantage
new computation times of these 6 tasks is shown at the right ofAS we know task migration can take advantage of CPU
Fig. 5. In this Figure, the circle represents 100% of theioaly idle time, we use the Motion-JPEG to show, using the same
CPU load, and the white parté7% + 11% = 58%) represent hetero e’neous MPSoC architecture, the diffe’rence in @recu
the gain in CPU load. It is obvious to identify the efficiendy o eerog '

extended instructions for real applications. With thideakve efficiency between fixed task mapping and dynamic task

. . . migration.
also give the hardware cost of these extended instructiods a The results of Table. Ill compare the performance of

registers. This information is useful to show the advantaige four different scheduling solutions. Three of them use the

gz:stssléﬂ\r?elgratlon LU S L G U RS OB L S ratgl)rchitecture presented in Fig. 6, but with different sctedu

_ _ ing algorithms. Because of flexibility, performance of both
Cache is also an important component of one MPSoC plgleterogeneous scheduling algorithms overcomes that of the

form. As different cache organizations and sizes can changggitional fixed task assignment framework. From thiséabl
the system performance, cache can also become a big p@st can easily find the performance advantage of the two
of heterogeneous platform configuration. In our experimeqhsk scheduling and migration algorithms that we propoke (a
all processors have only instruction caches which are tirggost 100% higher performance). We also show that different
mapping 4KB cache of 256 blocks of 4 words. All data acceggneduling algorithms have different performance resgits
are uncached, as the simulation platform we use does g9k particular case, the FMFS algorithm has better perfor-
support cache coherence. Because instruction cache #an gfhnce than the most compatible algorithm because it has a
show the effect of task migration, experiment results we 98fnple and efficient realization.
do not impact our experiment target which is to show the task|p contrast to these heterogeneous architectures, in ¢he la
migration advantage of heterogeneous MPSoC. column, we show the SMP architecture in which each proces-
Our heterogeneous MPSoC architecture that makes usesoff includes all extended instructions and registers. Goetp
the extended Xtensa processors and that is utilized in théh the heterogeneous architecture, the SMP architecsure
following experiments is depicted in Fig. 6. Based on thilexible and high performance. But we should also notice that
architecture, we have two different task migration frame®go the hardware cost of this SMP architecture is much higher
The traditional one is to port OS separately for each praresshan the heterogeneous one. For the performance/cost ratio
and there are no task migration and scheduling betwe@me normalize the data in Table. Ill), the heterogeneoukiarc
different processors. The fixed mapping solution is shown tacture with our task migration framework is much bettentha
Fig. 6. Our task migration framework is to let all processothie SMP one. With this case study, the migration algorithms
share the same OS image and make task migration possilike propose are better utilizing the extended instructian se
among different extended processors. and thus achieve higher performance. This result shall aot b
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TABLE Il

COMPARISON OFIDLE TIME FOR DIFFERENT SCHEDULING FRAMEWORKS BASED ON THE SAME HETEROGENEOUSARCHITECTURE

Fixed Task Assignment FMFS Algorithm | Most Compatible Algorithm| SMP Task Scheduling
Frames/second 1.44 2.88 2.70 2.88
Gates number 341,773 341,773 341,773 611,295
Normalized
Perferformance/Cost 0.50 1.00 0.94 0.56

generalized to other examples without caution. [13]

VI. CONCLUSIONS ANDFUTURE WORKS [14]
This paper has formalized a task migration framework based
on the configurable heterogeneous MPSoC architecture. Witk
the Motion-JPEG example, we show the performance/cast
advantage of our framework over existing SMP architectur[algl
and fixed task mapping framework. Meanwhile we should
also notice that though the heterogeneity property can heI9
accelerate overall system performance, a large percelmifagél ]
application tasks only rely on the core instruction set to ljes)
well scheduled among all execution units. Our formalizes ta
migration framework can make the heterogeneous architecg,lg
much more flexible for application designers than the tradi-
tional hard mapping one. In the near future, we can impro(@®!
performance analyse by using more complex benchmarks.
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Abstract—A particular value or quantity of an object or event varying inversely as a power of some of its attributes is said to follow a Power
Law. In other words, Power Laws state that a few percentage of the causes are responsible for a high percentage of the consequences. The
most famous examples are the Pareto Principle, where 20% of a nations population is responsible for 80% of that nations wealth; and the
Zipf's Law, that says that the frequency of a word on a natural language written text is inversely proportional to its rank in a frequency table.
Another interesting phenomena described by a Power Law is a forest fire caused by a lightning, where there will be few lightnings that will
cause massive destruction and many that will burn a few trees. This way, the state of a forest, composed by its fauna and flora, will change
according to each lightning. We assume that a program in execution is represented by a sequence of cache contexts, and calls and returns
represent changes between different contexts. The adaptation of a cache replacement mechanism should take into a particular context of
a program in order to improve locality, reducing the number of misses when switching contexts. With this goal, this work models the cache
memory of microprocessors as a forest, comparing the lightnings with context switches during the execution of a program. This way, it would
be possible to have a mechanism inside the microprocessor in order to better suit the replacement algorithm of the cache memory to the
new context of execution, improving the efficiency when selecting the lines to be evicted from the cache and this way improving performance.
Without any loss of generality, we employ the forest fire model to the decay functions that control the adaptivity of the Adapted-Discrete-based
Entropy Algorithm - ADEA - cache-replacement mechanism [1]. The adaptivity of the ADEA algorithm can balance between the frequency
and recency of use of the cache lines. The results show that for most of the benchmarks, the Forest Fire Switching Mechanism stays between
the best and the worst result for each of the decay functions implemented with the ADEA algorithm, showing that it is up to 46% better than
the worst ADEA configuration and up to 17% worse than the best ADEA configuration. This means that it is possible to reach a more efficient

and stable algorithm, that can be better suited for most of the common applications.

Index Terms—Locality, Processor, Cache line, Forest Fire, Power Laws, Information Entropy, SimpleScalar.

1 INTRODUCTION

According to [4], when the probability of measuring a
particular value of some quantity varies inversely as a
power of that value, that quantity is said to follow a Power
Law, stated by equation 1. Famous examples are known as
Zipt’s Law [5] or the Pareto Principle [4]. Additionally to
those examples, Power Laws can be found in physics, biol-
ogy, earth and planetary sciences, economics and finance,
computer science, demography and the social sciences. [4]
gives examples on the distribution of the sizes of cities,
earthquakes, solar flares, moon craters and wars.

p(z) = Cx~ %, with C = e°. (1)

Forest fires can also be modeled as a Power Law [4],
where there is a higher chance of having many forest fires
that will burn a few trees if compared to large forest fires
where most of the trees are burnt. The figure 1 illustrates
this idea. In this paper, large forest fires mean big program
context switches, like calls and returns, that will be reflected
in the way cache memory behaves. The forest fire mech-
anism will signalize when greater data context-switches
happen, helping the replacement algorithm to better replace
old addresses for new ones.

Each region of a program has an adequate data recency.
Based on the forest fire mechanism, we can build a mech-
anism that can set the replacement algorithm to be better

Mario D. Marino started helping with this work while working as a professor at
University of Sao Paulo and now is a doctorate student at University of Virginia.

suited to a specific region of the program, improving data
recency.

Fig. 1. Forest Fire Model - A lightning strikes a random position in
the forest, starting a fire that will cause massive destruction. Figure
taken from [4].

Assuming that a program in execution could be repre-
sented by a sequence of cache contexts, calls and returns
represent changes between different contexts. The cache
replacement algorithm should adapt itself on particular
contexts in order to improve locality, reducing the number
of misses whenever a context switch occurs. The association
between lightnings to program calls and returns represents
how the idea of Forest Fires modeled as Power Laws can
help an adaptive cache replacement mechanism to improve
its performance.

We employed the forest fire model to the decay functions
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used with ADEA - Adapted Discrete-based Entropy Algo-
rithm [1]. The adaptivity given to ADEA by the model can
balance between frequency and recency of use of the cache
lines. The results show that for most of the benchmarks,
the Forest Fire Switching Mechanism stays between the best
and the worst result for each of the decay functions imple-
mented with ADEA, showing that it is up to 46% better
than the worst ADEA configuration and up to 17% worse
than the best ADEA configuration. This means that it is
possible to reach a more efficient and stable algorithm, that
can be better suited for most of the common applications.
The major contributions of this paper are:
1) Showing how Forest Fires modeled as Power Laws
can be associated to an adaptive cache replacement
technique in dealing with big context switches;

2) Showing that the technique can be applied
with/without the source code, activated on each
call/return;

3) Evaluation of the technique on ADEA algorithm,

showing its benefits.

Section 2 describes the Adapted-Discrete-based Entropy
Algorithm - ADEA - implementation with its decay func-
tions. Then, we have section 3 which describes the For-
est Fire Switching Mechanism and implementation. The
methodology and results are presented in section 4. Final
conclusions will appear at section 5 with some ideas for
future work.

2 INFORMATION ENTROPY AND CONTROLLING
ENTROPY ADAPTATION

As explained by [1] and stated by [3], for each z; that
belongs to a language, the uncertainty measure can be
denoted by the first line of the relation 2. The discrete
entropy of a character h(z;) and the entropy of a character
sequence can be further estimated by 2:

u(w;) = —logy(p(z:)), b = {2,¢,10}
h(z;) = u(x;) * p(a;),i = {1,--- ,n} )
H(X = ;) =331 p(ws) * ula;)

2.1 Adapted-Discrete-based Entropy Algorithm

The Adapted-Discrete-based Entropy Algorithm (ADEA)
resides on an independent probability of occurrence of
addresses, modeling the working set of a program as a
sequence of addresses X = {z1,22, - ,x,}, where each
address z; is a random variable that can assume any value
in the computer address space. The cache replacement
policy computes the probability of each address that was
referenced during programs execution. This probability
p(z;) is the ratio between the number of times the address
was referenced and the total number of references on the
cache set that maps the address. With this probability, the
algorithm then computes the discrete entropy as h(z;),
described in equations 3, while the original concept of
Information Entropy would compute the uncertainty as
u(x;). This adaptation of the Information Entropy original
concept is based on a threshold parameter that avoids the

inconsistency of the probability of a very frequent access
from being 100%, which is shown in 3 below.

ts = last_cache_set_access — last_block_access(x;);
decay = 1/(log10(ts + 1) + 1);
u(x;) * p(x;) * decay

1 (u(ws) * plaz) * decay) if p(
For the standard ADEA: decay = 1;

For RRF-decay, on replacement: p(z;) = 0; if ts > 10°

if p(x;) < threshold
x;) >= threshold

®)

As explained by [1], ADEA has an ascending slope
after the probability p(x;) reaches higher values than the
threshold, which is exactly the opposite behavior than
the typical Information Entropy concept. In the case of
oddly distributed probabilities among possible values of
random variables, h((z);) declines from this threshold and
above. [1] determines empirically that the best value for the
threshold is around 0.38, where the entropy curve presents
its inflexion.

Insertion and replacement in ADEA occur in the same
position of the cache set stream. The line with the lowest
entropy value among lines currently in the cache set will
always be stored at the insertion/replacement position.
Lines with higher values of entropy will be stored at the
other end of the cache set stream.

This way, in ADEA a line is only migrated or promoted to
the protected position if it increases its entropy value, which
happens if it becomes more referenced; actually this is the
greatest dissimilarity between ADEA and LRU algorithms.
While LRU immediately inserts the incoming line at the
most protected position of the cache set stream, ADEA will
wait for more references to the same line to promote it,
relying on the probability of future references to that line.

In other words, ADEA presents a higher inertia than
LRU when promoting lines to protected regions, because
the entropy value increases only with further references.
Compared to LRU, ADEA takes longer to decide to remove
a line. There may be execution scenarios where any inten-
sively accessed line is moved to the protected position of
the cache set and after a while it does not get any further
reference. The incoming lines will present a lower entropy
than this first line for a period of time.

As described by [1], ADEA may cause a cache line to
be indefinitely in the cache, resulting in a waste of space,
which is called pinning. This can happen after a high
intense access to a particular line compared to other lines
and it is the motivation behind the decay functions.

The balance between frequency and recency is controlled
by two different decay functions [1]:

o Frequency-recency FR-decay function: relies on fre-
quency and recency to retire cache lines;
o Recency-rather-frequency RRF-decay function: priori-
tizes recency rather than frequency.
In general, ADEA will assign a discrete entropy value to
a cache line that was intensively accessed. In this case, the
line would be placed in the most protected area of the cache
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and would not be moved from there unless a new cache
line shows higher frequency of references. In this case p(z;)
is the regular probability of z; calculated by the ratio of
frequency of references for z; and number of references for
the cache set to which that block is mapped. The variable
u(z;) is the uncertainty as calculated by the equation 3
stated by [1].

FR-decay function [1] employs a combination of fre-
quency and recency of access to calculate the discrete value
of entropy. It keeps track of how far in the past the last
line reference happened relative to the last cache set access
through the time stride parameter, so that an intensively
accessed line that is stored in the most protected portion of
cache will have its discrete entropy value decreasing with
an inversion of logarithm of time 3.

RRF-decay function is intended to cover situations where
a highly accessed line was evicted from a cache due to
the decay function and later becomes referenced again by
the program. If the frequency counters are not reset in the
moment where this line is evicted, an extra-offset will be
added, pushing the line directly to a protected portion of
the cache and leveraging the history of accesses and the
newest reference. This may lead to undesirable effects such
as competition for slots in the cache and eviction of other
lines with fewer, but more recent accesses.

RRF-decay function checks if the replaced line was ac-
cessed too far in the past execution and if so, resets its
access counters and entropy value. By employing this new
heuristic on replacements, it is possible to avoid that highly
intensive accessed lines return on the protected portion of
the cache, which can be seen on equation 3.

3 FOREST FIRE SWITCHING MECHANISM

The context switches are represented by calls and returns
during the execution of a program. For every call, there’s a
possible change of the state of the cache, since patterns of
memory accesses tend to change.

As mentioned, the Forest Fire Switching Mechanism
models the cache as a forest with each line being a tree.
In this model, lightnings mean trees getting burned and
disappearing, giving place to other trees, or in the case of
caches, the burnt trees mean evicted lines and the lightnings
represent the replacement of lines.

It is expected that there will be many replacements due
to new addresses accesses, this means that there are lots
of lightnings that will burn few trees, or few isolated lines
will be replaced many times.

The performance improvement will be achieved by un-
derstanding what causes the lightnings that will destroy
lots of trees, or in other words, the context switches that
will make lots of lines to be evicted in order to give space
to new lines. The model explores these changes, helping
the replacement algorithm to select which trees, in our case
which lines should give room to new ones, lowing the miss
rate and improving overall performance.

The forest fire switching mechanism basically switches
between RRF-decay and FR-decay, using call and return
instructions to do that. This way, the replacement algorithm
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has its behavior switched to better adapt to those changes.
The return of the corresponding call leads to a similar
change, since the state tends to change again due to a
different pattern of memory accesses. We propose then
switching from RRF-decay to FR-decay and vice-versa as
the two forest fire main mechanisms.

Two models were created to deal with ADEA decay

functions:

1) RRF-FR: for this model, every time there is a call
instruction there will be a switch from the RRF-decay
function to the FR-decay, getting back to RRF-decay
when a return instruction is to be executed;

2) FR-RREF: this behaves in an exactly opposite way from
the first one, changing from FR-decay to RRF-decay
with a call and again to FR-decay with a return
instruction.

4 METHODOLOGY AND TOOLS

The SimpleScalar simulator was used to model and to eval-
uate the performance of each algorithm. All the aforemen-
tioned structures were inserted into SimpleScalar’s cache
module to support ADEA’s operation as demonstrated by
[1]. The switching mechanism was done on top of ADEA’s
implementation. We simulated a common size of L2 cache
while the L1-dcache size remained the same, focusing on
the behavior of the higher associative cache in the modeled
processor.

As in [1], we have used the OOO-core for its intrinsic
higher parallelism. Independently, as the ADEA algorithm,
the switching mechanism can also work in caches of in-
order cores.

To evaluate the technique, the SPEC CPU2000 benchmark
was used with its reference input set. For the matter of
comparison, LRU was assumed as the baseline for all the
simulations and performance comparisons. Table 1 shows
the parameters for the modeled cache.

[ Parameter [Value |

L1 I-cache [16kB; 32B line size; 4-way LRU;
L1 D-cache|16kB; 32B line size; 4-way LRU;
L2 Unified [1024kB; 64B line size; 8-way (LRU / LIP / BIP / ADEA);

TABLE 1
Cache Definition

Cache miss rate was used as the criteria to compare the
performance of the cache line replacement algorithms. All
the three implementations of ADEA were used and LRU is
the baseline for comparison purposes, since it is the most
common algorithm.

The results shown on figure 2 were obtained simulating
4 billion instructions of 18 SPEC CPU2000 programs, with
the three different ADEA default setups as presented by
[1] and the two new implementations with the Forest
Fire Switching Mechanism. The numbers presented on the
graphics cover the miss rate results relative to LRU, which
is the baseline for all the performance results. Qureshi’s
LIP and BIP [2] are also presented for comparison as in
[1], but their implementation does not carry the Forest Fire
Switching Mechanism, being the same algorithm created
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Fig. 2. Miss Rates for an L2 cache with 1024 kB.

by the author and reimplemented on SimpleScalar for this
work.

The switching mechanism was able to improve ADEA
with no decay function for the benchmarks applu, apsi,
crafty, equake, lucas, mesa, mgrid, swim and vpr while has
shown the same performance in the case of eon, fma3d,
gap, gzip and parser. The other benchmarks presented better
results with standard ADEA, even compared with FR-decay
and RRF-decay, as observed by [1].

As mentioned before, the Forest Fire Switching Mech-
anism adapts between FR-decay and RRF-decay, going
from one algorithm to the other by the trigger of calls
and returns. Compared to FR-decay and RRF-decay, the
switching mechanism was always equal or between the best
performance and the worst among these two. This is an
expected result, since both implementations of the Forest
Fire are switching between the two decay functions. It is
interesting to notice that for some benchmarks, the pairs
of similar results change in a way that we can assume that
some programs have many calls or spend more instructions
inside calls. This can be observed with crafty, gcc, mesa,
mgrid, swim, twolf and vpr that have pairs of results indi-
cating that those programs spend a lot of instructions on
calls, for example: the switch from FR-decay to RRF-decay
has almost the same results as the RRF-decay model.

The performance improvement that comes with the For-
est Fire model helps understand how the context switches
affect the behavior of the cache replacement algorithm,
since for ADEA frequency and recency are main aspects
of each decay function.

5 CONCLUSION, FUTURE WORK AND
ACKNOWLEDGEMENTS

Analyzing the behavior of SPEC CPU2000 programs when
simulating the Forest Fire Switching Mechanism with

ADEA and its different decay functions, we could observe
that those models can be improved with a change in the

way the algorithm behaves whenever a context switch oc-
curs. How to apply the model to other adaptive algorithms
is intended for the future. For ADEA we concluded that
we should not prioritize recency or frequency, but switch
between both depending on the impact of a context switch
for a specific program.

The model proposed can help us understand how to
identify important characteristics of a program during its
execution, without clues given by its source code. The
study about how the compiler can help identifying these
characteristics and leaving these clues is a subject for a
future work. Another idea is to verify the intensity of
different kinds of calls, switching between different behav-
iors according to this intensity, and not at every call as
implemented.

In order to improve the analysis, we intend to simulate
more instructions and other cache parameters, changing
size and associativity of the L2 or even a shared cache in
a CMP. With more instructions we want to see not just the
overall execution results, but to print statistics along the
simulation to better understand how the algorithm changes
itself during the switches, or in this case, calls and returns.

