Lin Li, Xiuyi Zhou, Jun Yang, Victor Puchkarev University of Pittsburgh

THRESHOT: AN AGGRESSIVE TASK SCHEDULING APPROACH IN CMP THERMAL DESIGN

Outline

- Introduction
- ThresHot Algorithm
- Experiment and Results
- Conclusion

Thermal Management is Critical

- Technology ↓ → Power Density ↑
- Temperature ↑
 - Circuit performance ↓
 - Reliability \downarrow $MTTF = C \times e^{\frac{E_A}{kT}}$

■ Thermal runaway
$$T \uparrow \rightarrow P_{leakage} \uparrow \rightarrow P_{total} \uparrow$$

Packaging and cooling cost ↑

Task Scheduling Can Help

- Conventionally
 - Performance throttling, e.g. DVFS
- Our objective
 - Preserve performance ↓ DVFS
- Rationale
 - Workloads stress processor differently in space and time
- Approach
 - Find a good schedule of workloads to keep temperature low

Task Scheduling Trade-offs

Pros:

- No need to change hardware
- Flexible: scheduling algorithm can be changed in OS

Cons:

- Scheduling overhead
- Lack accurate hardware details

Task Scheduling Algorithms

- Objective: Reduce thermal emergencies
 - Improve performance
 - Improve reliability
- Naïve scheduling algorithms
 - Random
 - Round-Robin
 - Power balancing

Outline

- Introduction
- ThresHot Algorithm
- Experiment and Results
- Conclusion

Temperature Slack

- Temporal temperature slack in a single processor
 - Task scheduling can reduce thermal emergencies [Yang et al. ISPASS 2008]
- Spatial and temporal temperature slack in CMP
 - How to schedule tasks to minimize total thermal emergencies?

Thermal Model

 Han, Koren, Krishna, "TILTS: A Fast Architectural-Level Transient Thermal Simulation Method," J. of Low Power Electronics, 2007.

$$T(n) = AT(n-1) + BP(n-1)$$

Understanding the Model 1

- AT(n-1) describes the temperature drop at time n, if there is no power
 - Available temperature slacks formed

Understanding the Model 2

- BP(n-1) describes the temperature increase due to injected power of different tasks
- Task scheduling is to find a mapping between these increases and the thermal slacks.

Fast Temperature Calculation

- Temperature rises due to power hardly change from core to core
- Calculate AT(n-1) and BP(n-1) once → T(n) for all possible schedule

TSM: Temperature Slack

Scheduling Hot Hazard Tasks

- Hot hazard jobs
 - Too hot even on the coolest core
 - Decision: Map it to the coolest core
 - Minimize DVFS penalty in the current scheduling cycle

Scheduling Mild Tasks

Mild jobs

- A schedule can be found w/o DVFS
- Goal is not to average the temperature
- Rather, reserve cool core resources for hot hazard tasks in the future

ThresHot Scheduling with

Tasl	TS]	<u> 1</u>	2	3	4
Core	1	0.415	8.973	-7.617	12,322
	2	0.773	9.285	-7.259	12.635
	3	0.524	10.158	-7.507	16.503
	4	0.857	9.407	-7.175	12,975
	\sum_{i}^{n}	2.569	37.823	-29.558	54.435

Outline

- Introduction
- ThresHot Algorithm
- Experiment and Results
- Conclusion

Experiment Methodology

- Thermal model: HotSpot 4.0 + TILTS
- Power trace
 - Running real SPEC2K benchmarks
 - Extracted from performance counter
- Hardware DVFS:
 - Triggered on/off at 86.5/85.5
 - Frequency scaling: 0.7
 - Voltage scaling: 0.92
 - DTM triggering overhead: 30 us
 - Schedule interval: 8ms

Experiment Methodology

 Quad core floorplan based on P4 Northwood: 93 function units with shared L2 cache

Performance Comparison

- ThresHot minimizes thermal emergencies to mitigate the performance loss from DVFS
- 13% and 6% reduction in performance penalty over "Base" and "Balancing"

Reliability Comparison

Algorithm	<10° C	[10° C~15	[15° C~20	>20° C
Baseline	99.91	0.07	0.02	0.01
Random	97.45	1.55	0.68	0.32
Balancing	95.50	2.67	1.23	0.60
RR-1	95.83	2.60	1.05	0.52
RR-2	96.91	1.93	0.78	0.38
ThresHot	98.22	1.21	0.43	0.14

 Thermal cyclings caused by the significant temperature variations are minimal in ThresHot

Thermal Behavior Comparison

Conclusion

- ThresHot algorithm does better than RR and Balancing in reducing thermal emergencies, and thermal cyclings
- ThresHot improves the performance in penalized time period by 13% and 6% compared to Baseline and Balancing
- Function unit level thermal control

Thank you

Questions?