
Optimizing a Multi-Core Processor for Message-Passing Workloads ∗

Niladrish Chatterjee, Seth H. Pugsley, Josef Spjut, RajeevBalasubramonian
School of Computing, University of Utah

{nil, pugsley, sjosef, rajeev}@cs.utah.edu

Abstract

Future large-scale multi-cores will likely be best suited
for use within high-performance computing (HPC) domains.
A large fraction of HPC workloads employ the message-
passing interface (MPI), yet multi-cores continue to be op-
timized for shared-memory workloads. In this position pa-
per, we put forth the design of a unique chip that is opti-
mized for MPI workloads. It introduces specialized hard-
ware to optimize the transfer of messages between cores. It
eliminates most aspects of on-chip cache coherence to not
only reduce complexity and power, but also improve shared-
memory producer-consumer behavior and the efficiency of
buffer copies used during message transfers. We also con-
sider two optimizations (caching of read-only and private
blocks) that alleviate the negative performance effects ofa
coherence-free system.

Keywords: MPI, cache coherence, private and read-only
blocks, buffered and bufferless copy for MPI.

1. Introduction

High-performance processors of the future will inevitably
incorporate hundreds of processing cores. Already, there
are plans for processors with 64 cores (Tilera [26]), In-
tel’s 80-core Polaris prototype [27] and even graphics en-
gines with 960 cores (NVIDIA Tesla S1070 [24]). Most
computer scientists agree that the biggest roadblock to the
widespread adoption of large-scale multi-cores is a lack of
multi-threaded software [4]. There are concerns on multi-
ple fronts: (i) What kinds of desktop/laptop applications are
amenable to parallelization across hundreds of cores? (ii)
How do we develop programming models that make it easier
for programmers to partition applications across hundredsof
threads? If there are no satisfactory answers to these ques-
tions, most desktop/laptop processors will accommodate tens
of cores and large-scale multicores with hundreds of cores
will likely be used exclusively in the high-performance com-
puting (HPC) and server domains.

In the HPC domain, several applications with high de-
grees of thread parallelism have already been developed and
highly tuned. These (mostly legacy) applications have been
developed with the message-passing interface (MPI) so they
can be executed on hundreds of CPUs across a cluster of
workstations. It is extremely likely that when hundred-core

∗This work was supported in parts by NSF grants CCF-0430063, CCF-
0811249, NSF CAREER award CCF-0545959, Intel, SRC grant 1847.001,
and the University of Utah.

CPUs are made available, they will be mostly employed to
execute these legacy MPI applications – not only are these
applications highly parallel, the code-base for them already
exists. It is therefore important that the architecture of large-
scale multi-cores be significantly revamped to target the im-
portant class of MPI workloads.

If current trends continue, the architecture of future multi-
cores will very likely resemble the following. Each core will
have private L1 instruction and data caches. Many cores will
share a large L2 cache that may be physically distributed on
chip, allowing each core to have quick access to a portion of
the L2 cache [20, 28]. Intelligent page coloring will ensure
that L1 misses are serviced by a portion of L2 that is rela-
tively close by [3, 13]. Cache coherence will be maintained
among the single L2 copy of a block and possibly numer-
ous L1 cached copies. To allow scalability across hundreds
of cores, a directory-based coherence protocol will be em-
ployed [14]. Each L2 block will maintain a directory to keep
track of the L1 caches that have a copy of the block.

Today, there is an over-riding sentiment that every mul-
tiprocessor must support cache coherence in order to be
able to execute shared-memory programs. The OS is one
such shared-memory program that executes on every sys-
tem. However, there is a fairly hefty price being paid to
implement cache coherence [14]: (i) storage overhead for
the directory, (ii) controller logic to implement the non-
trivial operations associated with each coherence message,
(iii) the delay/power overheads and indirection involved in
accessing blocks via a directory-based protocol. The value
of cache coherence is highly diminished in a processor that
almost exclusively executes MPI workloads. Hence, there
is a need for an architecture that does not incur the usual
overheads of cache coherence when executing MPI work-
loads, but that ensures correctness when occasionally han-
dling shared-memory code (the OS, the MPI runtime, etc.).

MPI applications and run-times typically assume generic
off-the-shelf hardware to allow parallelization across anar-
bitrary cluster of workstations. This model will change in the
future if the entire application executes on one (or a few) ag-
gressive multi-core. The run-time libraries need not rely on
generic inter-processor communication primitives, but can
leverage special primitives hardcoded within the multi-core.
The plentiful transistor budgets in future multi-cores allow
for such hardware specialization. The design of efficient
inter-processor communication primitives would therefore
be an important component in designing a processor opti-
mized for MPI workloads.



In this position paper, we present a chip that is optimized
for the execution of MPI workloads. It not only removes the
negative impact of cache coherence on the execution of MPI
programs, it also adds support for efficient messaging be-
tween MPI threads. Efficient MPI messaging on a multi-core
is typically hampered by cache coherence; the elimination of
cache coherence therefore aids in the design of efficient mes-
saging mechanisms. Thus, the two innovations in this paper
are synergistic.