The authors would like to thank the feedbacks from
the reviewers, professor Jorge Kinoshita from USP for the
calls/returns idea and Maria A. G. Marino for the help
reviewing the text in english.
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Abstract — The ubiquitousness of the parallel computational
resources emerges in the rapid growing market of system-on-
chip. Both, complex and intense computations are requested for
solving the fast expanding functional spectrum of the mobile
products. The current approach is unable to provide low area
and low power solutions for the increased functional hungry. The
proposed Integral Parallel Architecture (IPA) provides >100x
increase for GIPS/Watt and GIPS/mm? than the current
structures. This new approach is based on ConnexArray™
technology, developed and tested on real chips, and on the
Bubble-free Embedded Architecture for Multithreading (BEAM)
execution. It is proposed an IP based model to manage tens of
threads and a number of execution or processing units which
starts from tens and goes up to thousands.

I. INTRODUCTION

The SoC domain is driven by two forces:

e the functional spectrum is enlarging, requesting highly
complex and high data-intense computation,

e the number of transistors per cm? of silicon increases,
while the possibility to follow this trend is limited by:

e our inability to fill up the size/complexity gap between
making and specifying (the technological developments
help us to have more transistors/die, but do not provide us
with the techniques to write down more lines of code
describing circuits with the corresponding complexity),

e  our inability to provide architectural solutions for limiting
the energy waste (only structural solutions are provided).

Our solution is based on the following main decisions:

1. To “move” the complexity from the circuit level to the
informational level, increasing the weight of embedded
computation, substituting as much as possible the ASIC
approach with programmable solutions. The functional
complexity will come mainly from programming.

2. To segregate the complex computation by the intense
computation [13], in order to optimize independently
these two too distinct forms of computation.

3. Because the resulting programmable solution will
competes with circuits - “naturally” parallel structures -
the engine must be a parallel one.

While for the initial stages of developing embedded
computation using sequential architecture was a very good
solution, in the actual stage of development parallel
computation is a must, and the main problem is: what kind of
parallel architecture is the best fit for embedded computing?
Unfortunately, the answer is: we need as many kinds as

possible, because the diversity of circuits to be emulated
efficiently requests a comparable architectural diversity.

Our proposal takes into account the forms of parallelism
which result from the most appropriate computation model to
be used as starting point for defining what parallelism means.
It is the model of partial recursive functions proposed by
Stephan Kleene [6]. Based on Kleene’s model, in [7] and [8]
is proposed a new taxonomy for parallel computation. The
taxonomy proposed by Michael Flynn [3], and the similar
ones, are somehow “artificial”, because are based on formal
constructs derived from the sequential model of Allan Turing.

II. INTEGRAL PARALLEL ARCHITECTURE

In [8] is proved that, according to Kleene’s model, the
building of a parallel model of computation can be exclusively
based on the composition rule having the form:

(X1, - Xm) = 9(ha(X4, . Xm), DX, - X))
which is a n-sized form (see in Fig. 1 its structural version)
which describes two aspects of parallelism: the synchronic
parallelism of computing n functions h;, and the diachronic
parallelism of pipelining h; with the reduction function g.

I S
h, h, h,
v v v
g
¢ f(Xes - Xm)

Fig.1. The structural representation for Kleene’s composition rule.

Five types of parallel computation can be emphasized:

e Data-parallel computation, characterized by:
hi(Xs,... Xm) = h(x), g(h(xa),...n(xm))= {h(Xa),..."(Xm)}
e Time-parallel computation, characterized by:
m=1
e Speculative-parallel computation, characterized by:
hi(xe,... Xm) = hi(x), - g(h1(x),...Am(x))= {h1(x),...Nm(x)}
e Reduction-parallel computation, characterized by:
hi(Xe,... Xm) = Xi,  f(X1,... Xm) = 9(X1,... Xm)
e Thread-parallel computations, characterized by:
(X1, Xm) = 0i(xi),  9(M1(X0),. - Nm(Xm))= {1 (X1), ... Nen(Xim) }
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Any complex embedded application requests all these types of
parallel computation.

A. Implementing IPA

An IPA is able to perform all types of parallel computation
previously listed. The computation in a system with IPA is
defined on the following data structures: scalar, vector, and
stream of scalars, and uses for defining the computation:
functions on scalars, vectors or streams (F(X,..), F(V,.),
(S, ..)) and function vectors (F = <f, .. f>).

We know that: (1) any computation can be expressed using a
combination of the following particular forms:

1. data-parallel: f(v; .. V) =V

2. reduction-parallel: f(V) = x

3. speculative-parallel:
FOO=<F1.. F>CO={F1(X) .. F, OO F=V

4. time-parallel: F(S)=<fi.Ff>([X1- X 1)=[Y1-Yn1=S ;
a stream of scalars [x;..x,] is applied to the pipe of
functions <¥,..F,>; the result stream is [y1..yn]

5. thread-parallel: f;(X1..X2)=Y1,..Fo(X1..Xp)=Yn

We make the assumption that: (2) most of the frequent
computations are performed efficiently if they are expressed
using a combination of the previously defined functions.

The assumption (2) is investigated in [9] based on [1]. The
sentences (1) and (2) propose a functional approach mixed
with a sort of RISC approach promoted starting with early
1980s. Let’s call this approach: parallel RISC.

B. Intense computing

The first four forms of parallel computation have a common
characteristic: different kinds of patterns characterize them.

1. Data-parallel: each component of the vector results from
the predicated execution of the same program.

2. Reduction-parallel: each vector component is equivalent
related to the reduction function.

3. Speculative-parallel: applies, usually, the same variable to
slightly different function.

4. Time-parallel: a pipe of functions <fy..f,> is applied to
[x1..xn] providing an efficient computation for n >>m.

In all these cases the dominant characteristic of computation is

its intensity, i.e., a big amount of data is processed or is

outputted. Therefore, both, data and program flow are highly

predictable, determining the features of the sub-architecture

we propose for performing the intense computation:

e the computation is done in a cellular structure of many
small & simple processing/execution cells [11]

e array computing is the main type of processing executed
in a linear network of cells

e the computation is a high-latency functional pipe

e  buffer memory hierarchy with out-of-core executions.

C. Complex computing

The multi-threaded computation is a form of parallelism
described by: f1(X1.Xn)=Y1, .. Fu(X1..Xp)=Yn, where each

function represents a distinct program running on distinct data.

Each of these computations is pattern-less. Therefore, we will
refer to them as the complex computing, characterized by:

e mono or multi big & complex processor organization

e multi-threaded programming model

e the computation is operating system based

e the memory hierarchy is cache-based.

Faced with intense computation, the current SoCs are
designed with few standard complex cores and/or some
specific accelerators (DSPs or specialized hardware).

D. Integral Parallel Organization

The first embodiment of a system with an IPA is the Connex
System presented in Fig. 2, where we distinguish between the
two kinds of computation, segregating them as:

e ConnexArray™: many-cell array of execution units (EU)
or processing elements (PE) for intense computations [12]

e Multi-Thread Processor (MTP) is a mono- or multi-core
BEAM processor for complex computations [2].

MTP uses one of its threads to control ConnexArray™ in
order to execute an ISA containing instructions for both,
scalars and vectors. The entire system is programmed in C++
using the library VectorC [10]. A GNU C++ compiler is
developed for the current IPA instruction set.

Multi-Threaded
Processor

/—N
N—/

ConnexArray™

1L

Interconnection Fabric

1L

Memory

= >~

e

Interface

i

Fig. 2. Integral Parallel Organization: Connex System.

While the intense computation is executed on hundreds or
thousands of cores, the complex computation accepts hardly
more than 4 cores, because Interconnection Fabric limits less
the intense computation. The data stream between Memory
and ConnexArray™ is more predictable than the data and
program streams flowing between Memory and MTP.

III. THE COMPLEX COMPUTING PART OF IPA

The complex part of the computation in Connex System is
performed by MTP. Each MTP core is able to execute up to 8
cycle-level interleaved threads. Any active thread is in
execution only if its current instruction flow can be executed
bubble free. The main effect of BEAM is the increasing of the
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effective IPC, while saving the area used for the same purpose
in the current processors by the branch predictor, superscalar
execution units, and L2 cache. Preliminary evaluations show
the increasing of performance by 2.5x — 4x, while the area of
the engine is reduced with around 60% [2].

IV.THE INTENSE COMPUTING PART OF IPA

ConnexArray™ is a cellular array which performs the intense
part of the computation [12], [13]. It is already implemented
on silicon in 3 versions. The last one, CA1024 (a SoC for the
HDTV market, running at 400 MHz, having 1024 EUs,
produced in 65 nm standard process in March 2008, see Fig.
4), has the following characteristics measured on actual chips:
e 400 GOPS (Giga 16-bit integer OPerations per Second)

e 120 GOPS/Watt and 6.25 GOPS/mm’

To Controller
Inner global loop

Reduction
network

= =\
Array of EUs

Distribution
network

10 System

From Controller

Fig. 3. ConnexArray™.

Fig. 4. CA1024.

The block diagram of ConnexArray™ is presented in Fig. 3,
where a linearly connected array of 1024 EUs receives the
same instruction for each EU. The instruction is executed in
each EU according with its own state. The reduction network,
designed for the most frequently used reduction functions
(add, max, ...), sends back to the controller the requested
data. An inner global loop, closed over the array, is used to
classify the EUs according to the selected Boolean. The 10
system works in parallel with and transparent to the main
computation.

The SoC CA1024 contains besides the 1024 EUs (60% of the
chip area) audio/video interfaces, a network of 4 MIPS and a
time-parallel unit (8 16-bit processors).

A. Basic Operations in ConnexArray™

Operations on vectors are performed in constant number of

cycles. Generic operations are exemplified in the following:

e full vector ops: {carry, v5} = v4 + v3;the
corresponding integer components of the two operand
vectors are added; carry is a Boolean vector

e Boolean operation: b7 = b3 & b5;the two Boolean
vectors are ANDed component by component

e predicated execution: vl = b2 ? v3 - v2 :
in any positions where b2 =
components are subtracted

e vector rotate: v7 = v7 >> njthe content of vector v7
is rotated n positions right

e strided load: load v5 addr burst stride;the
content of v5 is loaded from the address addr, using
bursts burst, on a stride of size stride

e scattered load: sld v3 v9 addr stride;v3 is
loaded indirectly using the address vector v9

e strided store: store v7 address burst stride;

e gathered store: gst v4 v3 addr stride; itis a sort
of indirect store.

vl;
1 the corresponding

Each cell contains two sub-cells: the scalar unit and the
Boolean unit. For input-output operations there is an 10 Plane,
distributed over the array, whose content is transferred from or
to the array’s vector memory in one cycle. On the other hand
its content is loaded from or stored to the external memory in
a number of cycles depending on the IO latency and
bandwidth (around 164 clock cycles for a 400 MHz engine
with 1024 16-bit EUs). The transfer process is transparent to
the computation.

B. VextorC: the programming language of ConnexArray™

ConnexArray™ is programmed in VectorC, a C++ language
extension [10]. The extension is made by adding new
primitive data types and by extending the existing operators to
accept the new data types. In VectorC the conditional
statements have become predication statements.

The new data primitives are, for example:
e int vector: vector of integers
e short vector: vector of shorts
e selection: vector of Booleans
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Let be the following variable declarations:
int il, i2, i3;
bool bl, b2, b3;
int vector vi1, v2, v3;
selection sl1, s2, s3;

Then a VectorC statement like: v3 = v1 + v2; replaces:

for (int i = 0; i < VECTOR_SIZE; i++)
v3[i] = vi[i] + v2[i];
and s3 = sl && s2; replaces this For statement:
for (int i = 0; i < VECTOR_SIZE; i++)

s3[i1] = si[i] && s2[i];
The scalar statement: if (bl) {i3 = il + i2}; has the
correspondent in VectorC the vector predication statement:
WHERE (s1) {v3 = v1 + v2};
replacing this nested for:
for (int i = 0; i < VECTOR SIZE; i++)
if (si[i]) v3[i] = vi[i] + v2[il;
The VectorC library is used as a programming tool for
Connex System and also as a simulation environment.

C. Computational performance

Connex Architecture implements the infrequent, complex
instructions, such as multiplication, division, floating point
arithmetic instructions using integer resources sequentially.
Thus the specific hardware requested for all infrequent
operations uses less than 10% from the total area of the array.

This mode of implementing complex operations generates a
specific mode of evaluating the performance of the Connex
architecture. Claiming the peak performance is meaningless
for our architecture, and deceitful for any kind of architecture.
Let’s take the example of peak GFLOPS claimed for a typical
general purpose processor: 2-4 GFLOPS. There are two
factors limiting the peak performance to the effective
performance: (1) the weight of float instructions in current
applications (it is maximum 24% for the most intense float
applications, while the medium weight is 18% [4], [5]), (2) the
stalls in the execution pipeline due to the various hazards
(Intel reports from 48% to 85% clock cycles as stall cycles
(see http://www.anandtech.com/print/1909)). Results:

effectiveGFLOPS = 0.06xpeakGFLOPS.

For Connex architecture the GFLOPS we claim are effective,
because the engine uses for float operations exactly as much
GOPS as the applications requests. For example, let be a 1024
32-bit cells array running at 1GHz an application which is not
10 bounded. Results peak performance of 1 TOPS. The
degree of parallelism is in the range of 30% - 90%. Let us take
60%. Then the effective performance is 0.6 TOPS. For a
medium float application results the effective performance:
162 GIPS (Giga Instructions Per Second), out of which 29
GFLOPS, and 133 GIPS in integer operations (each floating
point operation is executed in 16 clock cycles). Compared
with a standard technology, the Connex approach provides
more than two magnitude order more effective GFLOPs (from
121x to 243x).

V. CONCLUSIONS

1. The distinction between complex and intense computation
triggers an efficient segregation which allow two magnitude

orders increase for GOPS/Watt and GOPS/mm? for the intense
computation (in ConnexArray™) and one magnitude order
for the complex computation (in BEAM processor).

2. IPA expands efficiently the parallel computation at the level
of embedded computing by following the golden rule of
increasing the size of the design faster than its complexity.

3. Both, intense part and complex part of the system scales
with very small performance penalties.

4. The architectural rule of keeping the logic small & simple,
performing only frequent operations, avoids big, infrequently
used active structures.

6. Programmability deserves an increased attention for
architects also because the technological costs in nano-era
make unmarketable the pure ASIC approach.
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Confusion by All Means
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Abstract—Performance of computers is usually measured by  Similarly, John [7] argues that weighted arithmetic or har-
using benchmark suites. There has been a long debate amongmonic mean can be used to correctly represent performance.
computer architects on how to aggregate the individual program gpa shows with numerical examples that both arithmetic

results to present a summary of performance over the entire dh . ield t orderi ith .
suite. Many researchers have criticized the use of Geometric 2N NArMoONIC means yield correct orderings with respect to

Mean (GM) but SPEC continues to use it to report performance. €xecution times if these means are appropriately weighted.
Mashey [9] has strongly supported the use of GM. According She also maintains that geometric mean is not an appropriate

to Mashey, the programs in a benchmark suite like SPEC measure since it is not proportional to the execution tinfes o
are samples of some population of programs. It is important o henchmarks.

that we model the distribution of population correctly before .
calculating any statistics and making conclusions based on those On the other hand Fleming et al. [5] study all three types

statistics. Mashey also conjectures that lognormal distribution is Of mean and vote in favor of geometric mean since it always
a better model than the normal distribution for such benchmark produces consistent rank order among the machines. The most

suites. Since GM is the back-transformed average of a lognor- convincing arguments in favor of geometric mean have come
mal distribution, its use as a measure of central tendency is from Mashey [9]. He has performed detailed characterinatio

statistically correct. In this study, we evaluate the correctness . . ,
of this lognormal assumption using the large repository of of workload analysis and argues that benchmarks like SPEC’s

performance results for SPEC CPU2006 published on SPEC’s CPU benchmarks are examplesSdmple Estimation of Rel-
website. Utilizing different tests for normality, we find out ative Estimation of Programs (SERPQRE., the benchmarks
that although lognormal distribution models the performance n these suites are samples representing a population ef pro
results better than the normal dlstrlbu_tlon, there is a very large grams which might run on a particular machine. He argues
percentage of machines which are neither normal nor lognormal. . .
Our study indicates that most of the non-normality is caused by that performance of _maCh'neS on b_enc_hm?‘rks like SPEC can
small number of outliers. We study the causes of these outliers be better modeled using lognormal distribution than thenabr
and evaluate the use o€oefficient-of-Varianceto identify outliers.  distribution. Geometric Mean which is thHsack transformed
We also present some suggestions on how to deal with thesegyerage of lognormal distributiois the statistically appropri-
outliers. ate measure to be used. Also, the analysis done by Lilja and
Index Terms—Benchmark Means, Geometric Mean, Normality John [8], [7] can be considered &¥orkload Analysis With
Test, Lognormal Distribution Weights (WAWvhere the user knows exactly which programs
will run on the machine and the relative frequency/impactan
of the programs. In case of WAW analysis, weighted AM or
HM are indeed the correct measures for algebraic calcuktio
There is a long history of debate on how to summarizgs pointed out by these researchers. Most of the benchrgarkin
the performance of a benchmark suite and which mean is éfforts, however, try to do the SERPOP analysis and hence
appropriate measure of the central tendency [8], [7], [d], we’'ll deal with this kind of analysis in the remainder of the
[5], [9]. There have been strong arguments both in favor paper. We evaluate the correctness of lognormal assumption
and against the use of each type of mean. Citron et al. [ing SPEC CPU2006 data with three different tests for
present a detailed history of this discussion. In this secti normality: Lillie Test, Shapiro-Wilks Test and D’Agostino
we discuss some of the arguments made in this regard. Pearson Test. We also evaluate the effectiveness of COV in
According to Lilja [8] arithmetic mean is proportional toidentifying the outliers and present some suggestions en ho
execution time and hence is the right measure for time bageddeal with these outliers.
metrics. Lilja [8] and Cragon [3] argue that harmonic mean
should be used for rate based metrics and weighted aritbmeti
or harmonic mean should be used for time and rate based
metrics respectively if weights of individual programs are When comparing performance of machines based on the
different. Both Smith [12] and Lilja [8] strongly oppose theébenchmark results, we are actually comparing distribstioi
use of geometric mean as a measure of central tendemmtformances. It is important that we understand the nature
They show that although geometric mean produces consistehtthese distributions before calculating any statisticsl a
ordering of machines when normalized times are comparedaking conclusions based on those statistics. In case of
this ordering is consistently wrong with reference to thialto normal distributions, "mean” can be a good measure of centra
execution times of the benchmarks. Hence they conclude tkeidency. However, if the distribution is not normal therame
geometric mean is not the appropriate mean for summarizidges not give us any useful information about the central
times or rates, irrespective of whether they are normalizedtendency and we should be careful while interpreting the
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mean. Sometimes a transformation of data can yield a nornmslthe basic assumption that is put forward when making a
distribution and calculation of statistics in the transgfied statistical inquiry and is usually denoted . The validity
domain can be very useful. In the case of a benchmark suitiethe null hypothesis is tested using the statistical tdstiv
like SPEC, lognormal distribution is of particular interes calculates dest-statisticIn hypothesis testing, tregnificance
Lognormal distributionis the distribution of samples whoselevel () is the criterion used for rejecting the null hypothesis.
logarithm is normally distributed. As Mashey [9] has podhteFirst, the difference between the results of the experiraadt
out, GM can be thought of as the the back-transformed meifue null hypothesis is determined. Then, assuming the null
of a lognormal distribution hypothesis is true, the probabilifyp-valug is computed that

n n the difference can be at least as large as observed. Ipthe

GM =7, = (H xi)% = emp(l Zln(wi)) (1) Vvalueis less than or equal to the significance Igug| then

i—1 ni4 the null hypothesis is rejected. If the test shows that weilsho

i.e., if we take the mean of logarithm of all samples and th ﬁjeCt the null hypothesis, it is done in favor of alternative

back transform from logarithm, we get the geometric mea YpOtheSiS represented asf;. In our study the hypothesis
In other words if ' testing can be formalized as:

1 HO: Sanples are froma Nornmal Distribution
Ty = EZZOglofi (2) Hi: Sanples are not froma Nornmal Distribution
i=1

The three tests that we use have different ways of calcglatin
the test statistic and differ in how they quantify the ddeiat
Mean = exp(zy) = GM () of the actual distribution from a Gaussian distribution. @od

Thus it is statistically correct to use GM if the data can bdiScussion on normality tests can be found in [6]. We present
modeled using the lognormal distribution. Furthermores tift Summary of the three tests that we are using:

speedup numbers are calculated as the ratio of executien tim1) Lillie Test: This test is an adaptation of Kolmogrov-
of a program on a given machine to execution time on the ba2/irnov test with mean and variance of the normal distrisuti
machine. There is nothing in the real world that distingegsh NOt specified in the null hypothesis. This test first estimate
base machine A from any other machine B. Ratios of A/B atBe Population mean and variance from the sample data. It
just as valid as B/A. This is the real fundamental reason wien compares the cumulative distribution of samples vhien t
one has to use some metric that works that way, so that ifexpected cumulative normal distribution. The test siatisits

is 2X faster than B, B should be .5X as fast as A, which ongased on the largest discrepancy similar to KS-test, be.af
works if we take the logarithms. Arithmetic means of ratio¥ector x of samples the test statistic is given as

do not have that propert;_/, aIthough_ with small dispersions, KS = maz|SCDF(z) — CDF(z))| (4)
normal may be a good quick approximation, and the AM and

GM are close anyway. In the case of benchmark suites likhere SCDF is the empirical cdf estimated from the sample
SPEC 2006, lognormal distribution can cater for small eutli and CDF is the normal cdf with mean and standard deviation
better than the normal distribution and thus should be @&betequal to sample mean and standard deviation. We performed
model for the results. Mashey has shown with one examghis test using the il lietest () function available in
from SPEC CPU2000 results that lognormal distribution cavlatlab. We performed a two siddd | | i et est () with an
better model the data. In this paper, we utilize the basdtsesux of 0.05. The resulh returned by this test is 1 when we
available for SPEC CPU2006 from SPEC'’s website for aboaan safely reject the null hypothesis, i.e., Whengheal ue
2000 machines and test how well the normal or lognormealculated by the test is smaller than the significance lavel
distribution models the data. 2) Shapiro-Wilk Test:This test is (semi/non) parametric
analysis of variance and is useful in detecting broad range
of departures from the normality of sampled data. This st i

] ) ) considered to be more powerful in detecting the non-notgnali

~ The easiest and most obvious way of testing for normalifan, the "distance” tests like the Lillie Test. This testhown

is to draw the histogram and visually see how well thig, \york for number of samples between 3 and 5000. Most
histogram resembles the bell-shaped curve. But this is NQlinors agree that this is the most reliable test for notynali

the most accurate way of testing for normality, especialky, small to medium size samples. The test statistic for this
when the sample sizes are very small as in our case (12 daig is given as

then

A. Tests for Normality

samples for SPECint and 17 for SPECfp). With small sample n 2

sizes, discerning the shape of the histogram is a difficult (Z a; ;)

task and the histogram shape can change significantly just W= =1 )
by changing the interval width of the histogram. A better n o

way of testing for normality is to use the normality tests. We Z(Ii - )

perform three different normality tests to verify the asgtion i=1

of normality for SPEC CPU2006 results. All three tests amgherex; are the ordered sample valuespeing the smallest)
frequentist testsFrequentist tests use hypothesis testing amehda; are the constants generated from the means, variances
the decision is made usingraull hypothesisNull hypothesis and covariances of the ordered statistics of a sample of size
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n from a normal distribution. The small values of W ardognormal. In all these cases, taking logarithm made kigtos
an evidence of departure from normality. This test was alsegative, resulting in a a distribution which is flatter than
performed in Matlab withn of 0.05. a normal distribution. Figure 1(c) shows example of such
3) D’Agostino-Pearson testThis test assesses the normala machine. Results from D’Agostino-Pearson Test in Table
ity using skewnesgto quantify the asymmetry of the distri-1 for SPECint show that percentage of machines exhibiting
bution) andkurtosis(to quantify the shape, i.e, peakedness a@formal or lognormal behavior is only 13% and 19% re-
the distribution). A normal distribution is assumed to havspectively. Even with Lillie Test, which is considered the
a kurtosis value equal to 0. A higher kurtosis means thatakest, percentage of normal and lognormal machines is
the distribution is peakier and a negative kurtosis meaas tlonly 16% and 34% respectively. The percentage of lognormal
the distribution is flatter than the normal distributionsd] a machines is a little higher in case of SPECfp, i.e., 50%, 30%
normal distribution has a skew of zero. A positive skew meaa#id 25% using Lillie, Shapiro-Wilk and D’Agostino-Pearson
that there is a long tail to the right of mean and a negativerskd@ests respectively. From these results lognormal seems to b
means a tail to the left. D'Agostino-Pearson test first dateis  a better representation of distribution than normal. Ins¢he
skew and kurtosis of the sample data and then calculates heitwations GM is statistically the correct measure of cantr
far each of these values differs from the value expected avititendency. But, lognormality cannot be assumed in general as
normal distribution. Finally it calculates a single p-valbased suggested by high percentage of non-lognormal machines in
on these discrepancies. A smaller p-value means departtire results. In such situations, the results and statistiosild
from the normality. Again, we performed this test using abe interpreted very carefully.
« of 0.05.

B. Do SPEC CPU2006 results follow a Lognormal Distribu®: What are the causes of Non-normality?
tion? In order to analyze our data set, we calculated the first

We performed all three normality tests for SPEC CPU20deur moments; Arithmetic Mean, Standard Deviation, Skew
(both SPECint and SPECfp) results obtained from SPEG@&d Kurtosis. Then we performed exploratory data analgsis t
website [1]. The data used in this paper includes all thelteesthunt for the odd cases.
which were published on or before September 9, 2010. Forl) SPECint: Almost all of the machines which show the
normality-testing, we apply the tests on speedup data, i.eon-normal behavior have high standard deviation. Thi& hig
runtime on machine under test/run time on the base machitendard deviation is usually caused by presence of areputli
and for Log normality testing, we use logarithm(speedupi.daOn a detailed inspection we found that this non-normality is

Table | lists the results of normality tests. Columns lasaused by a single outlier, i.e462. | i bquant um These
beled 'normal’ and ’lognormal’ represent the number ofachines compile462. | i bquant um with -paral | el
machines which passed the normality test for speedup dfap enabled. These machines are multi-core machines and
logarithm(speedup) numbers respectively. The numbeengiwupport multiple threads, so the performance of libquardam
in the two columns are not exclusive, i.e., a machine can H#se machines shoots u52. | i bquant umis a C library
considered both normal and lognormal. The columns labeltat simulation of quantum mechanics and is easy to paradeli
"None” show number of machines which were identified aSart of the speedup also comes from the availability of 64 bit
neither normal nor lognormal. We can see that, althoudiardware since the benchmark uses 64-bit arithmetic very ex
lognormal models data better than the normal distributidansively in its algorithm [4]. In fact, all of the top 10 machs
does, the proportion of machines showing lognormal (é@r SPECint have the speedup number462. | i bquant um
normal) behavior is very small. If the sample values areeclogreater thar600. Compiler teams of most of the vendors seem
to each other, both normal and lognormal assumptions dgehave cracked this benchmark with compiler flags and cache
equally correct to model the data. When the standard dewiatimanagement instructions. They can focus on just this peatic
increases, i.e., the distributions start having a long daib  program and get very high values of GM. Thus optimizing
skew, the fit for normal distribution worsens but the lognakmfor 462. | i bquant um s just blowing the numbers away.
distribution still fits in case of small outliers. Figure 1&nows Such high numbers for one or two outliers badly wreck any
a typical example of a machine whose results (SPECInt $tatistics approach. Similar things have happened in tse pa
this particular example) show a non-normal behavior. Bat thror example, in the original SPEC89 benchmarks, cache-
logarithm of speedup numbers can be considered normalbégcking compilers achieved similar performance gains for
identified by Shapiro-Wilk test. Taking logarithm of spepdumat ri x300. It is important that we identify and isolate the
numbers decreases both skew and kurtosis and brings dudliers otherwise any statistics calculated with suchta dat
distribution closer to an ideal normal distribution. This iwill not be reliable.
typically the case with this category of machines where skew2) SPECfp: The situation in SPECfp is not very differ-
is caused by presence of a small-medium outliers. Figure 1émt. There is a high percentage of machines which show
shows an example of the second category of machines. Htte non-(log)-normal behavior. If we sort the machines with
the outlier is far away from other programs and even takirrgspect to standard deviation, we can easily find out the two
logarithm cannot reduce the skew to the desired values. outliers in non-normal machines nameh0. bwaves and

We also found very small fraction of machines (12/212%)36. Cact usADM Both these programs are compiled using
which could be modeled by normal distribution but not bnuto parallelization. The vendors are able to get very high
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Lillie Test Shapiro-Wilk Test Dagos-Pearson Test
benchmark| Total Machines| normal | lognormal | None | normal | lognormal | None | normal | lognormal | None
SPECint 2125 341 709 1415 362 526 1587 266 398 1723
SPECfp 2066 690 1469 597 696 1169 882 565 987 1057
TABLE |
RESULTS OFNORMALITY TESTS FORSPEC CPU2006
ar A
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(c) Typical machine which is Normal but not Lognormal (IBM SystX 3250 Intel Xeon X3220)

Histograms of Typical Cases from the SPEC CPU2006 C3REResults
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SPECint SPECTp

performance numbers for these programs as compared to th lognormal | non-lognormal| Tognormal | non-lognormal
other programs. In contrast to SPECint programs which are[ COV(Avg.) 041 | 157 042 ] 0.95
relatively easy to group, there is a possibility that SPEGfp TABLE II

grams need to be categorized into scalar, vectorizablepand AVERAGE VALUE OF COV FORNORMAL AND NON-NORMAL MACHINES
allelizable etc programs. Indeed, programs WKkeD. bwaves

and436. cact usADMdo begin to form a second distribution

and should be treated separately from other programs. SF

has encountered similar situations in the past. Initiatigyt

began with one single benchmark suite containing both artec

and floating point benchmarks. But as soon as they realiz - =-Lognormal

the existence of bi-modal distribution in case of integed ar 25 T Nomtognormal
floating point programs, they separated the benchmark st
into separate integer (SPECint) and floating point (SPECT
benchmarks. Similarly SPECfp programs may need to furth
get split into scalar, vectorizable, parallelizable, antmixed
together. All it takes is one likd10. bwaves to skew results 11

and badly damage the predictability. \

S,
Sa.
______
]

I1l. How TO DEAL WITH NON-NORMALITY ? g :

Although lognormal distribution is able to model SPEC200 Sample Mumber
data better than the normal distribution, it can do so only
case of small outliers. If the outliers are very far away c.
there are multi-modal dISt“bUt.lon.S’ qata Ca.‘nr_]Ot be mmﬂelﬁig. 2. COV values for Lognormal and non-Lognormal Machinesr(gles
correctly even by lognormal distribution. It is importafiat are in decreasing order of COV)
we identify these outliers and deal with them accordingty. |

this section we present our recommendations to deal with suc
situations. where non-lognormal machines showed small COV. The non-

lognormality in these cases is due to high kurtosis (more
peakier of distribution) value. This means that more bench-
marks are closer to each other. Obviously, if more benchsnark
A measure of dispersion should be very useful in identare close to each other, then GM (or any other mean) is a
fying the weird cases. It helps in quantifying the ranges am@rrect measure of central tendency and can be used safely.

confidence within which to expect most of the benchmarksligh COV value always correctly identifies the weird cases
Digital Review magazine in 1980s used to report confideneg outliers.

interval, standard deviation and variances for this puptrs
our opinion, Coefficient of Variation (COV) should even be &, |solate and treat the outliers separately
better measure than standard-deviation and variances.i€OV
defined as

Coefficient of Variation

A. Report a Measure of Dispersion

Once we have identified the outliers, we need to treat them
separately from other programs. In case of SPECint, since we
find only one outlier, it is easy to just remove it from the stat

and use the mean of remaining benchmarks. We removed the

COV is a better measure because standard deviation musPHiiers, 462. I'i bquant um from SPECint,410. bwaves
understood relative to the mean and if one is interested 33d436. cact usADM from SPECfp and ran the normality
comparing distributions with different means, co-efficiefi €StS again. Results are listed in Table IIl.
variation should be used. From the table we can see that more than 97%, 90% of the
At the moment SPEC gives just one number (GM) and @achines in both shapiro and Dagos test are lognormal for
does not provide any measure of dispersion. Although measliiteger and floating point benchmarks respectively. Thus we
of dispersion can be calculated directly from SPEC’s date@n See that after removing the outliers, the distributiam loe
a single number like COV can really alert the user aboGPnsidered as lognormal and GM can give a good measure of
weirdness of results, i.e., outliers or multi-modal disitions, Central tendency. The non-normality in the remaining cases
In fact in our results, all the machines which have co-effitie’S 9enerally due to high kurtosis value. This means that
of variance greater than 1 are identified as non-lognormal giptributions are peakier than the normal distribution aod/
all three normality tests. Table Il shows the COV of botPM (Or any mean) is a good measure of central tendency since
lognormal and non-lognormal machines in detail. We haV4 do not have any outliers.
used the results of Shapiro-Wilk test for table II.

Fig. 2 plots the COV for SPECint for both lognormal and- Use & Ranking System not just the Mean
non-lognormal machines. We can see that COV of all the A ranking system can be very useful when a user is
lognormal machines is less than 1. We found some casesnparing multiple alternative machines. Instead of jisshgl
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COV = standard_deviation/mean (6)



Lillie Test Shapiro-Wilk Test | Dagos-Pearson Tes

benchmark| Total Machines| normal | lognormal | normal | lognormal | normal | lognormal
SPECint 2125 1137 1684 2050 2112 1826 2079
SPECfp 2066 1886 2017 1782 1852 1683 1899
TABLE Il

RESULTS OF THE NORMALITYTEST AFTER REMOVING THE OUTLIERS

mean to compare the performance of machines, one can geaeral. The existence of outliers and multi-modal digtrib

a ranking system like "Borda Counts”[11]. This is a singléions can badly wreck any statistics approach. With redyiv
winner election method and has roots in French Revolution. $mall numbers of benchmarks, it is almost inevitable theteh
this method the voters rank candidates in order of preferenbe outliers, and one of the questions raised for future reBea
The Borda count selects the winner by giving each candidase how many benchmarks do you need to improve confidence?
a certain number of points corresponding to the position & measure of dispersion such as COV can be very useful in
which he or she is ranked by each voter. The person wittentifying such situations. Once an outlier or a multi-rabd
most points is declared the winner. In our context, if we amistribution is identified, one should treat the weird casay
trying to rankn alternative machines based on performance oérefully. We also advocate the use of a proper ranking syste
a benchmark suite which hams programs, we’ll run thesen instead of just the GM in order to rank order the machines.
programs on all the machines and measure their performanddso, even if a single number is extremely important, thesco
For every individual program, we compare the performance sifiould take the measure of dispersion into account in aaditi
each machine and assign points accordingly. Finally sum tof the mean as shown in equation 8. A lot of research needs
points for allm programs will decide machine’s rank amondo be done in order to find a proper ranking system and fine
the n alternatives. This type of ranking system is good, sindaning the performance score numbers like the one in equatio
one outlier does not blow away all the statistics. A machirt

has to perform consistently well in order to be declared as

winner. Thus a proper ranking system should be used when ACKNOWLEDGEMENTS
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Abstract — Most of the widely used modern benchmarks take
weeks to months to finish when executed on cycle accurate
simulators, which make it impossible to use them in pre-silicon
design evaluations. Processor designers usually rely on the short
trace of the workloads or synthetic kernels to determine design
tradeoffs. On the other hand, in the customers’ point of view, it is
impossible to run their realistic applications in the processor
design stage. The customers have to wait until the manufacturers
tape out their product, which makes it hard to choose their
system type.

In this paper, we provide an ISA independent framework to
generate synthetic benchmarks which replicate the performance
characteristics of original programs and validate them on actual
hardware by measurement. The synthetic benchmarks are
provided in a LLVM compiler’s intermediate representative
form which can be used to generate binaries of multiple target
ISAs. Runtime of the synthetic benchmarks are 10000x times
shorter than original while maintaining the performance
characteristics so that one can use the synthetic as a proxy for the
original benchmarks. The miniaturized clones are validated on a
Freescale processor.

Keywords-component; Benchmark, Synthetic Benchmark, ISA
Independent, Backend Code Generator, Pre-silicon Design Stage

L

An ideal set of benchmarks should be representative of
modern workloads to reflect the demand of current programs.
Many benchmark suites usually consist of modern workloads
that are widely-used, representative user programs. For
example, SPEC CPU 2006 suite [1] has 29 programs which
were carefully chosen from real-life applications. The programs
vary in their behavior and language to epitomize concurrent
workloads. However, it is very difficult to use these type of
benchmarks in pre-silicon design stage evaluations.

INTRODUCTION

The first challenge of using such a benchmark suite in pre-
silicon stage is its simulation time. The run time of these
programs in a real machine usually varies from few minutes to
few hours and is increased many orders when run on a
simulator. These days, modern processors have hundreds of
millions of transistors in their design. The simulators in the pre-
silicon design stage run more than 1000 times slower than real
hardware. Previous work shows that it takes months to simulate
SPEC CPU2006 workloads on a cycle accurate simulator [2]. It
is impractical and almost impossible to use benchmark suites
directly with simulators in the pre-silicon design stage.
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Another challenge of using the benchmark suite is that how
much the suite can be representative of the target application.
Even though the programs in benchmark suite are chosen to
represent modern workloads, the target application may have
its own unique characteristics that are not captured in the
benchmark suite. Also, it is beneficial to try as many systems
as possible to choose the best platform for the application.
Therefore, the best evaluation will be to directly run the target
application to assess the performance of the different systems;
especially when the application has unique characteristics.
However, many software vendors hesitate to do so since most
of their application is proprietary software. Especially for
software that requires high security, sometimes even giving out
the binary is prohibited, since there is risk of the algorithm
begin revealed by disassembling the binary.

There have been efforts to address both challenges:
simulation time reduction and creating a representative proxy
of target application. Bell et al. [3] and Joshi et al. [4] used a
technique to create an artificial loop populated with instructions
based on a set of profiled metrics of the original program. The
synthesized program was used as a proxy for the original
program to measure the performance in pre-silicon simulators.
These approaches efficiently reduced the number of
instructions and also hid the functionality of the original since
the instructions were populated in a random manner. The
approach can be used to reduce simulation time and also to
create proxies for proprietary applications. Prior research [3]
[4] showed the efficacy of the approach by generating
miniaturized clones of SPEC CPU 2000 suite in the Power
Architecture® technology Power ISA and Alpha ISA. Karthik
et al. [5] used advanced techniques based on [3] and [4] to
create clones of SPEC CPU 2006.

