
Investigating design tradeoffs in S-NUCA based
CMP systems

P. Foglia, C.A. Prete, M. Solinas
University of Pisa

Dept. of Information Engineering
via Diotisalvi, 2 56100 Pisa, Italy

{foglia, prete, marco.solinas}@iet.unipi.it

F. Panicucci
IMT Lucca

Institute for Advanced Studies
piazza San Ponziano, 6 55100 Lucca, Italy

f.panicucci@imtlucca.it

Abstract—A solution adopted in the past to design high perfor-
mance multiprocessors systems that were scalable with respect to
the number of cpus was the design of Distributed Shared Memory
(DSM) multiprocessor with coherent cache, whose coherence
was held by a directory-based coherence protocol. Such solution
permits to have high level of performance also with high numbers
of processors (512 or more). Modern systems are able to put
two or more processors on the same die (Chip Multiprocessors,
CMP), each with its private caches, while the last level caches
can be either private or shared. As these systems are affected
by the wire delay problem, NUCA caches have been proposed to
hide the effects of such delay in order to increase performance.
A CMP system that adopt a NUCA as its shared last level
cache has to be able to maintain coherence among the lowest,
private levels of the cache hierarchy. As future generation systems
are expected to have more then 500 cores per chip, a way
to guarantee a high level of scalability is adopting a directory
coherence protocol, similar to the ones that characterized DSM
systems. Previous works focusing on NUCA-based CMP systems
adopt a fixed topology (i.e. physical position of cores and NUCA
banks, and the communication infrastructure) for their system
and the coherence protocol is either MESI or MOESI, without
motivating the reasons of such choices. In this paper, we present
an evaluation of an 8-cpu CMP system with two levels of cache, in
which the L1s are private of each core, while the L2 is a Static-
NUCA shared among all cores. We considered three different
system topologies (the first with the eight cpus connected to the
NUCA at the same side, the second with half of the cpus on one
side and the others at the opposite side, the third with two cpus
on each side), and for all the topologies we considered MESI and
MOESI. Our preliminary results show that processor topology
has more effect on performance and NOC bandwidth occupancy
than the coherence protocol.

I. INTRODUCTION

In the past, Distributed Shared Memory (DSM) systems
with coherent caches were proposed as an high-scalable ar-
chitectural solution, as they were characterized by powerful
processing nodes, each with a portion of the shared memory,
connected through a scalable interconnection network [1], [2].
In order to maintain high level of scalability with respect to
the number of cores, the coherence protocol usually adopted
in such system was a directory coherence protocol, where
directory information was held at each node. Directory coher-
ence protocols rely on message exchange between the nodes
that need a copy of a given cache block, and the home node

(i.e. the node in the system that has to manage directory
information for the block). With the increasing number of
transistors available on-chip due to technology scaling [3],
multiprocessor systems have shifted from multi-chip systems
to single-chip systems (Chip Multiprocessors, CMP) [4], [5],
in which two or more processors exist on the same die. Each
processor of a CMP system has its own private caches, and the
last level cache (LLC) can be either private [6], [7] or shared
among all cores [8], [9], [10], [11]; hybrid designs have been
also proposed [12], [13], [14]. CMPs are characterized by low
communication latencies with respect to classical many-core
and DSM systems, as the signal propagation delay in on-chip
lines is lower than in off-chip wires [15]. However, as clock
frequencies increase as well as the delay in communication
lines, signals need more clock cycles to be propagated on
the chip, thus resulting in higher wire delay, and this delay
significantly affects performance [5], [2]. In order to face
the wire delay problem, Non-Uniform Cache Access (NUCA)
architecture [16], [17], [10] has been proposed: a NUCA is
a bank-partitioned cache in which the banks are connected
by means of a communication infrastructure (typically, a
Network-on-chip, NoC [18], [19]), and it is characterized by
a non-uniform access time. NUCAs have been proved to be
effective in hiding the effects of wire delay. When adopted in
CMP systems, a NUCA typically represents the LLC shared
among all the cores [10], [17], and all the private, lower cache
levels have to be kept coherent by means of a coherence
protocol; the cores in the system are able to communicate
both among themselves and with NUCA banks. As NoCs are
characterized by a message-passing communication paradigm,
the communication among all kind of nodes in the system (i.e.
shared cache banks and processor with private caches) is based
on the exchange of many types of messages. In this context,
the coherence protocol is implemented as a directory-based
protocol, similar to those designed for DSM systems, in order
to meet the same high degree of scalability. By exploiting the
fact that the LLC is shared among all cores, our proposal is
to adopt a non-blocking directory [20], that is distributed in
NUCA banks: NUCA banks can be adopted as home nodes
for cache blocks, and the directory information is stored in
the TAG field of each block present in the NUCA. Previous