This position paper primarily puts forth the proposed ar-
chitecture with almost no quantification of the expected ben-
efits. In places, we do provide some quantification as evi-
dence of promise. The paper is organized as follows. Sec-
tion 2 discusses related work. Section 3 describes how the
overheads of cache coherence can be largely eliminated. Sec-
tion 4 describes the hardware support to accelerate message-
passing between threads. We draw preliminary conclusions
in Section 5.

2. Related Work

To date, very few multi-processor systems have consid-
ered eliminating cache coherence. In small-scale multi-
processor systems, shared-memory programs are expected to
be prevalent and the overheads of cache coherence are con-
sidered worthwhile. Exceptions include IBM’s Cell [15] that
relies on software to manage memory transfers to and from
local memory. The Cell avoids dealing with cache coher-
ence by treating local store memory as separate memory lo-
cations. Intel’s 80-core Polaris prototype [27] was designed
to have limited functionality and did not implement cache co-
herence. MPI systems have traditionally executed on clusters
of workstations without any support for hardware cache co-
herence. The execution of MPI applications on multi-cores
is a relatively recent phenomenon and these multi-cores have
so far been designed to efficiently handle shared-memory ap-
plications. If future multi-cores are going to primarily exe-
cute MPI applications, it is important to architect a design
that removes the overheads of cache coherence while still
correctly and efficiently handling shared-memory codes (the
OS and MPI run-time). This paper is the first to propose the
elimination of L1 cache coherence, while still allowing some
“safe” caching within L1 to alleviate occasional loss in per-
formance.

In the rest of this section, we briefly present innovations
for speeding up the communication phases of MPI programs
over traditional, distributed memory clusters and also on
shared memory systems.

2.1 Internode Communication

Internode communication has been accelerated by the us-
age of gigabit networks (Infiniband/Myrinet) and techniques
like RDMA [19] (remote direct memory access) where the
network card directly copies data from the sender’s address
space to that of the receiver, bypassing the OS. The zero-
copy principle that forms the basis of RDMA is similar in its
theme to our proposed innovations.

2.2 Intra-CMP Communication

The techniques for faster intra-CMP communication that
have been proposed in existing literature can be classified as:
(i) NIC-based loopback, (ii) User space memory copy and
(iii) Kernel assisted memory copy

Of these, the NIC-based technique is the most naive tech-
nique, where the NIC on detecting that the destination of the
message is on the same node as the sender, simply loops the
message back instead of injecting the message into the net-
work . As the message has to pass through the entire TCP/IP
protocol stack, it has high latency [6] and is agnostic of the
memory organization.

We next discuss the various forms of the second technique
and also a case of kernel assisted copy.

2.2.1 User Space Memory copy

Baseline Dual Copy Mechanism This is the naive ap-
proach used for MPI send/receive on a shared memory archi-
tecture [11]. This involves the creation of a buffer area in the
address space shared by the receiver and sender. A message
is passed by copying it out of the sender’s data structure into
the shared buffer and subsequently into the receiver’s data
area. Besides the overheads of O(P 2) memory requirement
(P = number of processes) and polling for data, this method
suffers from cache pollution effects of multiple copies.

Enhanced Buffer Management Under this message-size
guided scheme [11], small messages are transfered in the
exact same way as in the previous case. But large mes-
sage transfers take place in a fragmented (possibly pipelined)
manner using smaller send buffer cells. The sender notifies
the receiver when data is available thus eliminating the need
for polling. The use of small receive buffers and the potential
reuse of the small send buffers leads to better cache behavior.

The Nemesis-communication subsystemIn this sys-
tem [7, 8], there is a single receive buffer per process whichis
accessed via lock-free queuing primitives leading to smaller
memory footprints and faster queuing of message segments.
Intelligent organization of the shared data structures (like
placing the head and tail pointers of the queue in the same
cache line) as well as innovations like shadow head pointers
and non-temporal stores, enable Nemesis to have the lowest
latency and significantly better cache usage.

2.2.2 Kernel Assisted Message Transfer
This is a single copy mechanism [17, 16], where the OS
maps the sender or receiver’s private area into its own ad-
dress space and performs the copy directly. The benefit of
a single copy and bufferless transfer is obtained at the cost
of expensive system calls. A hybrid technique comprising
the usual dual-copy transfer for small messages and kernel
assisted techniques for message sizes above a threshold has
been proposed in [12].

2



3. Eliminating Cache Coherence

3.1 Motivation

As described in Section 1, cache coherence keeps several
private data caches up to date with one another. Cache co-
herent systems incur various overheads. There is a die area
cost in the form of increased storage for the directory, which
scales linearly with the number of cores. This has been pre-
viously recognized as a problem and commercial multipro-
cessor systems have handled it by tracking information at a
coarser granularity [14, 18]. That, in turn, results in broad-
casts to groups of processors and increased network traf-
fic/power. Even with these optimizations, the directory in
systems with hundreds of cores can be expected to occupy
several megabytes. Additionally, a fair amount of network
traffic is invoked on any coherence operation, in particular
any write-request can require an invalidate message to ev-
ery node in the network in the worst case. In addition to the
power cost, there is a significant latency penalty as well. This
is especially true when cache coherence introduces an extra
level of indirection to access shared data, as is described be-
low.