However, results from prior work [3] [4] [5] have a
problem in common. Their synthetic benchmarks were
generated only for a specific ISA. It is not possible to use the
synthetics in other systems that have different ISAs, which
results in lack of portability of using the synthetic benchmarks.
In early stages of designing a system for a particular purpose, it
is important to select the right hardware platform that can
satisfy the performance characteristics of the target workload.
It is desirable to be able to choose among various platforms by
comparing the performance of the target application on each.
The problem is that it takes a lot of time and effort to run the
benchmarks in multiple targets and it gets even worse when the
target processor is still in pre-silicon design stage. It is
impossible to run even one benchmark since a single run would



take months. Though pprevious synthetic benchmark
approaches efficiently addressed the execution time problem in
early design stage, the lack of portability extremely limits their
application area to very narrow space, i.e. one specific ISA for
which the synthetic code was generated.

Another limitation of previous work is that the synthetic
clones of the original benchmark were not validated on actual
hardware. All the performance comparison were done using
cycle accurate simulators. However, even if they could achieve
highly accurate results, it is still questionable whether synthetic
clone can be used as a proxy for its original benchmark on a
real hardware platform.

The first contribution of this work is to provide a
framework to generate miniaturized synthetic benchmarks that
can be used in various platforms. As opposed to prior research
[3] [4] [5], we generate the synthetic code in an abstract
assembly language format provided by LLVM [6]. By using
abstract assembly, the synthetic code is not bounded to a
specific ISA. Since the abstract assembly is in fact the
intermediate  representation (IR) of LLVM compiler
infrastructure, the synthetic code can be compiled to various
target ISAs by using backend compiler of the tool chain. This
enables to use our framework to provide synthetic benchmarks
in multiple platforms, which enables system designers to
choose most suitable hardware for their system even if the
hardware is in pre-silicon design stage.

The second contribution is that we validated the efficacy of
the synthetic benchmarks on the real hardware platform by
measurement. In this work, we used Freescale QorIQ P4080
communications processor that has an e500mc cores. The
processor is designed to serve high performance workloads
with low power envelope. The e500mc core has four
performance counters that can be configured to measure
various processor activities. We measured performance
characteristics of executions of SPEC CPU 2006 workloads
with reference input, having hundreds of billion dynamic
number of instructions. Based on the measurement, we provide
synthetic clones that have less than 1 million instructions. We
compared the performance characteristics of the synthetic
benchmarks to the original workload to validate the approach.

IL.

One of the most commonly used techniques to reduce
simulation time is sampling techniques such as [7], [8] and [9].
However, these techniques require either fast-forwarding
support from the simulator or huge checkpoint files to
reproduce the output. The problem is that it is very inefficient
to use fast-forwarding when the interval of execution of
interest is located in the later stage of the program execution.
Also, checkpoint file requires huge storage space and it is hard
to distribute to others. On the other hand, the synthetic
benchmark approach provides very small size source
code/execution file which is very efficient in run time and
storage space.

RELATED WORK

Another approach to reduce the simulation time is
benchmark subsetting [10] which selectively run a subset of
benchmark suite whose characteristics are representative of the
whole set. This approach is useful when hardware is ready and
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benchmarking can be finished in a short time. However, in pre-
silicon design stage, it is impractical to run even the subset of
the benchmark since selected programs are too big to directly
run on simulators.

The idea of using statistical simulation to guide the design
space exploration was introduced by Oskin et al. [11] and
Nussbaum et al.[12]. Eeckhout et al. [13] used the execution
frequency of the basic blocks and their transition probability to
characterize the control flow behavior of a program. Wong et al.
[14] proposed synthesizing benchmark by using the profile of
the workload. Joshi et al. [4] proposed creating synthetic
benchmarks with microarchitecture independent characteristics.
Synthetic benchmarks were generated in embedded assembly
format to precisely control the performance.

Low Level Virtual Machine (LLVM) is a compiler
infrastructure that supports multiple ISAs [6]. LLVM consists
of many modular reusable components that can be built to form
a compiler for specific targets. Its core provides source and
target independent optimization. It uses code representation
known as LLVM intermediate representation (IR) which is
human-readable Static Single Assigned (SSA) format based
assembly language. LLVM provides various optimization paths
that users can easily modify for their purposes.

I1I.

Synthetic benchmark generation has three major steps. First,
we profile the desired metrics from the original workload.
Based on the metrics, we generate ISA independent synthetic
code in LLVM IR and then generate assembly codes for the
target architectures. Finally, we compile the synthetic clone and
compare the performance with the original. Fig 1. illustrates the
flow of this framework.

SYNTHETIC WORKLOAD GENERATION FRAMEWORK

Workload \ 4
Synthetic in
LLVM IR
Profiler
Modified LLVM
Profile
v
Code \ 2 v \4
Generator Synthetic etic etic
in ISA 1 A 2 A3
Figure 1. ISA independent synthetic benchmark generation framework.

A. Profiling the Metrics

As the first step to capture the characteristics of the original
benchmark programs, we measured properties of the workloads
which are shown in Table I. These metrics are categorized into
five groups to represent the original program’s run-time
behavior. We used Freescale’s Architecture Description
Language (ADL) that models e500mc processor as a profiler.
ADL model gives functional execution of the program where



we can attach a plug-in to get the detailed information of each
instruction. Some of the microarchitecture dependant
characteristics such as branch prediction rate was measured on
Freescale’s QorlQ P4080 processor by using performance
counters. P4080 processor does not provide instruction level
granularity since we cannot read performance counters for
every instruction.

TABLE L METRICS PROFILED TO CHARACTERIZE THE WORKLOADS
# Metric Category
1 Dynamic execution frequency of basic blocks Control flow
2 Successor informatino of basic blocks predictability
3 Transition probabilities in SFG
4 Average basic block size
5 Branch taken rate for each branch
6 Instruction pattern in a basic block
7 Branch transition rate for each branch Branch
predictability
8 % Integer instructions Instruction mix
9 % Flating point instructions
10 | % Load instructions
11 % Store instructions
12 | % Branch instructions
13 | Dependency distance distribution per type of | Instruction level
instructions parallism
14 | Stride value of load and store instructions Data locality

The branch transition rate captures how quickly a branch
transits between taken and not-taken paths. It indicates how
easy or hard a branch predictor can accurately predict the
branch. A branch with a low transition-rate usually has higher
branch prediction rate since it switches direction less for a
given period of time.

Instruction Level Parallelism (ILP) is a metric to determine
the extent to which the pipeline is used waiting for data
dependency. We capture average register dependency distance
distribution for each type of the instruction. Instructions that
have immediate operand are considered having zero
dependency distance.

Data locality affects the behavior in various levels of
memory hierarchy and it has critical impact on performance of
the synthetic benchmark. We capture stride values of each load
and store instructions and synthesize ten stride values. Data
region is modeled as ten arrays in the synthetic; each stride is
used in load and store instructions to access corresponding
array to capture the characteristics such as cache hit rate in all
the levels of cache.

Since running the full-size benchmarks takes huge amount
of time even in a functional simulator, we cannot profile whole
benchmarks with ADL model. We used Freescale’s QorlQ
P4080 processor that has an e500mc core. The e500mc core
has various performance counters that we can use to
characterize the workloads. Though they do not provide
detailed profile information at a basic block level granularity,
they provide all the required metrics at a whole program
granularity. We profiled execution of SPEC CPU 2006’s
training input set with ADL model to get all the metrics in
Table 1 at basic block level granularity. Then, we profiled the
execution of SPEC CPU 2006 with reference input set on
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P4080 processor. We could not capture instruction pattern,
branch transition rate, dependency distance and stride value
information, since we were not able to read performance
counters at such a small granularity.

We used both the results from the ADL profile and the
system measurement to generate the synthetics since our goal is
to generate synthetics for SPEC CPU 2006 reference input
execution. We used all the metrics measured from the P4080
processor and missing metrics are extrapolated from profile
from the ADL model. By extrapolating, we sacrifice some
accuracy compared to prior work [5] which only used detailed
basic block level profiling for a single Simpoint. However, our
goal is to clone and to validate the performance of SPEC CPU
2006 with whole reference input run, whereas prior work [5]
cloned only a part of the workload.

B. Synthetic Code Generation

After measuring the metrics from the original benchmarks,
we parameterize the metrics that are used in the code generator
to synthetize clones. The synthetic code generator takes these
parameters to create synthetic code by the following algorithm:

1. The number of basic blocks to be generated is calculated
based on the instruction footprint (SFG information) of the
original workload.

2. The size of each basic block is determined with the help
of a random number generated based on a distribution using the
average basic block size. Profiled instruction patterns are used
to populate instructions in the synthetic basic block. When
proper pattern is not found, each instruction in the basic block
is randomly generated to match the overall instruction mix.

3. Place branch instructions in the end of the basic blocks to
bind them together. We group branches by their transition rate
and assign each of them with a register. Place a modulo
operation on each register to determine whether a branch is
taken or not. One of the branch target of the last basic block
points to the first basic block so that the whole synthesized
blocks form a single loop.

4. Using the dependency distance distribution for each of
the instruction types, each instruction in each basic block is
assigned with a producer instruction for each of its operands
within the loop. If these producer consumer instructions are not
compatible with each other, the algorithm moves up/down one
or more instructions until it finds a matching producer for each
instruction.

5. Four to eight arrays with size of 40 MB to 80 MB is
created to model data segments of the workload. Each of the
load/store instructions is configured to have a stride value and
assigned to an array. Higher cache miss rate is modeled as a
larger stride value to create larger footprint in a given period.

6. Address generating instruction for each load and store
instructions are populated. The address of the arrays are
incremented by assigned stride value so that the arrays are
accessed linearly in execution time.

7. The synthetic code is generated in LLVM IR form which
is a Static Single Assignment (SSA) based representation. By
using LLVM IR, the synthetic code is not bounded to a specific



ISA, but still be able to represent expressions in a higher level
language. The generate code can be compiled in various ISAs
by using LLVM’s backend compiler.

8. Synthetic code is compiled with modified LLVM’s
backend compiler to generate assembly code for targeted ISA.
Since the synthetic code does not contain any functionally
meaningful code, some results from the instructions are not
used. These instructions are eliminated in normal LLVM.
However, since we need all the instructions to match the
performance of the original, we modified the optimization path
in LLVM to generate every instruction we synthesized.

C. Validation of the Synthetic Clone

After all the steps are over, the final output is assembly
code for the target architecture. We can generate multiple
assembly codes if we are to evaluate the synthetic in multiple
platforms. We compile the synthetic assembly file with target
architecture’s general compiler. The synthetic binaries are
executed in either simulator of the target system or directly on
hardware.

The final synthetic clone is configured to have around 300
thousand dynamic instructions which can be run in a few
seconds even in performance model simulators. The results in
terms of various performance metrics are compared to that of
the original workloads.

IV. EXPERIMENTS AND RESULTS

We compiled SPEC CPU 2006 suite for Power ISA to run
with e500mc core that has a 32 KB Instruction and Data L1
Cache and a private 128 KB L2 Cache with 2GB of DRAM
memory. We used gcc-4.5 to compile the binaries and ran them
on the Freescale QorlQ P4080 processor with Linux 2.6.1
kernel. We measured performance with performance counter
monitoring program to get the performance characteristics.
Since the synthetic benchmarks have small number of dynamic
instructions, we averaged ten measurement. Since the QorlQ
P4080 processor and its infrastructure are optimized to run
communication applications, not all of the SPEC CPU 2006
benchmarks can be run on it. We were able to successfully
compile and run 19 benchmarks from the suite. Some of results
are normalized since the purpose of this work not to show the
performance itself but to show comparison between the
original and the synthetic workloads.
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Figure 2. Basic block size comparison of SPEC CPU 2006

Fig. 2 shows the basic block size comparison between the
original and the synthetic benchmarks. Some benchmarks with
large basic block size have higher error, due to the fact that
when the code generation algorithm cannot find compatible
dependency for instructions, it reduces the size of the basic
block and tries to match dependency. Also, some of the
instruction patterns captured by running training input does not
appear in the reference input execution or does not have same
execution frequency. However, our instruction populating
algorithm prioritize training input data, there are some
discrepancy in basic block size. Floating point benchmarks
have larger basic block size and smaller number of total
number of basic blocks, thus they are more sensitive to such
eITors.

m Orig
[ Synth

bwaves
caleulix
gamess
GemsFDTD
leslie3d
namd
omnetpp
sjeng
soplex
tonto
zeusmp

Figure 3. Normalized branch prediction rate comparison of SPEC CPU 2006

In Fig. 3, normalized branch prediction rate is shown. The
numbers in the figure are normalized to the highest branch
prediction rate of the original benchmark. Average error in
branch prediction accuracy is 7.5% with a maximum error of
26.4%. High error occurs in GemsFDTD, lbm and leslie3d
which have small number of integer instructions. The model
requires integer instructions to bookkeeping addresses of data
access and modular operation of branches. However, when the
portion of integer instructions in the original workload is small,
the model finds it difficult to generate all the necessary
operations. We prioritize the instruction mix in the model, thus
we reduce the number of bookkeeping instructions when a
workload does not have enough number of integer instructions.
It can be noted that benchmarks with higher error belong to the
floating point category and reduced bookkeeping information
results in high error in branch prediction rate.
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Figure 4. DL1 hit rate comparison of SPEC CPU 2006



Fig 4. shows the DL1 hit rate comparison between the
original and the synthetic benchmarks. The average error is
3.8% and the maximum error is 24.1%. The benchmark bm
has highest error due to its lack of integer instructions as
discussed in the previous section. The model normally
maintains ten stride values for load and store to capture the
memory access behavior. However, Since when modeling lbm,
the number of strides was reduced to 4 and memory access
patterns were not precisely captured.

The benchmark mcf also has high error because the original
workload has very large memory footprint. Henning [15]
characterized memory footprint of SPEC CPU 2006 and found
that mcf has stable resident set size (allocated physical
memory) of 844 MB and virtual set size (total address space) of
845 MB, which means that mcf has very large memory
footprint and it accesses all the memory regions throughout its
execution. Our framework models the data area as four to eight
linear arrays and each of the footprint for the array is 40 to 80
MB. Mcf has seven arrays with size of 80 MB where the total
footprint size is smaller than the original. It is not only the
footprint, but also the memory access pattern that contribute to
the error. We are using a linear access model, where the
load/store instructions access the addresses in a linear fashion,
increasing by their corresponding stride values. This kind of a
stride based access behavior causes cache misses in the
memory hierarchy, which we use to control the cache miss rate.
To achieve high cache miss rate, the stride needs to be very
large so that memory accesses result in cache misses. However,
the size of array is limited and the stride need to be bounded to
prevent overflow, which adds a lower limit to the cache hit rate
in the synthetics.
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Figure 5. Normalized IPC comparison of SPEC CPU 2006

Fig. 5 shows normalized IPC comparison between the
original and the synthetic clones. The numbers are normalized
to the highest IPC of the original program. The average error is
37.9% with maximum of 212%. The high errors in IPC mainly
occur where the originals have very low IPC around 0.2, which
is mainly caused by high DL2 misses and memory load
dependencies. Total number of DL2 misses are relatively small
and their impact on performance is usually minimal. However,
some benchmarks have significantly high DL1 miss rate which
causes high DL2 miss rate as well. In that case, access latency
to the main memory causes significant IPC drop in the
workload, which are not accurately captured in the synthetics.
IPC of the synthetic benchmarks are higher than the original for
those kind of workloads.
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Some benchmarks have pointer-chasing operations that
cause very high latency in some benchmarks since load
instructions have to wait for another load instructions that
causes whole pipeline being stalled. However, we have not yet
modeled them because memory contents in the synthetic is not
initialized, thus using uninitialized value causes segmentation
fault in run time.
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Figure 6. Normalized cycle comparison of SPEC CPU 2006 (Measured

cycles shown on Y-axis in logarithmic scale)

Synthetic benchmarks consist of 300 thousand instructions
in average and we can achieve significant speed up by using it.
Fig. 6. shows normalized cycles to finish the workloads in
logarithmic scale. In average, synthetic benchmarks can
achieve a speedup of 880,000 in terms of their execution cycles.
Such significant speed up well meets the goal of reducing
simulation time.

V.

Since our model has some limitations to cloning
complicated workloads, in this section, we further discuss how
to improve the accuracy of the synthetics.

FUTURE WORK

Most of the error comes from the memory access modeling.
The model assumes a linearly increasing data address but it
does not correctly capture a high miss rate behavior since the
stride value is limited to prevent out of bound array access. One
way to solve the problem is to make circular memory access
pattern. As the synthetic code is forming a loop, we can place
instructions to reset the pointer of the array at the end of the
loop. By doing so, we can safely use larger stride values to
reproduce high cache miss rates.

One of the major goal of this framework is designed to
deliver ISA independent synthetic benchmarks. We validated
the efficacy of the framework on Power Architecture
technology, but this framework can be used in other platforms
as well. We are in the process of creating synthetic benchmarks
in other ISAs and validating in different platforms.

VL

In this paper, we proposed a framework that can generate
ISA independent synthetic benchmarks. Our framework is able
to provide miniaturized synthetic clones to various platforms
where running the original workload would take prohibitive
execution time.

CONCLUSION



We evaluated the performance of the generated synthetics
by using Freescale QorlQ P4080 processor. The clones of
SPEC CPU 2006 suite achieved a speedup of 5 orders of
magnitude with an average IPC error of 38%. Further reduction
in error is in progress.
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Abstract—Design exploration using full simulation of
industry standard benchmark (e.g., SPEC CPU 2006
benchmarks) takes long time. The major concern in
today’s microarchitecture design is reducing simulation
time. In this paper, we propose the methodologies to select
a single representative simulation point using performance
metric-based similarity: (i) instruction mix based simpoint
ranking; (ii) metric-based similarity rank using Borda
count. We find that the selected single simpoints from the
proposed ranking methods show less error rate than the
existing single simpoint method.

1. Introduction

Early-stage design exploration requires the detailed
simulation, which is executing real world applications on a
cycle-level microprocessor simulator. The real world
applications are represented by industry standard benchmarks
like SPEC CPU 2006 which are called workloads. However,
the full simulation of SPEC CPU 2006 benchmarks takes
several weeks to months to complete. This problem has
motivated several research groups to come up with
methodologies to reduce simulation time while maintaining a
certain level of accuracy.

Various techniques have been proposed to reduce the
simulation time of SPEC CPU 2006 benchmarks [1][4][5].
Among the various techniques to reduce the simulation time, a
tool called Simpoint [5] which is based on statistical sampling
is popularly used. Simpoint tool employs offline phase classify
cation algorithm which calculates the phases for a
program/input pair, and then chooses a single representative
from each phase and estimates the remaining intervals. The
tool chooses this representative for each phase by finding the
interval closest to the cluster’s centroid using a technique
called k-mean clustering. In this paper, we use a standard
single simulation point which is extracted from the Simpoint
tool that will provide the representative workload as the
method of comparison to our method of finding the
representative workload. The basic drawback with single
simpoint method can be seen in Figure 1, where a standard
single simulation point (right-most bar) does not have the
lowest error rate to full simulation results. Figure 1 shows the
percentage error to the full simulation result with respect to
IPC. Some simulation points such as sO, s2, s3, s5, and s11
show better accuracy than standard single simulation point
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(right-most one). On the other hand, s11 shows the smallest
difference (1.7%) while s8 shows the biggest difference
(339.3%). Each individual point has its weight information
(from the SimPoint tool) which is used for calculating overall
metric value with multiple simulation points. In this case,
fortunately, s8 has small weight (0.2) which means their impact
to overall performance from multiple simulation points is not
remarkable. On the other hand, the overall IPC value using
multiple simulation points with weight information shows
12.1% error rate to full simulation result. Performance
evaluation with standard single simulation point is so closed to
the result with multiple simulation points, but it is not the best
choice for all metrics.

