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Thermal Management 1is Critical
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Task Scheduling Can Help

Conventionally
Performance throttling, e.g. DVFS

Our objective
Preserve performance — v DVFS

Rationale
Workloads stress processor differently in space and
time

Approach

Find a good schedule of workloads to keep
temperature low




Task Scheduling Trade-oftfs

" Pros:

No need to change hardware

Flexible: scheduling algorithm can be changed in OS
= Cons:

Scheduling overhead
Lack accurate hardware details




Task Scheduling Algorithms

= Objective: Reduce thermal emergencies
Improve performance
Improve reliability

= Naive scheduling algorithms

Random
Round-Robin
Power balancing
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Temperature Slack

= Temporal temperature slack in a single processor

Task scheduling can reduce thermal emergencies [Yang et al. ISPASS 2008]

= Spatial and temporal temperature slack in CMP
How to schedule tasks to minimize total thermal emergencies?
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Thermal Model

= Han, Koren, Krishna, “"TILTS: A Fast Architectural-Level Transient
Thermal Simulation Method,” J. of Low Power Electronics, 2007.

T(n) = AT(n-1) + BP(n-1)




Understanding the Model 1

» AT(n-1) describes the temperature drop at time n, if
there is no power
Available temperature slacks formed
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Understanding the Model 2

BP(n-1) describes the temperature increase due to
injected power of different tasks

Task scheduling is to find a mapping between these
increases and the thermal slacks.
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Fast Temperature
Calculation

= Temperature rises due to power hardly change from core
to core

= (Calculate AT(n-1) and BP(n-1) once — T(n) for all
possible schedule




TSM: Temperature Slack
TRkatrix 2 3 4
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Scheduling Hot Hazard Tasks
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* Hot hazard jobs
Too hot even on the coolest core

Decision: Map it to the coolest core
Minimize DVFS penalty in the current scheduling cycle




Scheduling Mild Tasks

Not exceeding threshold

. Reserve cool core resource
C2:

012/3}//
n-1

= Mild jobs
A schedule can be found w/o DVFS
Goal is not to average the temperature

Rather, reserve cool core resources for hot hazard tasks in the
future




ThresHot Scheduling with
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Experiment Methodology

* Thermal model: HotSpot 4.0 + TILTS

= Power trace
Running real SPEC2K benchmarks
Extracted from performance counter

= Hardware DVFS:

Triggered on/off at 86.5/85.5
Frequency scaling: 0.7

Voltage scaling: 0.92

DTM triggering overhead: 30 us
Schedule interval: 8ms




|  Experiment Methodology

* Quad core floorplan based on P4 Northwood: 93 function
units with shared L2 cache
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Performance Comparison
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ThresHot minimizes thermal emergencies to mitigate the performance loss from DVFS
13% and 6% reduction in performance penalty over “Base” and “Balancing”




Reliability Comparison

Algorithm  <10° C [10° C~15 [15° C~20 >20° C
Baseline 99.91 0.07 0.02 0.01
Random 97.45 1.55 0.68 0.32
Balancing 95.50 2.67 1.23 0.60
RR-1 95.83 2.60 1.05 0.52
RR-2 96.91 1.93 0.78 0.38
ThresHot 08.22 1.21 0.43 0.14

= Thermal cyclings caused by the significant temperature variations are
minimal in ThresHot




. _Thermal Behavion Comparlson
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Conclusion

= ThresHot algorithm does better than RR and Balancing in
reducing thermal emergencies, and thermal cyclings

* ThresHot improves the performance in penalized time

period by 13% and 6% compared to Baseline and
Balancing

= Function unit level thermal control
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