3.1.1 Producer-Consumer Data Sharing

A workload that shows off the problems of cache coherence
is one with producer-consumer behavior. In all producer-
consumer applications, one thread populates a memory loca-
tion with useful data, and another thread reads that memory
location. In cache coherence terms, one core holds a block
in modified state, and then another core requests to be added
as a reader of that block. This request is sent to the block’s
directory (part of the L2 cache in a multi-core processor),
which forwards the request to the core that holds the block in
modified state. The producer core then forwards the block to
the consumer. This triangle of coherence traffic happens ev-
ery time one core attempts to consume data produced by an-
other core. Additionally, if the same data structure is reused
by the producer, then it must again get the blocks holding
that data structure in modified state, which generates invali-
date coherence messages. The producer cannot proceed with
its write unless it receives acknowledgements from all cores
that have a cached copy of that block. A directory protocol
thus introduces three network messages in the critical pathof
many reads and writes and is therefore expensive in terms of
delay and power.

3.1.2 MPI

Most MPI programs do not employ shared-memory. But if
the application executes on a platform that offers shared-
memory, the MPI run-time library will typically adopt the
shared-memory programming model to reduce the number
of intermediate copies during message transfer. The MPI
run-time library’s shared-memory implementation of mes-
sage transfer is an important example of producer-consumer
type sharing behavior. Messages are sent using buffers where
the producer thread’s data structure is copied into the run-
time library’s shared-memory buffer space. The consumer

thread then copies this data from the buffers into its own local
data structures. The run-time library’s shared-memory buffer
space is therefore repeatedly written into and then read from.
Cached copies of these buffers are therefore subject to a large
amount of coherence traffic. Once the buffer has been read
by the consumer, the same region of memory can be reused
for subsequent messages, resulting in many invalidates, espe-
cially if there are many sharers (depends on the type of MPI
message).

3.2 Proposed Design – Read-Only Blocks

Cache coherence is needed because of the possibility of
multiple L1 caches having copies of a cache line that has
the potential of changing. There is no need for cache co-
herence operations if each writable block is only stored in
one location that all potential readers/writers can easilyac-
cess. Many benchmarks have small sets of cache accesses
to lines that are both written and shared between cores, and
some have very large numbers of cache accesses to read-only
lines [5]. We therefore impose the restriction that each core’s
L1 cache store blocks that are read-only. If a block can be
written into, it is placed only in the shared L2 cache and not
in any L1 cache, eliminating multiple copies of this block
and any coherence activity on a write or read. Accesses to
read-only blocks are handled very similarly to the way they
are handled in the traditional cache coherent system (with-
out the overheads of cache coherence). Writable blocks are
never found in L1 and always incur the higher latency cost of
accessing L2. Before we describe the mechanisms required
to identify blocks as read-only, let us consider the impact of
such an organization on performance.

Since there is no change to how read-only blocks are ac-
cessed, they will frequently incur short L1 access latencies
on a read, just as in the cache coherent baseline. Note that
the L1 instruction cache only contains read-only blocks and
the proposed model has no impact at all on the L1 instruction
cache’s design. Since the L1 data cache now no longer ac-
commodates writable blocks, it can accommodate more read-
only blocks than the baseline and yield a higher hit rate for
such blocks. Access to writable blocks will first require a fu-
tile L1 look-up, followed by an L2 cache access. Compared
to the baseline cache coherent system, this may or may not
incur longer latencies. If the baseline system would have
yielded an L1 hit for the block, the proposed model ends
up being less efficient. If the baseline system would have
yielded an L1 miss and would have required coherence oper-
ations to locate a clean cache copy, the proposed model ends
up being more efficient.

It is worth noting that in future multi-cores, an L2 access
may not be significantly more expensive than an L1 access.
Large multi-core L2 caches are expected to be partitioned
into megabyte-sized banks [22], each bank possibly asso-
ciated with a core. Assuming that the OS can implement
good page coloring policies, a core should be able to find its
data in its own L2 bank or in a neighbor’s L2 bank. L2 ac-
cess time is therefore equal to the cost of a single bank’s
access with an occasional additional network hop or two.

3



According to CACTI 6.0 [23], a 64 KB L1 cache incurs a
3-cycle delay penalty (3.0 GHz clock speed at 65 nm tech-
nology) and a 1 MB L2 cache bank incurs a 6-cycle delay
penalty. Thus, the elimination of L1 caching for writable
blocks can have a negative effect on performance if the base-
line system had yielded several L1 hits for such blocks. Our
own Simplescalar [9] out-of-order processor simulations for
many single-threaded SPEC programs show that each addi-
tional cycle in L1 latency for every access results in a 3% per-
formance slowdown. The proposed model therefore has an
18% upper bound for performance degradation when using
out-of-order cores (assuming all blocks are writable, there is
no saving in cache coherence traffic, and page coloring al-
lows perfect localization).