50%

40%

30%

20% -

10% -

0%

Figure 1: Error rate of IPC: individual simulation points vs. single
simulation point (reference: full simulation)

In this paper, we propose the statistical methodologies to
select a single representative simulation point through the
analysis of metric-based similarity and the workload
characterization of each individual simulation point. A single
simpoint helps in reducing simulation time since it represents
the program and leads to faster design cycle. As shown in
Figure 1, individual simulation point shows totally different
similarity to full simulation result, even though each simulation
point is a representative interval having phase information.
Two bottom lines of our approach include: (i) architectural
behavior of the application is based on probabilistic distribution
of instructions as modern computers are instruction-based
operation. (ii) Architectural behavior of the application can be
expressed as a combination of several performance metrics.

2. Related Work

There have been extensive works to reduce the simulation time
in microprocessor design [12][13][14][15]. KleinOsowski et al.
[10] proposed a method to reduce the simulation time of the



SPEC CPU 2000 benchmark suite by using the reduced input
data sets. They propose to use small input data sets called
MinneSPEC that reflect the behavior of the full input data sets
instead of using the reference input data sets provided by
SPEC. Eeckhout et al. [16][17] present their analysis results on
the impact of input data sets on program behavior using PCA
(principal components analysis) and cluster analysis.
Phansalkat et al. [8] studied the redundancy of SPEC CPU
2006 benchmark suite based on principal component analysis.
Main idea is that SPEC CPU 2006 is biased to some of the
applications and simulation time can be reduced by taking
benchmarks that are specific to an application. Wunderlichet
et. al. [14] explains about SMARTS, a trace sampling
technique for reducing runtimes in simulators but executions
still need to handle tens of millions of instructions. PIN tool
from Intel [4][15] is also used for solving the problem of long
simulation time.

3. Methodology

All the simulations were performed on Intel Xeon processors
with a Red Hat Linux operating system. In our experiment, we
use both SimPoint [5] and SimpleScalar [21], and performed
our simulation with SPEC CPU 2006 Alpha binaries. In order
to perform simulation only at the simulation points (which are
collected from the Simpoint tool), number of instructions in
the program needs to be fastforwarded. Sim-Outorder, which
gives a complete report of all the architectural metrics (e.g.,
cache miss, IPC, power, etc.), is employed throughout this
paper for performing the simulations on all the benchmarks
[21]. In this paper, we use only 6 benchmarks due to long
simulation time needed which is required for full simulation of
benchmarks. As a reference to our proposed methods, standard
single simpoints are collected from the Simpoint tool with
maxK = 1 in K-mean clustering. The number of simpoints
generated depends on the value of maxK. For multiple
simpoint generation, we use maxK = 30.

4. Single Representative Simulation Point

In this paper, two methods have been proposed for finding a
single representative simpoint that approximates the full
simulation more closely as compared to the traditional
standard single simpoint.

4.1 I-Mix based single representative simpoint

In general, architectural behaviors depend on the dynamic
behaviors of individual instructions in a given workload.
Among the instructions, load, store and branch operations tend
to have strong impacts to the performance and workload
characterization. Figure 2 shows the distribution information
of three types of instruction with general-purpose workloads,
SPEC CPU 2006 [1]. Considering its significant feature of
instruction distribution, it would be a good criterion while
choosing appropriate simulation points. We employ the
instruction mix information based on the similarity to that of
full simulation. I-mix based analysis helps us in identifying the
simpoints or phases in a program that have a huge impact from
branch instructions.
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Figure 2: Comparison of instruction distribution: full simulation vs.
individual simulation points

4.2 Metric rank-based single representative simpoint

There are many ways to select a single representative
simpoint, but we propose an alternative method to select a
metric-aware single simpoint based on ranking method. This
method works because workloads can be decomposed into
various architectural metrics. Hence, it gives us a better idea of
the program behavior and the simpoint generated will have all
the metric values close to full simulation. In our research, we
are using a concept called as Borda count [18][19][20] for
ranking the simpoints to choose a representative simpoint. The
Borda rule, which is a position based ranking of items, states
that the selection of item as a winner is based on “considering
many items on an average which item is the highest in
ranking” [18]. The ranking is based on the percentage
difference of each metric value for each simpoint from the full
simulation metric values for each benchmark (e.g., the
simpoint with least percentage difference will be ranked the
highest priority for that metric). The ranks for each simpoint,
considering all the metrics, are then added together and the
simpoint with the least rank will be chosen as a representative
simpoint. In the Borda method, the item with the highest
points or score is the winner. However, in our case, we have
modified the Borda count by choosing the simpoint with the
lowest score or rank. The above method can be generalized as
following equation for a single benchmark.

Representative
Simpoint

= 3" (smprun(m)K In=0ton

Where k = Number of metrics considered to represent the workload
n = Number of simpoints within each benchmark

5. Simulation and Analysis
5.1 I-MIX ANALYSIS SIMULATION

In case of I-mix based simulation, we choose the top four
most similar 1-mix patterns to full simulation. Figure 3 shows
the result and the comparison to full simulation and single
simpoint simulation. We do not consider illcache miss rate
metric as the metric values are very small and is difficult to
represent. We can see from the Figure 3 that the I-mix based
simulation shows more accurate result than the single simpoint
method. The architectural metrics considered are dI1 cache,



ul2 cache, IPC and Branch miss, but other metrics like average
power and leakage power can be considered. Comparing to the
single simpoints simulation, IPCs in most of applications show
smaller error bound with I-mix based simpoints.

2.00 o full simulation i single representative H I-mix
1.50
1.00
0.50
0.00
400.perlbench 445.gobmk 429.mcf 401.bzip2 450.soplex 473.astar
(a) IPC values for six different benchmarks
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0.10
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(b) Branch Miss values for six different benchmarks
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(c) DL1 cache miss values for six different benchmarks
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(d) UL2 cache miss values for six different benchmarks

Figure 3: Comparison of I-mix based similarity vs. full simulation and
standard single representative

Figure 3 (a) shows the IPC values for different benchmarks.
In the case of 473.astar, the percentage difference between full
simulation and I-mix based simpoint method is only 15.94%
which is less than single simpoint method and full simulation
(26.50%).

5.2 Metric-rank based single simpoint Representative

For the rank-based simpoint reordering, the results are
indicated from the Figure 4. For most of the benchmarks, all
the metrics considered in this method provide a closer value to
the full simulation than the single simpoint method. In the
Figure 4 (d) which represnts the result for ul2 cache miss rate
for the bzip2 benchmark, more error rate can be seen as
compared to single simpoint method. This is because most of
the operations in the bzip application take place in the
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memory. Hence it has more of load and store intructions and
therefore it is difficult to characterize a representative phase
for such a program. Similar observation is also seen in branch
miss for the application bzip2 with I-mix analysis, and mcf
with rank based simpoint. In case of 473.astar, the ul2 cache
miss rate has a percentage difference of only 0.57% using
rank-based simpoint, while the single simpoint method shows
53.76% compared to full simulation result. Some applications
like perlbench, soplex and gobmk show a small improvement
while mcf and astar show a considerable improvement.

2.00 o full simulation ® single representative ® Rank based simpoint
1.50
1.00
0.50
0.00
400.perlbench 445.gobmk 429.mcf 401.bzip2 450.soplex 473.astar
(a) IPC values for six different benchmarks
020 o full simulation @ single representative B Rank based simpoint
0.15
0.10
0.05
0.00
400.perlbench 445.gobmk 429.mcf 401.bzip2 450.soplex 473.astar
(b) Branch Miss values for six different benchmarks
0.30 o full simulation  single representative M Rank based simpoint
0.20
0.10
0.00
400.perlbench 445.gobmk 429.mcf 401.bzip2 450.soplex 473.astar
(c) DL1 cache miss values for six different benchmarks
0.80 o full simulation u single representative M Rank based simpoint
0.60
0.40
0.20
0.00

473.astar

400.perlbench 445.gobmk

429.mcf 401.bzip2 450.soplex

(d) UL2 cache rniss values for six different benchmarks

Figure 4: Comparison of metric-rank based similarity vs. full simulation
and standard single representative

We now compare the proposed methods to the single simpoint
and weighted simpoint method. Table 2 shows the comparison
for the metric IPC and gives us the overall quantitative figure
for the metric. The overall quantitative figure is obtained from
the geometric mean of percentage difference of the metrics
values from the full simulation. Table 2 show the geometric
mean values for the metric IPC, but it can be extended for
other metrics also.
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Figure 5: Comparison between both methods with single simpoint for
IPC metric

We find that the rank based simpoint method has the highest
similarity (1.57%) to the full simulation, while the standard
single simpoint has the least similarity of 4.52%. Another
implication that we can find is that the rank based simpoint
outperforms the I-mix based simpoint, but for some metrics the
I-mix performs better. From our observation, we see an
interesting fact that there exists a subtle difference between i-
mix based single representative simpoint and rank based single
representative simpoint. On the other hand, workload synthesis
is a good alternative in early design exploration. However,
when the design is going into lower level, the complexity and
difficulties to synthesizing the workload cannot be ignored.

Table 2. Comparison of both methods for metric IPC

Method Performance
Full simulation reference
Weighted simpoint (with multiple simpoints) 2.23%
Standard single simpoint 4.52%
1-mix based simpoint 4.22%
Rank based simpoint 1.57%

6. Conclusion

Full simulation of industry standard benchmarks takes a long
time, and sampling methodology is used to reduce the
simulation time. In this paper we propose two methods (i) i-
mix based and (ii) rank based simpoint for finding the single
representative simpoint, and compares them with the
traditional single simpoint method. We find that the proposed
methods show more similarity to the full simulation result in
most of applications and metrics, compared to traditional
simpoint method. These methods are now being tested on the
other benchmarks in SPEC CPU 2006. We conclude that
workload tailoring which are customized for general purpose
processors are highly demanded for effective and faster
performance evaluation at each design stage.
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Abstract— Marching memory integrates all memory including
cache memory and register files into a single unit to avoid the
memory bottleneck. Marching memory is organized to
synchronize memory columns in minimizing the wire length
between memory cells and the operational units as much as
possible. A side benefit is lower energy consumption in a smaller
packaging format.

Keywords-marching memory; memory bottleneck; bandwidth;
CPU; DRAM

l. INTRODUCTION

This paper introduces a novel memory, the Marching
Memory, and the implications for computer organization,
Section 1l discusses the concept of Marching Memory.
Section 1l describes possible Marching Memory circuitry.
Section IV discusses the marching memory uses. Section V
discusses Complex Marching Memory and Section VI
summarizes the future work and challenges ahead to make a
practical realization of this technology.

Il.  MARCHING MEMORY AND ITS CONCEPT

Marching memory removes the memory bottleneck [1] also
called the memory wall [2] by designing a memory so that its
access time corresponds to the cycle time of the executing
processor. The basic idea is to create a memory structure
wherein the data is scheduled to arrive at a fixed physical
memory port for immediate use by the processor’s functional
units. Essentially the data comes to the processor rather than
the processor searching randomly for the data.

Fig. 1 shows a basic concept of marching memory with the
operation time (column access rate) equal to the CPU’s clock
cycle. The goal is to have the speed of a L1 cache but provide
much larger size.  Essentially this memory is designed to
support vector and streaming data processing.

The information flow in the marching memory is arranged
in streams marching bilaterally (either left or right) across
memory columns with one (and only one) column being
available to the CPU at any cycle, so that we have the
information flow has constant bandwidth (bits/sec) [3] through
the organization. The CPU in figure 1 is non specific; it could
be an SIMD array processor, a vector processor, a streaming
graphics processor, etc. While the interface between the
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Figure 1. Basic concept of marching memory.

marching memory and the CPU is intended to be as simple and
direct as possible; it may be possible to include an interconnect
network to route data in the memory column to specific
destination functional units as long as cycle time constraints are
met.

The premise of the marching memory is that the access
time to any element in a particular designated memory column
is the same as the processor cycle. Fig. 2 contrasts the
marching memory and a conventional organization.

Essentially memory access speed decrease as its size grows
larger; increasing the memory access latency and decreasing
the bandwidth. On the other hand, in marching memory all
transfers and accesses are local to adjacent memory columns so
there is no change in the available bandwidth as the marching
memory size increases.

I1l.  SCHEME OF MARCHING MEMORY

In its simplest form marching memory can only access
adjacent memory columns. So data structures must be carefully
scheduled before execution. This is not unlike trace scheduling
for instructions in VLIW architectures only here we schedule
the data stream. This scheduling requires the application to
have a well defined, static data flow graph. In cases where this
is not true we need a more general (if slower) form of the
marching memory.

This results in two implementations.  One is for pure
streaming data / vector data for SIMD processing mode, and
called simple marching memory. The other one includes a
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mode for random access in either programs or scalar data, and
is called complex marching memory.

A more detailed description of simple marching memory is
shown in Fig. 3. Information consists of data / instructions is
processed by the marching memory. The three modes of
behavior are in Fig. 4. Information marching proceeds from
left to right or from right to left or the state of staying to
process variations in active operation of program instructions
and scalar data depending on instructions.

The logic implementing the scheme of a one-direction
marching memory of Fig. 3 is drawn in Fig. 5. The circuit
timing between stages (in a DRAM type implementation the
adjacent column to column transfer time) defines the marching
memory stage time. This is assumed to be the same as the
element access time within a column. Note that the marching
memory is simpler than DRAM [4],[5] because of the absence
of long wires for addressing memory units and for accessing
data.

As a result, marching memory has a simpler addressing
procedure contributing to faster access speed. Power
consumption is manageable even though there is significantly
more data transfer each cycle. The data is transferred using
very short adjacent lines where as DRAM uses long wires with
correspondingly large capacitance. The total amount of
capacitance switch each cycle remains the same. Moreover, as

45

/Memory unit

Information marching>

(a) Marching right

(b) Staying

<Information marching

(c) Marching left

Figure 4. Three modes of marching memory.
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Figure 5. Logic implementation of a one-way marching memory.

information is marching, it is usually unnecessary to make
refresh the chip (except for long periods in the staying state).

Fig. 6 shows an implementation of marching memory using
a switch for the modes and one more set of AND gates with
delay marching logic circuitry.

Using the circuit in Fig. 6, we have three modes in Fig. 7
for each of program instructions, scalar data and vector /
streaming data processing.

IV. USES OF MARCHING MEMORY

Vector data and streaming data are easily used in the one
directional mode with fewer position indexes corresponding to
addresses than in conventional memory. The staying mode
corresponds to a memory column access and if the column is
buffered at the exit port the buffer acts as a L1 cache.

As mentioned previously marching memory has two types
of hardware. One is for pure streaming data / vector data for
SIMD processing mode, where the position indexes are used on
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Figure 7. Implementation of the computer organization showing the three
modes.

the simple marching memory with the counter in the CPU,
which fact is original functionality of marching memory. The
other one is for random access mode in either programs or
scalar data, where the position indexes are used using address
lines on the complex marching memory. In such a case,
address wires remain in DRAM’s structure.

As a goal, the speed of simple marching memory is equal to
that of CPUs machine clock speed. So compared to the speed
with that of conventional DRAM memory, the marching
memory advantage is about 100:1 as in Fig. 9(a) [6].
Therefore within one access cycle in conventional memory, at
most about 100 times the number of operations is possible if all
memory units are used in marching memory. Simple marching
memory has no long wires because information / data moves
synchronously from adjacent memory column to memory
column.

The full uses of all available memory units in marching
memory within the cycle of conventional memory does not
occur EXCEPT in the cases in vector data or streaming data
that fully use the units in marching memory. Now consider
the situation in Fig. 9 (b). This case is similar to multi-
threaded execution. Even though we do not use all the memory
units in marching memory, we save the time compared to the
conventional memory.  The conventional L1 cache that has
almost the same speed as CPU’s, however, this speed depends
on data locality with a small size memory. On the other hand,
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marching memory is useful in case of lower data locality
because the bandwidth of the memory is almost constant and
the same as CPU’s.

V. COMPLEX MOVING MEMORY

So far we have discussed only the simple marching
memory. There are obviously many applications which require
a more generalized memory structure as they cannot be
perfectly scheduled in a simple marching memory.

The complex marching memory includes a random mode
(somewhat akin to DRAM) to enable the addressing of
arbitrary columns. This potentially significantly increases the
wire lengths as now there is no single fixed physical memory
port accessible to the CPU. Indeed the movement (or jump)
from one column to another unrelated column is similar to the
process to column addressing in a DRAM (the CAS delay). If
we now reenter marching mode the delays are longer than in
the simple case because the column sense lines are longer. We
can partially mitigate this optimizing adjacent column selection
and using multiple sub arrays. In the complex type of marching
memory it may be better to create hybrid structures which
specifically include some simple marching memory arrays.

To address columns in a complex marching memory
position indexes are used. These are additional tags to show the
location of memory units. For example, at least one position
index is necessary for a data item as in Fig. 8(c) if the number
of data items is known. However, the memory access is not
only regular data structures but also random accesses for
program instructions and then scalar data.  For these uses, the
position indexes are fully activated in preparation of the area
added to memory units.  Fig. 8(a) shows a configuration of
marching memory in storing a program. Here if the program
is fully sequential, then the position indexes are not necessary
except for the starting one. For branch instructions marching
memory has to have position indexes to show the next active
instruction in a bilateral marching memory as in Fig. 8(a). The
way is also used in scalar data corresponding to conventional
instructions.  So, the configuration is shown in Fig. 8(b) as
well.
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VI.

There’s a lot of work to be done to make marching memory a
viable design alternative, but there’s also a significant
potential for it.

At the chip level we expect to:

1) Design, simulate and realize a simple marching
memory chip; column size less than 1 K bits with
100,000 columns.

Design, simulate and realize a complex marching
memory of at least the same size as (1). This is the
big challenge as the resulting performance parameters
will determine the direction of the marching memory
project.

3) Carefully study the power management problem.

FUTURE WORK AND CHALLENGES

2)

At the system level we expect to:
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1)
2)

Create a system simulator for marching memory.
Create a compiler to support the scheduling required
for the use of the marching memory.

Detail the performance of the marching memory in
conjunction with various processor architectures and
a variety of applications.

3)

The work here has of course next steps to further development
for the completion of this chip implementation. First, we are
going to make a simulation at a chip level to confirm the
behavior in action and secondly at a systematic level to
investigate the whole computer organization system including
the compiler research to optimize the memory allocation for
object codes.

VII. CONCLUSIONS

We have presented a novel memory with simple access
requirements that should be useful in vector and streaming
data structure for High Performance Computing and
multimedia processing, respectively. For applications that
can use marching memory the memory wall before CPUs /
arithmetic pipelines is solved. Furthermore, this memory
reduces the energy consumption in total computer
organizations in compact memory package size owing to the
structure of marching memory.
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Abstract—This research studies lightweight energy prediction
filters for solar-powered wireless sensor networks. A generalized
prediction filter is developed from the empirical analysis of
several solar intensity datasets. The Array of Beta Coefficients
(ABC) energy prediction filter is proposed. A comparison metric
is also proposed to evaluate different filters based on their
accuracy, storage requirements, and calculation complexity. Sim-
ulation results show that the ABC filter has up to 8-fold accuracy
improvement over other published filters.

I. INTRODUCTION

Wireless sensor networks (WSNs) have been proposed for
several applications where sensor nodes must be deployed
in remote or hostile environments. Some examples are vol-
canic activity tracking [1], remote habitat monitoring [2], and
surveillance of battlefield conditions [3]. In each of these
applications, sensor nodes have low physical accessibility.
Furthermore, sensor nodes that rely solely on battery power
severely limit the longevity of their aggregate network. There-
fore, sensor nodes for these applications must be able to
harvest energy from an environmental source such as the
sun. Figure 1(a) generalizes a wireless sensor node with
solar energy harvesting capabilities [4—6]. The solar harvesting
circuit converts sunlight to usable energy for the sensor node.
Solar panels perform the energy transduction and energy
buffers store the converted energy. Other components may
be used to track the solar panels’ maximum power point
(MPP), control the charging/discharging of energy buffers, and
convert the stored energy to a usable voltage. The sensor node
circuit contains various sensors, a microcontroller, a radio for
wireless communication, and interface circuitry such as analog
to digital converters.