We are also presently assuming that an L1 miss must be
flagged before the L2 can be accessed. This adds three more
cycles to the access time of writable blocks. We believe
that this negative effect can be alleviated by having a simple
structure that predicts if the address is writable or read-only.
If the address is predicted to be writable, the L2 access can
be initiated in parallel with the L1 access.

Next, we examine how a block is categorized as read-only
or writable. We adopt a simple mechanism to identify read-
only blocks that relies on a two-bit counter and two addi-
tional bits for each cache line, one for denoting if the line
is cached in L1, and another for denoting whether or not
the line is dirty (note that the latter is already part of most
caches). When a line is brought in to the cache, the counter is
set to a value of two. EveryN cycles, counters for all cache
lines are decremented (in a saturating manner). If a line’s
counter has reached zero and its dirty bit is not set, we deem
the block as read-only (since there have been no writes to this
block in at leastN cycles, whereN is sufficiently large). On
subsequent accesses to this block, the block may be cached
in L1s and a “cached” bit associated with that line is set. Un-
til the counter reaches zero, all accesses of that cache lineare
handled by the L2. If a line is evicted and brought into cache
again, it has to go through this process again to determine if
it is read-only or writable.

This speculative categorization of blocks can occasionally
lead to mispredictions. All writes are directly sent to the L2
cache (note that this does not lead to increased L2 activity be-
cause most multi-cores are expected to adopt write-through
L1 caches). If the L2 notices a write to a block that has its
“cached” bit set, it detects a misprediction. At this point,a
broadcast invalidate is sent to all cores so they evict that line
from their caches. We are attempting to remove directory
coherence overheads and therefore do not attempt to track a
list of sharers. A broadcast operation that is invoked on an
occasional mispredict is likely to incur minor overheads. All
future accesses to that line are handled by the L2.

Our proposed architecture incurs modest overhead in
terms of die area. We require 4 bits of storage per cache line
in L2, instead of the many bits needed to maintain a coher-
ence directory for each cache line. While cache coherence
directories scale in size as the number of cores (and thus po-
tential sharers) increases in the system, our 4 bit overheadis

fixed and does not increase as the number of cores scales.

3.3 Proposed Design – Private Blocks

In the innovation described above, we allow L1 caching
only for read-only blocks that are known to not require cache
coherence operations. Similarly, there is another impor-
tant class of data blocks that does not require cache coher-
ence operations: private blocks that are read/written by only
one core. Private blocks are obviously abundant in single-
threaded and MPI applications. They are also extremely
common in shared-memory programs that are amenable to
data parallelization. By allowing private blocks to also be
cached in L1, the proposed design has an even lower neg-
ative impact on performance while continuing to enjoy the
benefits of a coherence-free system.

The process for the detection of a private block is very
similar to that for read-only block detection. The first coreto
access an L2 block is recorded along with the block (an over-
head oflog(num−cores)). On every subsequent access, the
requesting core id is compared against the id of the first ac-
cessor (similar to the tag comparison that is already being
performed). If they ever differ, a “not-private” bit is set.If at
leastN cycles have elapsed and the block is flagged as pri-
vate, it can be cached in L1. If a request is ever received from
a different core and the “cached” bit is set, an invalidationis
sent to the first accessor and the not-private bit is set.

3.4 Preliminary Analysis

The innovations in this section attempt to design a system
that is free of the implementation overheads of cache coher-
ence. Our hope is that this leads to improved performance
in many workloads, and tolerable performance loss in a few
workloads. The high-level impact on the performance of dif-
ferent workloads is summarized below:

• Shared-memory programs that have high L1 hit rates (in
the baseline cache-coherent system) for writeable and
non-private data will perform poorly in the new model.
Since the proposed design is targeted at MPI workloads,
the only shared-memory codes on the system should be
the OS and the MPI run-time library and the overall im-
pact on MPI applications may be low (we have yet to
verify this).

• Other shared-memory programs that have a high degree
of data parallelization should perform similarly in the
proposed and baseline models as most data will be cat-
egorized as private and cache coherence operations will
not be a major bottleneck.

• Shared-memory programs that have a high degree of
producer-consumer sharing should perform better in the
new system since the latency overheads of cache co-
herence are reduced (assuming that the writable blocks
do not have a high L1 hit rate in the baseline system).
The MPI run-time library that primarily performs buffer
copies falls in this category.

4



• Non-shared-memory programs should behave similarly
in the baseline and proposed systems. This includes
single-threaded applications and the individual threads
of an MPI application.

Overall, an MPI application should perform better in the pro-
posed system because of faster buffer copies. This benefit is
in addition to the lower design complexity for the processor.

We are yet to interface MPI applications with our archi-
tectural simulators. We have also not faithfully simulatedour
proposed design changes. In this initial analysis, we present
some preliminary numbers that estimate the impact of the
proposed changes on the performance of shared-memory
codes.

We use SIMICS [21] with the g-cache module and run
shared-memory benchmarks from the NAS Parallel Bench-
marks suite. Our baseline and proposed systems are 16-core
in-order systems. Note that in-order processors are much
more sensitive to cache access latencies than out-of-order
processors, but lead to reasonably short simulation times.
The cache hierarchy of the baseline system employs a 16 MB
L2 cache, and 64 KB each for private instruction and data
L1 caches. Our proposed system uses the same 16 MB L2
cache, but only uses a single 64KB private instruction cache.
The 16 MB L2 caches are composed of 16 1 MB banks, with
each bank having 6 cycle latency, connected by a grid net-
work. L1 accesses are assumed to have a 3-cycle latency and
L2 accesses are assumed to have a 7-cycle latency (assuming
that page coloring cannot localize every request to the nearest
L2 cache bank). To simulate our proposed system, we first
model a design where all data accesses take the full 7 cycles
of an L2 access, because we do not model any read-only lo-
cal cache. In a second configuration, we allow read requests
to have a lower 4 cycle L2 access time, while writes continue
to be 7-cycle accesses. This is obviously not a faithful rep-
resentation of the read-only and private block optimizations
in this paper, but shows the performance change possible if a
subset of accesses (especially reads) are serviced faster.

Running the NAS Parallel Benchmarks on our baseline
and first proposed configuration shows a performance de-
crease of between 33% and 40%, depending on the bench-
mark. Our second configuration has much better perfor-
mance than the first, but still yields a performance degra-
dation of 2.5% to 19.5%, relative to the baseline (note again
that these simulations are for in-order cores). This indicates
the importance of introducing schemes to encourage selec-
tive L1 caching such as the read-only and private block op-
timizations introduced in this paper. As explained earlier,
shared-memory programs can expect to see a (moderate) per-
formance loss unless they exhibit a high degree of producer-
consumer sharing and that is exactly what we see in the NAS
parallel benchmarks. The hope is that such shared-memory
codes will not be prevalent in a multi-core designed for MPI
workloads.

4. Efficient Messaging
The message passing model has been the natural choice as

an IPC mechanism for large clusters over the years with MPI

being its de-facto standard. While researchers have focused
on reducing network latencies and improving algorithms for
effective bandwidth utilization for overall speedup, there has
not been much work on adapting MPI primitives to a shared
memory environment. However the widespread incorpora-
tion of multicore processors as processing units in clusters,
requires a rethinking of the ways in which MPI can be made
to perform efficiently in such systems.

A hybrid approach of using MPI and threaded-shared-
memory programming paradigms like OpenMP/Pthreads has
been advocated for programming clusters of shared-memory
nodes [25]. However, this would require rewriting a major
volume of existing MPI applications - many of which have
been carefully hand-tuned for performance over years and
moreover their sheer complexity prohibits any major change
of this legacy code-base.

4.1 Motivation

Multicore processors are now ubiquitous. Out of the top
500 supercomputers, 86% are equipped with these shared-
memory compute cores [2] (data for Nov 2008). Researchers
have indicated that for the NAS, NAMD and HPL parallel
benchmarks, on an average, about 50% of the total byte-
volume of data transferred is through intranode communi-
cation [10], i.e., between cores on the same chip and also
between cores on different chips but on the same node.

Extending the processor micro-architecture to provide
support for message passing between cores is now a viable
option. Shrinking process technologies have increased tran-
sistor densities per chip. Since individual cores are unlikely
to increase in complexity due to growing concerns on power
consumption, a part of the excess transistor budget can be
allocated for auxiliary hardware structures to facilitatemes-
sage passing. Since this messaging-controller would be de-
signed for intra-CMP communication and it does not have to
deal with communication with processes running on distant
nodes, its complexity is limited by the number of processing
cores on the chip.

A further motivation for the inclusion of hardware accel-
erators for MPI primitives is the relative inefficiency of exist-
ing software based techniques. We take a look at the draw-
backs and overheads of the techniques described in related
work in the following section.

4.1.1 Drawbacks of software based optimizations
Mutiple copies The optimizations described in Section 2
depend predominantly on a dual-copy mechanism for mes-
sage transfer - a copy out of the private data structure of
the sender into a buffer in the shared address space and a
subsequent copy from the buffer into the receiver’s private
area. The kernel assisted copy method eliminates one of
these copies. But the overheads of the system calls needed
for updating the page tables of the OS (for mapping the
sender/receiver private area to the OS address space) and
also for the actual copy are prohibitive and make this method
worthwhile only for small messages.

5



Figure 1. Cache Coherence Transactions

Cache Pollution The multi-copy mechanisms also have
significant memory footprints owing to buffers needed for
communication between each pair of probable sender and
receiver. This in turn leads to cache pollution. While writ-
ing and reading from the shared buffer, it has to be brought
into the L1 of the sender and receiver respectively. However
there is no reuse of the data in the buffer and if the buffer
is large enough, it can evict frequently used lines from the
cache. This causes cache pollution that can adversely affect
the computation phases of the application and consequently
slow down the entire application.