The sun is a spatially and temporally dynamic energy
source. To illustrate this, consider the WSN in Figure 1(b).
At the time shown, node C is able to harvest less energy than
the other nodes because of the shadow from the tree. Later
in the day, however, the shadow may be cast over one of
the other sensor nodes. In general, the solar energy available
for each sensor node will be a random function of time and
space. Therefore, sensor nodes such as those in Figure 1(a)
must always be able to estimate the energy that they will have
available for a given task. This estimate must be an input to
the scheduling, routing, and other WSN algorithms. Otherwise,
sensors could be over-utilized (causing them to completely

drain their stored energy) or under-utilized (reducing network
throughput). Previous works have developed energy estimation
algorithms. In [7] the authors developed the Environmental
Energy Harvesting Framework (EEHF). In EEHF, an energy
estimation is based on two factors. The first is a measurement
of the energy already stored in the node. The second is a
prediction of how much energy the node can harvest in some
future time frame. Again, consider Figure 1(b). If, at the
time shown, each sensor node has the same amount of stored
energy, then routing data from node A to node D through paths
A-B-D or A-C-D has equal overall effect on the total network
energy. However, if the path A-C-D is chosen, then the energy
lost at C cannot be regained until the shadow moves. If B and
C could both predict how much energy they can harvest in a
future time frame, then the network will be able to determine
that A-B-D is a better route. The prediction method in [7] is
a simple autoregressive filter, which exponentially reduces the
weight of past energy statistics. In [8], the authors develop
the Enhanced-Environmental Energy Harvesting Framework
(E-EEHF). E-EEHF improves upon EEHF in several ways,
including a more accurate prediction filter.

This work focuses on lightweight prediction filters for
solar-powered WSN nodes. We emphasize lightweight because
complex prediction methods, such as those in the frequency
domain or those based on adaptive filtering, are not well-
suited for extremely energy-constrained WSNs. To the best of
our knowledge, this is the first work that provides a thorough
analysis and comparison of lightweight solar energy prediction
filters. We also present a new filter called the Array of Beta
Coefficients (ABC) filter. The ABC filter is based on the
prediction filter used in the E-EEHF framework, but has better
accuracy, smaller storage requirements, and less computational
demand.

II. SOLAR INTENSITY ANALYSIS AND PREDICTION

In this section we will give a detailed empirical analysis of
solar intensity data. A generalized prediction filter is presented
for the prediction of solar intensity. Since solar intensity is
directly related to solar energy, the generalized prediction filter
and all of the filters presented in the following sections can be
readily applied to energy prediction rather than solar intensity
prediction. The value of solar intensity, I(t,1), at a given time
t and location [ can be expressed as the sum of its periodic
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how much energy will be available to nodes B and C in a future time frame.

and random components:
I(t,1) = Per{I(t,1)} + Ran{I(t,1)} (1)

Periodic components result from highly predictable events
such as solar and lunar cycles, the movement of shadows
from stationary objects (e.g. trees), and the changing of
seasons. Random components result from highly unpredictable
events such as the movement of shadows from non-stationary
objects, cloud movement, and abrupt changes in weather. Solar
intensity variation with location may be useful for network
algorithms. Our work, however, focuses on individual sensor
nodes and, therefore, does not consider the location parameter.
Discretizing (1) and ignoring the location parameter [ yields

I[i] = Per{I[i]} + Ran{I[i]}. (2)

In (2), i is a discrete timeslot representing a time interval At
and is defined as i = |- |. In this work, we will consider
I]i] to be the average solar intensity for the i'" timeslot.
Solar intensity depends on the location of the sun. Therefore,
it is periodic with period T = 24 hours. We also define
Ngi = % as the number of discrete timeslots within 7. The
R subscript in Ny stands for rounds, a term borrowed from
[8]. Figure 2 illustrates the relationship between the defined
parameters. The ¢+ 1 timeslot’s intensity can be predicted from
its periodic and random components, which can be defined
as functions of intensities from previous periods and recent
timeslots. Specifically,

Per{I[i]} = p(1,7), 3)
Ran{I[t]} = r(I,1), 4)
and

where p and r are functions that operate on the past data, f
is a function that combines the periodic and random data, and
I,,[i+1] is the predicted intensity in the next timeslot. Now, we
can completely specify an arbitrary filter by defining f, p, r,
Ng, and T'. The functions f, p, and r are chosen by the filter
designer based on different design constraints. The period of
the data 7" will typically be 24 hours for solar applications. In
the next section, we will discuss how to choose the parameter
Np based on the consideration of several tradeoffs.

III. CHOOSING A TIMESLOT SIZE

Choosing an optimal time interval or timeslot size At is
a multivariable problem. Figure 3(a) shows some costs as
functions of the timeslot size. Calculating an optimal At in
real-time could be very costly. Therefore, we propose a pre-
deployment empirical solution based on the usefulness (how
much it aids our prediction) of periodic and random data. Due
to time correlation in the light intensity, recent data is more
useful when the size of the timeslot is small. Conversely, data
from past periods is generally more useful when the size of
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the timeslot is larger. The latter concept is illustrated in Figure
3(b). In the first period shown, there is a sudden drop in solar
intensity, which could be the result of a cloud. If the smaller
timeslot size is used (narrower box) to characterize the average
intensity for that time, then the random variation caused by
the cloud will be weighed too heavily in a prediction for the
same time in the second period. However, this issue can be
resolved by using the larger timeslot size (wider box) to mask
random variations between periods.

To determine how the usefulness of recent and past data
varies with timeslot size, we studied the periodic (cycle-to-
cycle) and round-to-round variations of three solar intensity
datasets for several different timeslot sizes. The variations for
several different timeslot sizes were calculated as follows:

SN UG- ITi])

error, = i:2N _1[11—1] (6)
and
N I[i|—I[i—N
error, = Zi:NRH w @)
L N — Np ’
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Fig. 4. Usefulness of periodic and random data for dataset 1.

where N = |I| and Np varied from 1 to 96. error, is the
average error between intensities in consecutive rounds and
error, is the average error beween intensities in consecutive
periods. Essentially, we have predicted solar intensity based
on either the last cycle only (periodic data) or the last round
only (random data) and found the average prediction errors.
Prediction filters in the form of (5) will use a combination
of periodic and random data to infer the intensity of a future
timeslot. The sum of the above error functions was computed
to determine the cost (in terms of error) of using a combination
of periodic and random data with varying timeslot sizes. The
results are shown in Figure 4. The bottom subplot shows the
error of using a combination of the filters. A local minimum
is reached at approximately At = 1h. Similar results are
obtained from the other two datasets. Therefore, we will use
Np = 24. This method may be improved by using a weighted
average or even product of the error functions to determine
the cost. However, this would yield timeslot sizes that are



optimized for a specific filter function f(p, ). Here, we will
only compare prediction filters with equal timeslot sizes.

IV. EXISTING FILTERS

In this section, we will redefine the prediction filters used in
the EEHF [7] and E-EEHF [8] frameworks using our formal
filter specification. We will later compare these two filters to
four filters developed in this work. These two filters were
chosen for comparison because of their simplicity.

A. EEHF Filter

The autoregressive prediction filter used in the environmen-
tal energy harvesting framework (EEHF) [7] can be described
using our filter specification as

feenr =peear(l,i) + repnr(l, i), (®)
peenr(l,i) =0, 9)
rgepr(l,i) =allil+ (1 —)rgpar(l,i—1)], (10)
NRppur = 24, (11)

and
Teear = 24 hours. (12)

The EEHF filter does not explicitly incorporate periodic data
into its prediction. Instead, it bases its prediction solely on an
exponentially-weighted moving average of random data. The
weight factor o controls the decay rate.

B. E-EEHF Filter

The authors of [8] have developed a prediction filter with
better accuracy than the one incorporated into EEHF. Their fil-
ter is described as part of their enhanced environmental energy
harvesting framework (E-EEHF). Using our filter specification,
the E-EEHF prediction filter is defined as

Je—pear = pe-perr(l,i+ 1)+ Brepar(l,i+1), (13)

pe—pEnr(1,1) =alli — Nrgy_ pppel
+ (1 - a)pEfEEHF(IJ - NRE—EEHF)’

(14)
re—peF(i+ 1] = 1[i] = pp-prpur(l,i—1), (15)
Nrp_ppur = 24 (16)
and
Te_rer = 24 hours. (17
The [ coefficient is defined as
5= Ili = Npy_ ppur] (18)

I[l - NRE—EEHF - 1] .

The E-EEHF filter improves upon the EEHF filter by consid-
ering both periodic and random data.

V. PROPOSED FILTERS

This section presents four filter designs with varying com-
plexity and design philosophies. The Last-Round-Only (LRO)
and Last-Cycle-Only (LCO) filters are the simplest base cases.
The "Mixture of Cycles and Rounds” (MCR) filter combines
data from previous rounds and previous cycles for better ac-
curacy than the LRO and LCO filters. The ABC filter is based
on the prediction filter utilized in the E-EEHF framework.
However, it has better accuracy, and smaller energy demands.

A. Last-Round-Only (LRO) Filter

The Last-Round-Only (LRO) filter assumes that the solar
intensity at time ¢ will be close to the solar intensity at time
t — At. We define the LRO filter as

frro =prro(l,i+ 1) +rrro(l,i+ 1), (19)
pLRO(Ivi + 1) = Oa (20)
rrro(I,i+ 1) = I[i], 20
NR, ro = 24, (22)

and
Trro = 24 hours. (23)

The LRO filter represents one extreme where only random
(recent) data is used and periodic data is ignored. This type
of filter is most useful when the dataset which it is applied to
has a large cycle-to-cycle variance.

B. Last-Cycle-Only (LCO) Filter

The Last-Cycle-Only (LCO) filter assumes that the light
intensity at time ¢ will be close to the light intensity at time
t — Ng,coDt. We define the LCO filter as

frco =prco(l,i+1)+rrco(l,i+1), (24
pLCO(I,i—Fl)ZI[i+1—NRLOO], (25)
rrcoli +1] =0, (26)
NR, oo = 24, 27

and
Trco = 24 hours. (28)

The LCO filter represents the opposite extreme where only
periodic intensity data is considered, and random data is
ignored. This type of filter is most useful when the dataset
which it is applied to has a small cycle-to-cycle variance.
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C. Mixture of Cycles and Rounds (MCR) Filter

The "Mixture of Cycles and Rounds” (MCR) filter assumes
that the light intensity at time ¢ will be a weighted average
of intensities from recent rounds and intensities from past
periods. We define the MCR filter as

fucr = Bpmcr(l,i+1) + (1= B)rvcr(L,i),  (29)

pMC'R(IJ'i‘l) = OélpMCR(I,i+1—NRNICR)+(1—Oé1)I[i],

(30)
ryvor(l,i) = asrper(l,i— 1) + (1 —a)I[i],  (31)
NRryer = 24, (32)

and
Thicr = 24 hours. 33)

The three factors «y, ais, and § adjust how heavily past and
recent data are weighted, and are between 0 and 1. Since
pyveor and g are exponentially-weighted moving average
filters, a; and aip will control the rate of decay of data from
past cycles and past rounds, respectively. The LRO and LCO
filters are each special cases of the MCR filter when as = 0,
6 =0 and oy = 0, 8 = 1, respectively. The MCR filter is
most useful when there is low round-to-round and cycle-to-
cycle variance.

D. Array of Beta Coefficients (ABC) Filter

The authors of [8] recognized that the ratio of the solar
intensities in two subsequent rounds is approximately constant
among different periods (days). This idea is leveraged in the
ABC filter, which tracks the ratio of each round to its previous
round in an array of exponentially-weighted moving averages
(called betas). The ABC filter is defined as

fape =papc i+ 1)rapc(l,i), (34)
1,1) = Bl = afli— Nranol + (1 —a) b, (35
pABC( 72) = Pt = ap|t Ragc +( Q)M7 ( )
TABc(I,i):I[i], (36)
NR,pe = 24, (37)

and
Tapc = 24 hours. 38)

In the ABC filter, the periodic component is the beta co-
efficient for a particular round, and the random component
is the intensity of the current round. From the definition, it
can be seen that the ABC filter requires only six operations:
three multiplications, a division, and two additions. The ABC
filter’s storage requirements depend on the number of rounds,
NpR,pe- In this case, since Ng,,., = 24, the filter needs to
store 24 beta coefficients.

TABLE I
FILTER SIMULATION RESULTS

Mean Prediction Error Percentage

Filter DS1 DS2 DS3 Avg.
EEHF 85.73 | 1262.60 | 129.35 | 651.75
E-EEHF || 68.75 115.72 51.40 82.49
LRO 80.40 | 994.62 105.23 | 515.91
LCO 60.77 125.19 75.54 97.50
MCR 60.40 | 683.35 9042 | 363.23
ABC 70.96 96.60 50.94 73.57

VI. FILTER COMPARISON METRIC

In past works, such as [7] and [8], prediction filters were
indirectly compared by examining the lifetime of the network
on which they were utilized. This metric depends heavily
on the WSN algorithms and topology. Here, we introduce a
new metric that is independent of a specific WSN and allows
filters to be compared directly. At minimum, a fair metric
should include the accuracy of the filter, the filter’s storage
requirements, the filter’s calculation complexity, the filter’s
broadcast rate, and perhaps most importantly, the cost of the
filter’s misprediction.

We will define our filter metric as a cost function:

C'f:wle+oJQC’Mp+wng—|—w4Cc+w5C’B, 39
where C¥ is the cost of using filter f, Cp is the cost of using
the filter’s prediction, Cy;p is the cost of a misprediction, C's
is the cost of the filter’s storage requirements, C'c is the cost
of the filter’s calculation, and Cp is the cost of the filter’s
prediction broadcast. The costs Cp and Cjsp are related to
the filter’s accuracy. The costs Cs and C¢ are related to the
performance degradation caused by using the filter, as well as
any extra power consumption from reading/writing memory
or performing calculations. The cost C'p is related to the extra
power consumption and any performance degradation caused
by extra radio usage when broadcasting prediction values to
the rest of the WSN. The weights w,, should be chosen such
that more emphasis is given to costs that result in higher energy
consumption or larger performance degradation. For example,
Cp should be weighed heavily because radio usage consumes
a lot of power relative to the other components in a wireless
sensor node. We have not derived any specific weights in this
work.

In (39), Cp x Eerrory, Cyp NLR’ Cs < kNyaiyes, Co
YaA + Y M + 4D, and Cp x Ng, where
N1,
i=1" 1[4

o (40)

errory =
k is the size of a typical stored value in bits (e.g. 32 bits
for integers), Nyqiues 1S the number of values that the filter
needs to store, 7., Vm and 74 are the number of additions,
multiplications, and divisions required by the filter operation,
and A, M, and D are the energy costs associated with
additions, multiplications, and divisions, respectively.
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TABLE II
FILTER COSTS

Sensitivity of Cost

Filter Prediction (Cp) | Misprediction (Cp;p) | Storage (Cs) | Calculation (Cc) | Broadcast (Cp)

EEHF 651.7522 N%.-{ 2k 2M +2A Ng
E-EEHF 82.4898 Nﬁ 2k(Ngp +1) | 3M+1D +4A Ng

LRO 515.9050 N—lR k 0 Ng

LCO 97.4965 Nﬁ kNg 0 Ng

MCR 363.2256 NLR E(Ng + 4) 6M 4 6A Ngr

ABC 73.5685 NLR ENg 3M +1D +2A Ng
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Fig. 5. Simulation run of the ABC filter on dataset 3.

VII. RESULTS

The six filters defined in Section IV and Section V were
simulated on three datasets. The first dataset (DS1) is from
the data published in [7], and the other two (DS2 and DS3)
are composed of data collected at RIT. As specified in their
definitions, each filter utilized 24 rounds per period. For the
EEHF filter, « = 0.9. For the E-EEHF filter, « = 0.5. For
the MCR filter, oy = 0.9, as = 0.1, and 8 = 0.5. For the
ABC filter, @« = 0.9. Figure 5 shows an example simulation
run for the ABC filter with DS3. The top subplot is the actual
intensity data from RIT over a 32-day period with samples
taken every ten minutes. The next subplot is a bargraph of the
average intensity in each round. Since Np = 24, each bar is
an hourly average. The third subplot shows the ABC filter’s
intensity prediction for each round, and the final subplot shows
the relative error between the prediction and the actual average
intensity. There is a very large error between round 600 and
round 700 that would most likely be calculated as an outlier.

To be fair, however, these data were not removed from any of
the filter results, as they could represent mispredictions that
cause a node to be completely drained of its residual energy.
Simulations like the one shown in Figure 5 were run for each
of the six filters and each of the three datasets, resulting in 18
total simulations.

Table I summarizes the results. For DS1, the MCR filter
had the lowest mean prediction error. The ABC filter had the
lowest mean prediction error for datasets 2 and 3. The final
average in the last column is a weighted average with weights
equal to the number of days in each dataset divided by the sum
of the number of days across all three datasets. The E-EEHF
and ABC filters, on average, have better accuracy than the
other filters. The high error percentages show the difficulty
in making highly accurate predictions with low-complexity
filters, a fact that should be considered in the design of other
WSN components. Table IT summarizes sensitivity of the costs
associated with each filter; each cost is proportional to the
given factor(s). The ABC filter requires about half of the
storage required for the E-EEHF filter and also has smaller
calculation and prediction costs.

VIII. CONCLUSIONS

In this work we have analyzed the characteristics of typical
solar intensity data. Using those characteristics, we developed
a general form for a solar intensity prediction filter. Since solar
panel electrical current output is proportional to solar intensity,
the filters can be used to predict the energy harvesting capa-
bilities of solar-powered wireless sensor nodes. A comparison
metric was also developed and used to compare two existing
and four proposed filters based on their storage requirements,
calculation complexity, and accuracy. Results show that the
Array of Beta Coefficients (ABC) filter is less expensive in
terms of computation and storage than all other analyzed
filters. It also has an ~8-fold improvement in accuracy over
the EEHF filter.
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Abstract— In this paper, an ultra low power and low jitter 12bit
CMOS digitally controlled oscillator (DCO) design is presented.
Based on a ring oscillator implemented with low power Schmitt
trigger based inverters. Simulation of the proposed DCO using
32nm CMOS Predictive Transistor Model (PTM) achieves
controllable frequency range of 550MHz~830MHz with a wide
linearity and high resolution. Monte Carlo simulation
demonstrates that the time-period jitter due to random power
supply fluctuation is under 31ps and the power consumption is
0.5677mW at 750MHz with 1.2V power supply and 0.53-ps
resolution. The proposed DCO has a good robustness to voltage
and temperature variations and better linearity comparing to the
conventional design.

Keywords- digitally controlled oscillator (DCO); low power; jitter;
linearity; robust;

L INTRODUCTION

PHASE-LOCKED loops (PLLs) are widely used in many
communication systems to clock and data recovery or
frequency synthesis [1]. Typical analog PLLs include a phase-
frequency detector, a charge pump, a loop filter, a voltage
controlled or current controlled oscillator, and a frequency
divider [2, 3]. The controlled oscillator is the key component
in the core of PLL. Recently, efforts have been made toward
the development of fully digital PLLs. Compared to their
analog counterparts, fully digital PLLs exhibit better noise
immunity and they are invulnerable to DC offset and drift
phenomena [4, 5, 6]. Digitally controlled oscillator (DCO) is
a replacement of the conventional voltage or current
controlled oscillator in the fully digital PLLs. DCO is the heart
of the ADPLL that shows higher noise immunity and
robustness than the conventional PLLs [1]. DCO dominates
the major performances of ADPLL such as power
consumption and jitter, and hence is the most important
component of such clocking circuits [4, 6, 7]. Since DCO
occupies 50% power consumption of an ADPLL [7], the
power consumption of DCO should be reduced further to save
overall power dissipation to meet low power demands in SOC
designs.