Cache coherence The enhanced buffer management
scheme and nemesis communication subsystem (described
in Section 2) try to reduce the memory requirements and
cache pollution issues by intelligent buffer organizationand
cache cognizant data arrangement. But a closer look at any
scheme that involves a shared buffer reveals the unavoidable
cache coherence traffic that it generates. Consider the sce-
nario (shown in Figure 1) where core A does a send of the
message stored in its private data space X to core B’s private
data space Y, using the shared buffer SBUF. Each core has
a private L1 cache which is backed up by a shared L2. The
sequence of read and write instructions issued by A and B
to accomplish the transfer and the resulting cache coherence
traffic can be summarised as follows :

• core A issues LD X

• core A issues ST SBUF
core A requests for exclusive permissions on SBUF

invalidation to core B for shared cache line in L1 containingSBUF

acknowledgement of invalidation from core B

• core B issues LD SBUF
core B requests for SBUF in shared state

core A downgrades the status of the cached copy of SBUF to shared

write-back of SBUF from core A’s L1 to L2

• core B issues ST Y

So even a simple send-receive can lead to a large number of
coherence messages - and this number would increase with
message size and obviously with the number of transfers.
If a message spans across several cache lines, and a single
large shared buffer is used for the transfer as in the naive im-
plementation, the coherence traffic will be the worst. How-
ever even in an implementation where the message is split
into smaller segments, the problem is significant. Moreover,
a large part of MPI traffic is comprised of collectives, i.e.,
broadcast like transfers. In such a case the number of send-
receive operations scales with the number of cores and the
coherence traffic is proportionately affected.

4.2 Proposed Hardware Messaging Controller

We advocate using a messaging controller per core that is
responsible for controlling the message passing operations.
Our intent is to reduce/eliminate the overheads associated
with shared buffers and free up the main core from perform-
ing each individual load and store.
The objectives of the controller are to

• accelerate message transfer

• reduce redundant cache coherence traffic

• lead to better cache usage

• free the main core from executing each load and store
(similar to the role of a DMA)

4.2.1 Functional overview of the messaging-controller
The basic mechanism of the transfer comprises of copying
data from the sender’s address space to the receiver’s pri-
vate space directly. To illustrate the desired functionality of
this controller, we will look at the example in the previous
sub-section where processor A sends the data from its pri-
vate space X to core B’s private data structure Y.

1. On a send, X is brought into L2. If the L1 cache has a
write-back organization rather than a write-through one,
the controller needs to do a look-up of core A’s L1. If
the copy of X in L1 is dirty, then a write-back of the
data takes place into L2. If the copy is clean, then L2
has the up-to-date copy. On a L1 miss, the L2 is looked
up and if necessary the data is brought into L2 from the
lower levels of the memory hierarchy following regular
caching rules. If the L1 follows a write-through scheme,
then there is no need to do the L1 lookup.

2. On a receive, Y is brought into L2.. To prevent the
core from reading a stale value of Y while the controller
is carrying out the transfer, any cached copy of Y in B’s
L1 is invalidated. A miss in L2 lookup for Y would
result in the block to be brought into L2 from the lower
levels of the hierarchy.

3. Copy from X to Y. The controller issues a series of
reads and writes to X and Y respectively in the L2 to
accomplish the final transfer. This can proceed in par-
allel with any computation the cores are executing if it
does not involve X or Y.

6



4. Prefetch. On completion of the copy, the controller
prefetches parts of Y into core B’s L1 as it is likely
that core B would access the data in Y in the near future.

4.2.2 Asynchronous Communication
In the procedure outlined above, since there is no interme-
diate buffer, core A can modify the contents of X only after
the transfer is complete. The mechanism is thus best suited
for synchronous communication, i.e., when computation can
advance only on successful completion of communication.

In any message passing system, there is also provision
for asynchronous blocking and non-blocking communica-
tion [14]. Asynchronous mode allows an application to do
a send-receive and proceed with computation (potentially
modifying/using the private send-receive data structures) be-
fore the entire communication is completed. In the blocking
case, the computation can proceed only when the process
receives a confirmation that the data has been buffered by
the system, while in the non-blocking case, theoretically the
computation can proceed immediately after posting a send
or receive, but the transfer is carried out at an undetermined
time.

After posting an asynchronous send, the core A might
choose to reuse the data area X. Meanwhile, the matching re-
ceive operation by core B might not have been issued. This
necessitates buffering the data so as to avoid violating the
semantics of the send operation.

Approach 1 We propose to do the buffering directly in L2,
bypassing the L1s of either core. Thus after steps 1 and 2
in the transfer procedure, the data from X is copied into the
shared buffer and the control is returned to the sender. This
avoids L1 cache pollution and also eliminates the cache co-
herence traffic as before.

Approach 2 We can also stall the processor after the asyn-
chronous send and allow forward progress only when a
matching asynchronous receive is encountered. Though this
does not affect the correctness, the coerced synchronous
behaviour may be unacceptable in some cases - where
communication-computation overlap is desired.

Out of the different send modes provided by the MPI
standard [1], the two most widely used are MPISend and
MPI ISend - but they do not need to allow immediate reuse of
the send buffer. While MPISend is free to be blocking/non-
blocking or even wait for a matching receive before return-
ing control, the MPIISend semantics are such that a reuse of
the send buffer is allowed only after receiving confirmation
through a successful MPIWait and MPITest call to ensure
that the data has been copied out of the send buffer. This al-
lows us to use our default bufferless transfer mechanism in
both cases.

4.2.3 Collective communication
In MPI parlance, collectives refer to communication rou-
tines that do many-to-one and one-to-many communica-

tion. There are a number of such routines viz. MPIBcast,
MPI Gather, MPIAllgather, MPI Scatter and MPIAlltoall,
each of which is comprised of multiple point to point mes-
sages. In our scheme, each MPI collective would be han-
dled at the granularity of the individual transfers that make
up the call. For example, during a MPI scatter, the root pro-
cess sends each segment of a message to one of the receivers.
Thus the message passing hardware has to carry out the trans-
fer operation with the root process as the sender and each
other process as the receiver. For a pair of processes, the
copy would take place in the highest level of the memory hi-
erarchy that these share. During collective operations, reuse
of the send buffer is generally allowed only after the message
transfer is completed - hence the controller can operate in a
bufferless mode.

Since a collective would entail copying out various frag-
ments of the same sender data structure into various receiver
data areas, it might be necessary to have a pipelined architec-
ture for the message-passing hardware.

4.3 Proposed implementation

As mentioned before, we plan to introduce one message-
passing controller per core. The controller is invoked by the
MPI library during a send-receive operation through new in-
structions that augment the ISA. On being provided with the
send-receive buffer’s address, the controller does the neces-
sary cache lookups and sets up the data areas in the shared
cache level by issuing non-temporal store operations to avoid
cache pollution. The MPI library is responsible for settingup
the controllers with the addresses, and also co-ordinate the
send and receive controllers during the copy operation - only
one controller would carry out the actual copy.

As is evident from the above discussion, the implementa-
tion would require instrumenting the MPI libraries with the
special instructions besides extending hardware support.

Note that the innovations in Sections 3 and 4 are orthog-
onal and could be employed independently. The second in-
novation explicitly forces the copy to happen in the L2 and
prevents the L1 caches from getting polluted by the interme-
diate buffers. This is consistent with what the first innovation
attempts to do as well. Hence, both innovations can be com-
bined. By eliminating L1 caching (with the first innovation)
for shared data structures such as the intermediate buffers
within the MPI run-time, part of the goals of the second in-
novation are automatically achieved.

Though in our initial design, we advocate the use of a
single controller per core, we intend to explore other design
alternatives by varying the number of cores served by a sin-
gle controller and also by having one controller for sends and
another for receives. To evaluate our design, we plan to make
use of the SIMICS system level simulator to model the hard-
ware innovations. We plan to choose MPICH2 having the
Nemesis communication subsystem for intra-CMP message
transfers as our baseline MPI implementation because Neme-
sis is regarded as the lowest latency mechanism for inter-core
message passing.

7



5. Conclusions

This paper puts forth a number of innovations that are tar-
geted at optimizing the execution of MPI workloads on ag-
gressive multi-core processors. These include a controller
that is in charge of performing copies, the elimination of L1
caching for intermediate buffers, the elimination of cache
coherence for the most part, and the L1 caching of read-
only and private blocks. It is too early to draw conclusions
regarding the improvements possible with the proposed in-
novations. The paper makes arguments for why we believe
this design is reasonable. Our early estimates show that the
most potentially disruptive change – the elimination of cache
coherence – only has a moderately negative impact on the
performance of certain classes of shared-memory workloads.
We therefore believe that the proposed design has the ability
to significantly reduce design complexity and the overheads
of cache coherence, while significantly boosting the perfor-
mance of inter-core messaging and yielding tolerable slow-
downs for the few shared-memory codes that may execute on
such a processor. Much future work remains to quantify the
benefits of the proposed architecture.

References

[1] The Message Passing Interface Standard. http://www-
unix.mcs.anl.gov/mpi/.

[2] Top 500 Supercomputers.
http://www.top500.org/stats/list/32/procgen.

[3] M. Awasthi, K. Sudan, R. Balasubramonian, and J. Carter.
Dynamic Hardware-Assisted Software-Controlled Page
Placement to Manage Capacity Allocation and Sharing
within Large Caches. InProceedings of HPCA, 2009.

[4] B. Falsafi (Panel Moderator). Chip Multiprocessors are Here,
but Where are the Threads? Panel at ISCA 2005.

[5] B. Beckmann, M. Marty, and D. Wood. ASR: Adaptive Selec-
tive Replication for CMP Caches. InProceedings of MICRO,
2006.

[6] D. Buntinus, G. Mercier, and W. Gropp. Data Transfers be-
tween Processes in an SMP System: Performance Study and
Application to MPI. InProceedings of the 2006 International
Conference on Parallel Processing, 2006.