The Block diagram of the ring oscillator based DCO which
is used in this paper is shown in Fig 1. It consists of digitally
controlled delay elements which are controlled by coarse and
fine bits and a control logic block for enabling DCO and
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Figure 1.Block diagram of the ring oscillator DCO

linearization circuit for linearizing the DCO period by
increasing the input code. DCO starts to work by applying the
initial value to the circuit.

Basically, two main techniques exist for designing the DCO
as shown in fig. 2. One technique changes the MOS driving
strength dynamically using a fixed capacitance loading and
achieves a fine resolution [8, 9]. While the other uses shunt
capacitor technique to tune the capacitance loading [10, 11].
They both have good linear frequency response and a
reasonable frequency operating range. Power consumption is
an important problem for portable battery charged computing
systems, so the reduction of the power consumption has
become a major concern.

A simple DCO that directly uses an inverter ring is
presented in [12], but has insufficient resolution for most
applications. Another DCO example consists of bank of tri-
state inverter buffers [13]. The delay resolution in this case can
be controlled by the number of enable buffers. However, [13]
has the disadvantages of large silicon area and high power
consumption. Another means of fine resolution enhancement,
implemented by an Or-And-Inverter (OAI) cell shunted with
two tri-state inverters to enhance driving capability, was

Figure 2.Standard Cell of Digitally controlled oscillator. (a) Driving strength
controlled. (b) Shunt capacitance controlled.
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proposed in [3]. The proposed DCO in [3] has less area and
power consumption than [13]. However, the resolution step of
the proposed DCO is nonuniform and sensitive to power-
supply variation because it uses OAI cell to change the delay
resolution, this technique also requires an additional decoder
for mapping OAI cell control input.

This paper presents a low power, low jitter and high
resolution DCO using binary controlled pass transistors and
low power Schmitt trigger. The DCO is designed using the
32nm CMOS Predictive Transistor Model (PTM) and HSPICE
simulator.

IL

DCO should generate an oscillation period of Tpco, which
is a function of digital input word D and given by:

CONVENTIONAL AND PROPOSED DCO ARCHITECTURE

Toeo = f(dn—izﬂ_l + dn-:zﬂ_: ++ d‘izl + ::EDED] (1}
the DCO transfer function is defined such that the period of
oscillation Tpco is linearly proportional to digital word D with
an offset

Toco = Toffzer — D Torep, D-Digital control bits ()
where Toe 15 a constant offset period and T, is the period of
quantization step. For the conventional driving strength
controlled DCO shown in Fig. 3, the delay tuning range of this
standard cell is obtained as follows:

R(G+C,
- RGHD) _ior, ()
1+(D- AW/,
AW .. D-AW
=R(C +C2)D AV (Only if D-A <<1) (5)

1 m

where R, is the equivalent resistance of M1 and W1 is the
width of M1. In order to have a good linear tuning range, the
width of transistor M1 has to be increased as can be seen in
Equation (5). Consequently, the equivalent resistance R; will
decrease resulting in a smaller delay tuning range. One way to
increase the tuning range while keeping the linear response is
to increase the capacitance loading. However this will
minimize the maximum frequency that the DCO can
accomplish and the power consumption will also be increased.

The proposed DCO is based on ring oscillator
implemented with low power Schmitt trigger based inverters.
It uses binary controlled pass transistor arrays to control the
period of DCO. Schmitt trigger based inverter has a higher
low to high switching threshold and lower high to low
switching threshold compared to the conventional As a result,
the proposed DCO circuit provides the same tuning range with
smaller capacitance loading, which is beneficial for power
consumption reduction. Moreover, in conventional DCO
circuit, the slope of the input signal to each stage decreases
gradually dueto the large delay between each stage. This
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Figure 3. Equivalent circuit for the calculation of delay tuning range.

result in not only non-ideal rail-to-rail switch but also a poor
power performance. The steep slope of the output signal from
the Schmitt trigger based inverter minimizes this problem to
certain extend. The improved DCO has two coarse delay cells
and two fine delay cells and a NAND gate for reset. We don’t
use the Schmitt trigger in fine delay cells of DCO, because
Schmitt trigger transistors are switched in each cycle, so they
themselves consume a lot of power in the DCO therefore
omission of Schmitt trigger from fine delay cells can decrease
the power consumption of the circuit. Since fine delay cells of
DCO do not have a capacitance loading thus fine delay cells
output signal is still sharp and omission of the Schmitt trigger
from fine delay cells does not disturb the DCO performance.
Furthermore we use the low power Schmitt trigger in coarse
delay cells which has two inverters in its structure and these
inverters act as buffers in the signal path and by reconstructing
the signal, reduce the jitter of the DCO. This Schmitt trigger
is reported in [14]. The high to low and low to high switching
threshold of the Schmitt trigger is obtained as follows

Vin+ o Rp (VDD-Vip)

(6)

Vi L
1+ (5
w CEp

Where Kn and Kp are the transconductance factors of Mny,,
and Mp;,,, and Vtn and Vtp are their respective threshold
voltages. The circuit diagrams of the conventional DCO and
proposed DCO are showed in Fig. 4. In order to compare the
power consumption, both circuits must be equally sized.

III. CoOMPARSION OF POWER CONSUMPTION BETWEEN THE

CONVENTIONAL AND PROPOSED DCO STRUCTURES

Two structures of DCO are simulated and compared using
32nm CMOS PTM (Predictive Transistor Model) with a supply
voltage of 1.2Volts and HSPICE simulator. The impact of each
control bit on the period of the two DCO structures is shown in
table 1. Both structures have the same linear tuning range until
5" bit is asserted. This is due to the fact that the requirement
for linear tuning range fails when D.AW becomes too large
comparing to W1 so these structures are linear for the first 32
input coarse codes. In order to compare the power
consumption, the first 5 control bits are chosen instead of 6,
since the last control bits contributes to non-linear tuning range
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Figure 4. Digitally Controlled Oscillator. (a) Conventional DCO structure, (b)
proposed DCO structure.

which is not desired for DCO. Moreover, since two DCO
structures have the same operation ranges, it is more reasonable
for us to compare their power consumption. Compared to the
conventional DCO, the proposed DCO saves approximately
70% power consumption as shown in fig 5. As discussed in
section II, this reduction is due to the comparatively smaller
capacitance loading for the Schmitt trigger based inverter than
the conventional inverter at the same operating frequency and
the using the low power Schmitt trigger in the inverters of
coarse delay cells. The proposed DCO is more power efficient
than the conventional DCO.

TABLE L Impact Of Each Control Bit On The DCO Period
Control bits | Conventional DCO Proposed DCO
Period Delta Period Delta
(ns) (ps) (ns) (ps)
100000 1.1905 246.7 1.1902 242.8
010000 1.4372 124.5 1.4330 134.8
001000 1.5617 84.5 1.5678 91.6
000100 1.6462 42 1.6594 32.7
000010 1.6882 20.1 1.6921 18.1
000001 1.7083 21.9 1.7102 19.9
000000 1.7302 - 1.7301 -

Low power
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IV. IMPROVING LINEAR OPERATING RANGE OF THE
PrROPOSED DCO AND SIMULATION RESULTS

The proposed DCO which is explained in section II has a
limited linear operating range as discussed above. In this paper
, three stage constant delay chains and 4:1 multiplexer are
used to increase the operating range, the proposed DCO and
its linearization circuit are shown in Fig. 6. The 6™ bit is taken
off for better linear response and the 1* bit is also taken off for
larger coarse resolution. So this structure is linear for 64 input
coarse codes instead of 32 input coarse codes. The proposed
DCO structure with increased operating range is designed and
simulated using 32nm CMOS PTM model and HSPICE
simulator. The frequency ranges of the coarse and fine tuning
loops are shown in Fig. 7. The curves have a good linearity
which is a key factor of the PLL performance. The operational
frequency response to the process, temperature and voltage
variations are shown in Fig. 8. The curves show the
normalized data with respect to the center frequency. Fig. 8
shows that the relative delay per code is almost the same
regardless of the process, temperature and voltage variations,
which means this DCO design is robust to PVT variations. We
can extend the linearization circuit to achieve a 14-bit DCO
which is linear for 128 input coarse codes. Extended
linearization circuit is shown in Fig. 9. It consists of a seven
stage constant delay chain and 8:1 Mux. The 7" and 6™ bits
are taken off for better linear response and 1* bit is also taken
off for better coarse resolution. The simulation results show
that the DCO curve has a good linearity. The frequency ranges
of the coarse tuning loop are shown in Fig. 10.

Coarse code <0:3> Fine code <0:5>
= =

Coarse code <4:5>

Enable

Figure 6. The proposed DCO structure with improved linear operating
range
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TABLE II. Characteristic Of The Proposed DCO

Items Coarse delay Fine delay
Resolution 6 bit 6bit
Max. DCO Gain 13ps 0.53ps
Avg. DCO Gain 9ps 0.25ps
Operation range 550~830 MHz
Operation range 0.5677mW @ 750 MHz

550~830 MHz and power consumption of 0.5677mW at 750
MHz and 1.2V power supply. The performance, flexibility,
and robustness make the proposed DCO viable for high
performance fully digital PLL application.

The time-period jitter is the time difference between the
measured cycle period and the ideal cycle period. The jitter
performance of the proposed DCO is simulated by Monte
Carlo analysis using a Gaussian distribution function taking
into account 10% variation in supply voltage. The results are
shown in Fig. 11 by overlapping every cycle period. A 31ps
time-period Jitter is measured.

Table 3 shows the measurement results to compare with a
few recent state-of-the-arts DCO designs [1, 3, 10, 13]. The
proposed DCO  achieves the finest LSB resolution and the
highest operating frequency. In addition, the proposed DCO
consumes less power than the others.

V. CONCLUOSION

A low power 12 bit digitally controlled CMOS oscillator
(DCO) design for low power consumption and low jitter are
presented. The presented DCO demonstrate a good robustness
to voltage and temperature variations and better linearity
comparing to the conventional design. Simulation of the
proposed DCOs using 32 nm CMOS Predictive Transistor
Model and HSPICE simulator achieves a frequency of
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TABLE IIIl. COMPARISON WITH EXISTING DCOS.

Function [1] [10] [13] [4] Proposed
DCO
Process 0.35um @ 0.13 um @ 0.6 um @ 0.35 um @ 32nm@
3.3V 1.65V 5V 3.3V 1.2V
DCO control 15 bits 8bits 10 bits 12 bits 12 bits
word length
Coarse 385 ps - 550 ps 300 ps 12 ps
Resolution
LSB(Fine) 1.55 ps 40 ps 10 ps 5ps 0.53 ps
Resolution
DCO output 18 ~214 150(MHz) 10 ~12.5 45~450 550 ~830
frequency (MHz) (MHz) (MHz) (MHz)
Power 18mW@ ImW @ 164mW @ 100 mW @ | 0.5677mW @
consumption 200MHz 150MHz 100MHz 450 MHz 750MHz
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Abstract

Current video compression algorithms such as H.264
and MPEG are increasingly complicated and difficult to an-
alyze and profile. Although the tools and system level lan-
guages speed up the design process, they often prove to be
inefficient and incapable of providing complexity analysis
as a first step aiming at the implementation of video com-
pression algorithms. The proposed profiling framework will
help to develop a methodology that facilitates the deriva-
tion of analytical models. The framework proposes analyti-
cal CAL models for quantifying the underlying algorithm’s
memory complexity, related timing considerations, and ver-
ification of the correctness of the video compression algo-
rithm. The methodology has been validated by applying it
to an H.264 motion estimation algorithm. The experimental
results present a speed 7x faster than required for assessing
design metrics compared to conventional methodologies.

1. Introduction

Presently system engineers begin their design with
C/C++ which are difficult to assess for hardware design-
ers. Design choices, including algorithm-architecture se-
lection, must be determined in the very early stages of
design. There is a need to reduce duplication of effort
from algorithm-architecture selections for specific appli-
cation scenarios within the global tradeoffs context. In
consideration of these observations, a conflicting environ-
ment for designers is presented. Additionally, there exists a
wide cognitive gap between the algorithm designer and the
hardware/software designers whose role is to determine the
hardware/software architecture for implementation of these
algorithms. This gap prohibits estimation of finally imple-
mented performance values at high levels of abstraction. In
particular, hardware designers face challenges when decid-
ing on implementation choices for a specific algorithm since
the resulting performance values are not available. In short,

Kyungsu Kim, Seongmo Park

Electronics and Telecommunications Research Institute(ETRI)

SoC Research Department
Daejon, South Korea 305-700
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to help designers, a profiling methodology should provide
early analysis features of final hardware, and should bridge
the system level-implemented hardware gap by providing
complexity metrics.

In this work, we propose an analytical profiling frame-
work for memory related costs based on reconfigurable
CAL modeling. The overall design trade-off metrics are
calculated interactively with the consideration of memory
complexities and performance parameters. The following
contributions are made in this work.

e Analytical Models for Trade-off analysis: An ana-
Iytical analysis between input parameters and perfor-
mance parameters is presented based on CAL model-
ing.

e Trade-offs Analysis of video compression algorithms:
We use the proposed profiling framework to investi-
gate the cost of hardware implementation as well as
memory related costs and performance values.

This paper is organized as follows. Section 1.1 describes
state-of-the-art literature survey relevant to this work. In
section 2, we present video compression applications as
well as CAL modeling for the framework. Additionally, this
section deals with analytical modeling methodology. Sec-
tion 3 provides preliminary results and comparisons with
conventional methods in terms of design metrics.

1.1. Relevant Work

There are several tools for traditional profiling including
software profiling. The basic idea of these tools is that ap-
plications spend a large share of execution time in a kernel
or inner loop. Intel VTune and GNU Prof are the standard
tools for this purpose but they are focused more on instruc-
tion level complexity in a program rather than on a potential
measure for the final implemented system in terms of mem-
ory complexity or other timing considerations [1]. Based
on open literature survey, these common tools do not pro-
vide customized design metrics such as memory complexity
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and bandwidth information beyond memory access counts
for hardware implementation alternatives selection. There-
fore, designers are hesitant to utilize these tools to assess
algorithm candidates or to provide to the architecture can-
didates for the application. Hardware/software co-design
and compiler groups’ focus has been directed toward es-
timating the early performance of applications. The work
of HW/SW codesign tools such as Ptolemy II and Synop-
sys CoWARE tools leads to effective design environments
which co-simulate and/or co-synthesize heterogeneous sys-
tems and techniques for optimizing and reducing mem-
ory requirements [2][3][4][5]. However, these tools rely
on dynamic simulation with incremental refinement. They
focus on more accurate memory metrics with the latest-
possible algorithm-architecture binding. Compiler directed
approaches solve this problem by providing the instruction
level complexity analysis of C/C++ references and by pro-
viding semi-static information [6][7][8]. The estimations
produced by the compiler and profiler depend on a specific
general purpose processor platform, lacking representative
metrics for custom hardware or hardware/software systems
design.

2. Proposed Profiling Framework

We will present a case study of H.264, using our profiling
framework flow. Before discussing the profiling framework
methodology, let us briefly summarize the H.264 standard
which is the video encoding/decoding standard that replaces
the current MPEG4 video standard.

2.1. H.264 Video Compression Algorithm

In its H.264 video coding layer, some of the impor-
tant enhancements include the use of a small block-size,
an exact match transform, adaptive in-loop deblocking fil-
ter and motion prediction capabilities. A typical decod-
ing process begins with entropy decoding. After receiv-
ing the data from the NAL (Network Adaptation Layer),
the data are processed by the entropy decoder. Next, the
IT/1Q (Integer transform/Inverse quantization) block is used
to generate the reference frame data which will be added to
the reference frame image or intra-predicted image based
on its header information. Then, the original image is re-
constructed through the deblocking filter. The reference C
source code is built by pruning the H.264 standard C model
originally from the H.264 standard committee. Extra func-
tionality beyond the selected H.264 profile was removed
from C code. Therefore, the C model that we use has been
optimized at the source code level by designers. This C ref-
erence model plays the role of providing the specification
and test streams for hardware implementation of H.264.

2.2. Reconfigurable CAL Framework

It is our observation that video coding algorithm models
typically involve two stream memories and control condi-
tions with regards to those stream memories. In this con-
text, Petri nets are good candidates for studying and ana-
lyzing the behavior of video compression models for early
estimation. Petri net is the one of models which represent
interacting concurrent components and used as a design and
analysis tool of systems. To implement this model and mod-
eling in the framework, CAL has best modeling capability
since it comes with language property and automated tool
sets [9]. CAL Actor Dataflow Language has been chosen
as the analytical modeling language for the operation of the
Function Units(FUs) in the analytical model library. CAL
was initially developed as a specification for the Ptolemy
project [9]. RVC-CAL is a subset of the original CAL lan-
guage and is being used for developing the RVC standard
Video Tool Library by the IET working group.

CAL actor language can describe algorithms with inter-
acting actors. Each of actors has its own state and functions.
Communications and interactions among actors can be pro-
cessed through channels or FIFOs. Actors define functions
described by a set of actions. Actions typically consume
input tokens, generate output tokens and modify the inter-
nal states which are very similar to Petri net’s nature. CAL
has expression capabilities sufficient to specify a wide range
of video compression algorithms that follow a variety of
dataflow models.

The proposed framework is the development of analyt-
ical models which are able to model the underlying algo-
rithms’ memory complexity in the very early design stage
for video compression applications. Furthermore, it is nec-
essary to develop a methodology that facilitates the analyt-
ical models’ derivation process and verifies the accuracy of
models for video algorithms. Starting from an application
written in CAL behavioral description, annotations will be
made with a pre-processor to embed input parameters in al-
gorithm code. The fundamental equations for basic process-
ing (e.g. data fetching operations and elements processing)
in an algorithm (e.g. motion estimation) is derived and CAL
equation libraries will be built for reusability. The objective
is to offer a tool which contains a relevant basic set of CAL
equations from existing algorithms. Designers who want
to build extended equations for different encoding/decoding
algorithms can benefit by reusing these analytical frame-
work models. Therefore, the profiler is able to deliver a re-
duction of system-RTL(Register Transfer Level) level gaps
with rapid estimation times. Fig. 1 presents an overall view
of the design flow which is employed in a H.264 design
space exploration loop. A CAL description will be defined
to model an application instance. The description includes
input parameters including maximum width of frame size in
macroblock, size in bits of macroblock, horizontal and ver-
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Figure 1. Design Flow for Reconfigurable CAL Framework

tical search range in pixels, etc., in H.264 algorithm. The
extended sets of CAL model equations will be generated in
an automated manner by the profiler, user pragma compiler.
Input parameters are parsed by the utility compiler and gen-
erate extended CAL model equations by referring to user
defined parameters. For example, based on the distance
criteria in motion estimation algorithm, different sets of
equations for blocks will be generated (e.g. Sum of Abso-
lute Difference (SAD), Mean Absolute Error (MAE), Mini-
mized Maximum Error (MME), Cross Correlation Function
(CCF), etc.)[10]. This will allow designers to reuse an ana-
lytical model for different video algorithms and will provide
designers with trade-off curves based upon design metrics
(e.g visual quality (PSNR), memory bandwidth, I/O band-
width, regularity of address and data, etc.). Trade-off curves
with design space exploration statistics files will be gener-
ated for designers to assess different algorithms for differ-
ent architectures in the early stage of design. This design
methodology accomplishes reuse of CAL equation libraries
by expanding basic CAL model sets. Basic CAL models
are described using an atomic action such as data fetching
or pixel processing. In addition to atomic mark up, extended
CAL models are composed of one or more combined atomic
CAL basic models which are derived from algorithms. The
key feature of the methodology is the generation of mem-
ory complexity metrics for designers based on input param-
eters. Memory complexity trade-offs among those factors
will help designers achieve an efficient compromise among
design alternatives. We illustrate the framework with a Mo-
tion Estimation (ME) case study. Beginning with high level
CAL specifications, a designer must choose a candidate ar-
chitecture with reference to the ultimate design implemen-
tation.

The core problem here is to evaluate ME algorithms in
order to have an idea of memory complexity. The pro-

posed design flow begins with building basic CAL model
equations. The cost of LRTB (Left-Right-Top-Bottom) ac-
cessing an image pixel in terms of the number of mem-
ory accesses can be computed as a function of window
memory(W) and frame memory(M) assuming an 8x8 pixel
block. Consider now that the cost of meandering access of
an image pixel in terms of the number of memory accesses
can be similarly computed. Memory fetching must occur
when direction changes to the opposite. Meandering does
not have to fill window memory in contrast to the LRTB
method. In short, it will be clear that the meandering ac-
cess has a lower memory bandwidth because the meander-
ing method requires fewer refills than LRTB method based
CAL atomic models.

These basic CAL model equations can be used to com-
pute the associated costs for processing an image of a given
size in the following way. When the two memory schemes
are used with ME blocks in a video algorithm, the memory
complexity metric must be offered to designers in order to
select memory access schemes as well as motion estimation
schemes with configuration parameters. To see the mem-
ory access cost for distance criteria in ME, the following
extended equation (1) can be built by using basic sets of
equations with the help of the framework.

NAMmE = 2% N(MEscheme) * NA(Memscheme) ¥ Framerate
)]
We use this extended equation to compute mem-
ory access metrics by changing N(MEScheme),
NA(MemScheme), and FrameRate. Suppose that
N(MEScheme) is defined by motion estimation schemes,
e.g. 1:Full pel ME, 0.5:Half pel ME, and NA(MemScheme)
as defined by basic CAL models. Configuration parameters
such as FrameRate, and horizontal and vertical image
size are values provided by the user and the framework.
Exploration trade-off curves which include a memory
complexity metric against DSE parameters is presented to
designers.

3. Preliminary Results

This profiling design flow begins by building basic CAL
models. These basic CAL equations are used to compute
the associated costs for processing memory fetch operation.
In order to see the computational complexity cost for op-
erations in overall motion estimation, the extended equa-
tion can be built by using basic sets of equations with the
help of the profiler. Exploration trade-off curves which in-
clude a customized complexity metric with various output
parameters are presented to designers. Figure 2 shows re-
sults of design space exploration curves of H.264 encoding
in terms of Quantization Parameters(QP) and reconstructed
image frame quality. This also shows Peak Signal to Noise
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Table 1. Early Estimation TAT Reduction

HDL modeling  This framework
4 weeks 3 days

3,900(verilog) 920

Estimation Time
Lines of code

Ratio(PSNR) in variations of QPs. Table 1 confirms the ef-
fect of use of analytical models for early estimation gain.
Using equation based models reduces Turn Around Time
(TAT) of building simulation models and performance es-
timation time. The time for modifying simulation model
description and simulating it grows in a linear manner with
reference to the size of the description. Also, it is time con-
suming and error prone to build test benches and verifica-
tion scripts to run conventional simulation models. The re-
sults show the advantage of using CAL models approach as
a initial specification for video compression standards. De-
velopment of CAL models require less time and the CAL
model can be easily expanded or reused than Verilog/C lan-
guages for early estimation. This is due to data flow nature
of CAL descriptions well suited for video compression al-
gorithms. Furthermore, when it comes to video compres-
sion applications, this approach is domain specific can be
easily extended to evolving video compression standards
such as Scalable Video Codecs (SVC) and H.265 which is
in its inception stage. This profiling framework can link all
of these design space exploration steps by offering a central-
ized framework to the community and reducing the design
efforts among communities of design engineers.

4. Conclusions and Future Work

The proposed design flow will provide an analytical and
efficient design profiling methodology, capable of accu-
rately profiling many different H.264 variants. This ben-
efits various classes of designers including algorithm de-
velopers who are standardization committee members and
hardware designers. In particular, designers use the profil-

ing to derive extended CAL equations for existing different
video compression algorithms since video compression al-
gorithms share similar extended functions which have dis-
tance criteria and control strategies. This design flow can
link all of these design space exploration steps by offering a
centralized profiler to the community and reducing the de-
sign efforts among communities of design engineers.
Additionally, this design flow can integrate research and
teaching activities including coursework development for
design competition style classes. This will lead to revision
of the current curriculum encouraging discussion of emerg-
ing design issues beyond conventional design metrics such
as area, power and timing. This will provide students with
an opportunity to understand the concept of system design
tradeoffs by gaining hands-on experience using the profiler.
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Abstract—Cryptography plays an important role for data
security and integrity and is widely adopted, especially in
embedded systems. On one hand, we want to reduce the
computation overhead of cryptography algorithms; on the other
hand, we also want to reduce the energy consumption associated
with this computation overhead. In this paper, we explore
techniques to improve the overall throughput and energy
consumption of RSA (Rivest, Shamir and Adleman) public-key
cryptography. Instead of implementing the entire algorithm into
hardware format, we carefully implemented a custom
coprocessor design to accelerate a single hotspot function of RSA
algorithm on a Virtex5 FPGA platform. Then, we compare the
effectiveness of the coprocessor design against the software
implementation of RSA. The hardware accelerates the execution
time by 10% thus minimizing the energy by 9%, achieving our
goal.

Keywords-Coprocessor; cryptography; RSA; hardware accelerator.

I. INTRODUCTION

The Internet has evolved so fast that it not only provides
information but also permits to communicate and make
electronic transactions around the world. Hence, we want our
personal data to be secured, reliable, and efficient over the
Internet. Many cryptography algorithms have been
implemented to prevent intruders from stealing information
during an electronic transaction. They are widely used in
applications such as ATM cards, computer password, e-mails
and even within the world of electronic commerce. As secure
communication bandwidth demands continue to grow, it
requires faster cryptographic processing. This serves as the
motivation for our hardware acceleration approach. Hardware
acceleration hastens some specific operations, allowing the
overall system, including the general purpose processor and
the coprocessor, to execute concurrently in order to achieve
performance improvement. The processor assigns specific
function to the coprocessor while the processor executes its
own instructions. For example, Irwansyah et al. [2] and Hodjat
et al. [3] integrated the AES cryptography [4] as a complete
system and interfaced it with the microprocessor. This
technique is very efficient to accelerate as most as you can to
finish executing the process as fast as possible. However, we
need to take into consideration that adding more hardware to
the system implies that it will consume more power. Clearly,

there is a trade-off between performance improvement and
power consumption. Also, what if the system requires some
other hardware accelerator? Then it can be a critical part since
this will incur even more power consumption.

Our design is based on FPGA platform, which allows us to
customize our hardware implementation without going
through the process of realizing the hardware into a physical
chip. However, the resources on the FPGA are limited. If the
system is complex enough with multiple accelerators needed
and has occupied most of the FPGA resources, we might run
out of space and probably will end up using several FPGAs to
accommodate the customized hardware. Thus, we want a
system that not only executes faster but also consumes less
power and takes less space or resources in the FPGA platform.
Nuan et al. [11], Hani et al. [12] and Zutter et al. [13] focused
on speeding up the RSA [1] cryptography core by enhancing
the modular exponentiation of square and multiplication.
However, they implemented the whole RSA algorithm as a
coprocessor. We followed a similar path, but instead of
implementing the RSA cryptography core in its entirety, we
selectively implemented only a single hardware accelerator
targeted at a single hotspot function of the algorithm. We
employed hardware in the form of a customized IP that
accelerates the computation, so that we can observe a
performance improvement when we execute the software code
with the new integrated hardware.

The rest of the paper is organized as following: Section II
will cover the system architecture of our design, which
describes all the components that are used during the
implementation of the hardware accelerator. This section also
provides information why we chose to accelerate specific
function as a custom IP and how it interfaces with the
microprocessor. Section III presents the experiment results we
obtained when we added the new peripheral to our system.
Finally, the conclusion is drawn in Section IV.

II. SYSTEM ARCHITECTURE

FPGA are widely used because its reconfigurability and
reprogrammability can meet the different needs of the user.
Thus, we chose FPGA because of its flexibility to add a
hardware component into the device and its ease to reprogram
the device. We could implement the same design using a
simulator-based approach. However, we believe FPGA
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platform could generate more accurate performance and
energy consumption readings. We used the Virtex5 FPGA
board [7] to interface our IP with Microblaze processor [8].
The overall system architecture is shown in Figure 1. Our
system contains the following microprocessor, peripherals,
and buses for intercommunication: Microblaze, BRAM, Local
Memory Bus (LMB), Processor Local Bus (PLB), RS232,
Timer, Interrupt and our customized accelerator. Microblaze
is a soft-core microprocessor and it is of RISC architecture
optimized for Xilinx FPGA boards. Microblaze is the only
soft-core processor Virtex5 supports and it runs at 125 MHz.
This processor is responsible for the execution of all
instructions and communication among peripherals. BRAM is
a Block RAM memory system with 64 KB memory space and
the main purpose of this peripheral is to hold all instructions
and data to be executed during the process. Microblaze access
either instruction through ILMB or data through DLMB.
These two buses are 32-bit wide. The LMBs are only
connected to the Microblaze because it is the only component
responsible for executing instruction and its data. The PLB
provides communication between Microblaze and all the
peripherals. If any peripheral needs to access another
peripheral, PLB is the one accountable for this communication
as well. RS232 is in charge of receiving and sending data to
the user via HyperTerminal. Thus, we use RS232 to verify the
results of RSA encryption/decryption between with
acceleration and without acceleration approaches. We use a
timer to gather information about how many clock cycles
certain process takes. The interrupt peripheral is needed since
we want our process to be interruptible because in an event
that Microblaze needs to execute an instruction with higher
priority, then any other peripheral can be interrupted. Finally,
we have Power_HW(2, n) IP, which is our customized
accelerator. It requires 12 slices and 133 LUTs. Thus adding
the custom hardware, as shown in Figure 1, increased the
usage of overall FPGA resource by 6% with respect to the
hardware platform without acceleration. Microblaze will
determine when our customized peripheral will be used and
will be responsible for collecting the data provided by the
customized hardware and sending the data to other peripherals
connected through the same PLB bus.

—
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64 KB

ILMB DLMB PN

= <::> Interrupt
-]
® - J
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)
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Figure 1. Power_HW IP Interfacing Microblaze

Since FPGA is reconfigurable, Microblaze can be specified
to run up to 125 MHz, its maximum speed. Moreover, any
peripheral  connected through PLB has  dual-port
communication, meaning that each peripheral can send data to
and receive data from the PLB. Then, if any other peripheral
or another customized hardware should be connected, it would
be listed at the right side of the bus like the other peripherals.
It also should be kept in mind that the PLB runs at the same
speed as Microblaze to keep reliability consistent. Hence, our
customized IP will also run at 125 MHz since it is also
connected to the PLB.

PrimeNum() _ _

GCD() N

Figure 2. RSA Functions

Power()

Encrypt()

i

The key point of our design is to identify which function
executes most of the time and how long the entire process
takes. The RSA software code in this specific design has four
functions which are PrimeNum(), GCD(), Encrypt() and
Power(), as shown in Figure 2. PrimeNum() provides a prime
number every time it is called. RSA uses the multiplication of
two prime numbers to decrypt and encrypt the data. The
GCD() function determines the greatest common divisor since
we know that two numbers are coprime if their greatest
common divisor equals 1. This function is used in the process
of generating the public key and private key. The Encrypt()
method takes on the core mathematical operation of RSA
algorithm, which is to calculate X to the power of Y modulo
N. It performs either the encryption of the original data to
convert it into a cipher data or the decryption of the cipher
data to produce back the original data, depending on the
parameter. Power() calculates 2 to the power of n, where n =
0, 1,..., 31. Based on the specific software implementation we
use in this design, Power() actually is called by Encrypt() and
its main functionality is to prepare the data into a specific
format in order to calculate X to the power of Y modulo N. In
[9], Chang et al. profiled the RSA algorithm using
Intel® VTune™ Performance Analyzer [5] to gather
information about which part of the software code takes most
of the execution time, defined as hotspot function. They
indicated Power() function as the hotspot function for RSA.
Thus, we implemented a hardware accelerator that performs
the same operation as software function Power() but the only
difference is that our customized hardware will complete its
task in fewer clock cycles. Consequently, it requires less
execution time as we will see in the next section. Realizing all
the RSA functions in hardware implies that the overall
execution time will be faster. However, this will increase the
usage of system resource, thus increasing the total power
consumption. Our focus is to achieve the best speedup for the
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overall system while minimizing the power and energy
consumption, which naturally leads to the hotspot function
acceleration.

III. EXPERIMENTAL RESULTS

The experiment consists of encrypting and decrypting 32-
bit (4-byte) data. At first, the pure software code is executed
without the existence of the customized hardware, and we
observe that it takes approximately 39100 clock cycles to
finish the process of encrypting and decrypting a 4-byte data,
as shown in Table 1. Since, Microblaze runs at 125 MHz, it
takes about 0.31 ms to execute the entire process. Then, we
followed the same process of encrypting/decrypting data, but
each time the data size is incremented by multiple of ten to be
consistent. Thus, the test set consists of data size from 4, 40,
and all the way to 40000 bytes. As the data size increases, the
number of clock cycles hence the execution time increases
accordingly. They keep almost a constant relationship since
the number of cycles for each data encryption/decryption is
the same. The data-flow of the RSA software code is shown in
Figure 3.

[ Primekumi | GCD( ) Encrypti ) ]—b[ Powver| ) ]

Figure 3. RSA Flow _ without Acceleration
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Figure 4. RSA Flow _ with Acceleration
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Next, the Microblaze interfaces with our customized IP
which is embedded into the FPGA. Partial of the RSA
software code is now replaced by the corresponding hardware
part. Here, the native software function Power() that computes
2 to the Nth power is replaced by a coprocessor Power_HW().
The FPGA system is a memory-mapped system, thus each
peripheral or embedded IP [6] is accessed by providing its
corresponding memory address location. Hence, the
Power_HW() is called upon by providing its memory location
and the integer N. We execute the modified RSA software
code to call the Power_HW( ) instead, as shown in Figure 4.
Now, the same data is loaded to Power_HW() as the one we
used to call native software function Power(). The observation
is that encrypting/decrypting 4 bytes of data takes 35000 clock
cycles as shown in Table II. This leads to an execution time of
0.28 ms. The overhead of accessing the hardware accelerator
through the PLB bus is 7 clock cycles plus 2 to 3 cycles to
perform a load or store operation. The Power_HW() takes
about 58 clock cycles to perform the operation of two to the
power of N. RSA pure software function Power() takes about
118 clock cycle to finish the same execution and return the
result. Hence, the custom IP performs 2 times faster than its
pure software counterpart. If we compare the execution time
of pure software approach with the hardware accelerator
approach, we can examine that the overall speedup of our
customize hardware is more than 10%, and as we increase the
input size data, the speedup we achieves converges to a

constant reading of 10.58%, as illustrated in Figure 5. We can
apply Amdahl’s Law [14] to verify the speedup we obtained
while adding the custom hardware. Based on our observation,
22% of total execution time of RSA code is spent on Power()
function, which 1is converted into hardware and this
conversion acquires a speedup of 2, then we can see that the

Tpinls where p = 0.2 and s = 2. Then,

the overall speedup is 1.1235, which also means the ideal
speedup that can be obtained is 12.35%. We obtained an
overall speedup of 10.58%. But we need to take into
consideration that the timer is also connected to the PLB bus;
thus it takes about 7 cycles to access the timer over the PLB
bus. Therefore, this affects the overall execution time of the
system and the overall speedup we achieve.

We utilized XPower Analyzer [10] to get the power
consumption of the system. Xilinx claims that XPower
Analyzer provides accurate power analysis after design
implementation. The power consumption for the hardware
system without the customized IP is 1. 2519 Watts and with
the added IP is 1.2653 Watts, a 1% increase. Table I and
Table II show the number of clock cycles and execution time
of the two different implementations. Since we know the
power consumed, we can calculate the energy for the RSA
without customized IP approach and with the customized IP
approach respectively. From these two tables, we can observe
that our design executed the RSA algorithm effectively and
the energy consumption is reduced after adding the embedded
peripheral. Figure 6 shows the energy reduction of our
hardware design over software. Moreover, the energy
reduction converges to a constant reading of 9.62% with
increased input data size. Hence, our hardware acceleration
design not only gained speedup but also reduced the energy
consumption. Figure 7 illustrates the normalized energy
consumed per byte over the 4-byte input case, based on the
data from Table II. We examined that the energy consumption
per byte decreased as the data size increased.

overall speedup =

TABLE I. RSA WITHOUT ACCELERATION

# of CIk Cycles Exec Time Energy uJoules /
Bytes (1076) (ms) (mJoules) Byte
4 0.0391 0.3127 0.3915 97.8795
40 0.3905 3.1241 39110 97.7756
400 3.8764 31.0109 38.8219 97.0547
4000 38.8182 310.5456 388.7658 97.1915
40000 388.2355 3105.8842 3888.1944 97.2049
TABLE II. RSA WITH ACCELERATION
# of Clk Cycles Exec Time Energy uJoules /
Bytes (1076) (ms) (mJoules) Byte
4 0.0350 0.2799 0.3541 88.5358
40 0.3494 2.7955 3.5372 88.4308
400 3.4656 27.7245 35.0809 87.7022
4000 34.7102 277.6816 351.3616 87.8404
40000 347.1555 2777.2442 3514.1582 87.8540
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However, the energy consumption converges if data size is
over 1 Kbytes. This is due to the factor that our system
speedup also converges once the data size is above 1 Kbytes.
Therefore, we can estimate how long it can take to encrypt
and decrypt a larger data size of 400 Kbytes, 4 Mbytes, or
even more. Basically we would expect the same speedup and
energy reduction as shown in Figure 5 and Figure 6
respectively. If input data set is greater than BRAM capacity,
it is required to put it into off-chip memory. In this case we
employ a 256MB DDR memory. It takes 1074225 and 916194
clock cycles to encrypt/decrypt 4-byte data with and without
acceleration respectively. If we compare with the BRAM case,
BRAM-based design is more than 26 times faster than DDR-
based design in both scenarios.
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Figure 6. Energy Reduction of with-Acceleration over without-Acceleration

IV. CoNncLUSION

The implementation of an entire software algorithm into
hardware is not always the best choice since we lose the
reconfigurability and reprogrammability. We do not just want
to accelerate our process but also want to reduce the energy
consumption. In this paper, we explore the technique of
identifying the hotspot function of a program and then
realizing it as a hardware accelerator using RSA cryptography
as an example design. The coprocessor helped the system to
execute the specific function while the main processor
executed the remaining of the code. We achieve an overall

speedup of more than 10% and reduced its energy
consumption by more than 9%. This technique can be
implemented in other systems to explore ways of minimizing
the hardware overhead and energy consumption as to
maximizing its overall throughput. For future work, we are
going to explore the hotspot functions for AES, Blowfish,
MDS5, 3DES and IDEA cryptography and implement them as
customized hardware so that we can compare their execution
time and energy reduction the same way we accomplished for
the RSA cryptography.
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