[7] D. Buntinus, G. Mercier, and W. Gropp. Design and Evalua-
tion of Nemesis, a Scalable, Low-Latency, Message-Passing
Communication Subsystem. InProceedings of the 6th IEEE
International Symposium on Cluster Computing and the Grid,
2006.

[8] D. Buntinus, G. Mercier, and W. Gropp. Implementation
and Evaluation of Shared-Memory Communication and Syn-
chronization Operations in MPICH2 using the Nemesis Com-
munication Subsystem.Parallel Computing, 33(9):634–644,
2007.

[9] D. Burger and T. Austin. The Simplescalar Toolset, Version
2.0. Technical Report TR-97-1342, University of Wisconsin-
Madison, June 1997.

[10] L. Chai, Q. Gao, and D. K. Panda. Understanding the Impact
of Multi-Core Architecture in Cluster Computing: A Case
Study with Intel Dual-Core System. InProceedings of the 7th
IEEE International Symposium on Cluster Computing and the
Grid, 2007.

[11] L. Chai, A. Hartono, and D. K. Panda. Designing High Per-
formance and Scalable MPI Intra-node Communication Sup-
port for Clusters. InProceedings of the 2006 IEEE Interna-
tional Conference on Cluster Computing, 2006.

[12] L. Chai, P. Lai, H. Jin, and D. K. Panda. Designing an
Efficient Kernel-Level and User-Level Hybrid Approach for
MPI Intra-Node Communication on Multi-Core Systems. In
Proceedings of the 37th International Conference on Parallel
Processing, 2008.

[13] S. Cho and L. Jin. Managing Distributed, Shared L2 Caches
through OS-Level Page Allocation. InProceedings of MI-
CRO, 2006.

[14] D. E. Culler and J. P. Singh.Parallel Computer Architecture:
A Hardware/Software Approach. Morgan Kaufmann Publish-
ers, 1999.

[15] P. Hofstee. Power Efficient Processor Architecture andThe
Cell Processor. InProceedings of HPCA-11 (Industrial Ses-
sion), pages 258–262, 2005.

[16] H. Jin, S. Sur, L. Chai, and D. K. Panda. LiMIC: support for
high-performance MPI intra-node communication on Linux
cluster. InProceedings of ICPP-05, 2005.

[17] H. Jin, S. Sur, L. Chai, and D. K. Panda. Lightweight kernel-
level primitives for high-performance MPI intra-node com-
munication over multi-core systems. InProceedings of the
2007 IEEE International Conference on Cluster Computing,
2007.

[18] J. Laudon and D. Lenoski. The SGI Origin: A ccNUMA
Highly Scalable Server. InProceedings of ISCA-24, pages
241–251, June 1997.

[19] J. Liu, J. Wu, S. P. Kini, P. Wyckoff, and D. K. Panda. High
Performance RDMA-Based MPI Implementation over Infini-
Band. InProceedings of ICS, 2003.

[20] N. Madan, L. Zhao, N. Muralimanohar, A. Udipi, R. Bala-
subramonian, R. Iyer, S. Makineni, and D. Newell. Optimiz-
ing Communication and Capacity in a 3D Stacked Reconfig-
urable Cache Hierarchy. InProceedings of HPCA, 2009.

[21] P. Magnusson, M. Christensson, J. Eskilson, D. Forsgren,
G. Hallberg, J. Hogberg, F. Larsson, A. Moestedt, and
B. Werner. Simics: A Full System Simulation Platform.IEEE
Computer, 35(2):50–58, February 2002.

[22] N. Muralimanohar and R. Balasubramonian. Interconnect
Design Considerations for Large NUCA Caches. InProceed-
ings of ISCA, 2007.

[23] N. Muralimanohar, R. Balasubramonian, and N. Jouppi. Op-
timizing NUCA Organizations and Wiring Alternatives for
Large Caches with CACTI 6.0. InProceedings of MICRO,
2007.

[24] NVIDIA. NVIDIA Tesla S1070 1U Computing System.
http://www.nvidia.com/object/productteslas1070us.html.

[25] R. Rabenseifner, G. Hager, and G. Jost. Hybrid MPI/OpenMP
Parallel Programming on Clusters of Multi-core SMP Nodes.
In Proceedings of the 17th Euromicro International Con-
ference on Parallel, Distributed, Network-Based Processing,
2009.

[26] Tilera. Tilera Tile64 Product Brief.
http://www.tilera.com/pdf/ProductBriefTile64 Web v3.pdf.

[27] S. Vangal, J. Howard, G. Ruhl, S. Dighe, H. Wilson,
J. Tschanz, D. Finan, P. Iyer, A. Singh, T. Jacob, S. Jain,
S. Venkataraman, Y. Hoskote, and N. Borkar. An 80-Tile
1.28TFLOPS Network-on-Chip in 65nm CMOS. InProceed-
ings of ISSCC, 2007.

[28] M. Zhang and K. Asanovic. Victim Replication: Maximizing
Capacity while Hiding Wire Delay in Tiled Chip Multipro-
cessors. InProceedings of ISCA, 2005.

8