works proposed various CMP architectures based on NUCA
cache, each adopting as the base coherence protocol either
MESI [12], [17] or MOESI [10]. However, to the best of
our knowledge, none of them motivated the choice of neither
the coherence protocol nor the system topology; instead, we
believe that the behavior of a NUCA-based CMP is heavily
influenced by both these aspects. In this paper, we present
a preliminary evaluation of design tradeoffs for 8-cpus CMP
systems that adopt a Static-NUCA (S-NUCA) as the shared
L2 cache, while each processor has its own private L1 I/D
caches; the cache hierarchy is inclusive. We consider three
different configurations for the CMP: the first configuration
has all the processors connected to the NUCA NoC at the
same side (8p), the second one presents four cpus on one side
and the others on the opposite side (4+4p) and in the third
one we have two cpus on each side (2+2+2+2p); the three
configurations are shown in Figure 1. For all 8p, 4+4p and
2+2+2+2p we evaluate the behaviors of the system when the
coherence protocol is either MESI or MOESI.

Fig. 1: The considered CMP topologies: 8p (a), 4+4p (b) and
2+2+2+2p (c)

The rest of this paper is organized as follows. Section 2
presents some related works. Section 3 explains the design
of our MESI and MOESI protocols, and also contains some
considerations about the protocols behaviors versus the system
topology. Section 4 presents our evaluation methodology. Sec-
tion 5 discusses our preliminary results. Section 6 concludes
the paper and presents our future work.

II. RELATED WORKS

Lot of work has been proposed on DSM systems with
cc-NUMA, from both the research and industrial point of
view, leading to the design of computer machines that are
commercial successful [1], [20], [21]. In particular, [1] and
[2] propose two DSM systems in which communicating nodes
contain both processor(s) and a portion of the total shared
Main Memory; these nodes are connected through a scalable
interconnection network. The cache coherence protocol is a
directory-based MESI, removing the broadcast bottleneck that
prevents scalability of broadcast. In [1] the basic node is
composed by two processors, up to 4GB of main memory
and its corresponding directory memory, and has a connection
to a portion of the I/O system. Within each node, the two
processors are not connected through a snoopy bus, instead,
they operate as two separated processors multiplexed over
the single physical bus. The [2] node, called cluster, also
consists of a small number of high-performance processors,
each with its private caches, and the directory controller for

the local portion of the main memory that is interfaced to
the scalable network; the cache coherence protocol within a
cluster relays on a bus-based snoopy scheme, while the inter-
cluster coherence protocol is directory-based. Instead, in this
work we discuss a class of systems (CMPs) in which eight
processors exists on the same chip, and the coherence protocol
is a directory protocol in which directory information is held
in the TAG field of a huge, shared on-chip cache. With respect
to [1] and [2], CMP systems are characterized by low latency
on-chip communication lines, making the L1-to-L1 not so
expensive as in the case of DSM systems.

Beckmann and Wood in [10] propose an 8-cpus CMP
system in which each processor has its private L1 I/D caches
and a huge shared L2 NUCA cache; the cpu+L1 nodes are
distributed all around the shared cache (two nodes for each
side). The NUCA can work as both Static and Dynamic
NUCA. The coherence protocol is a MOESI directory-based
coherence protocol in which directory information in held in
cache TAGs. The NUCA-based CMP systems we analyze in
this paper vary across two different topologies, working with
two different coherence protocols, MESI and MOESI.

Huh et al. in [17] propose a CMP system in which 16
processors share a 16 MB NUCA cache; half of the cpus are
connected to one side of the NUCA, the other half at the
opposite side. The chosen coherence protocol is a directory
version of MESI, with directory information held in NUCA
TAGs. They also propose an interesting evaluation of the
architecture with both Static and Dynamic NUCA, and for
different sharing degrees; nevertheless, the topology and the
coherence protocol are fixed.

Chisthi et al. in [12] evaluate ah hybrid design that tries
to take advantage from both shared and private configuration
for the last level cache, by proposing a set of techniques that
act on data replication, communication between sharers and
storage capacity allocation. The system is based on a the MESI
coherence protocol, modified in order to perform Controlled
Replication, and the system topology is also fixed to a 4-cpu
CMP with the processors on two opposite sides of the chip.

A comparative study of coherence protocol were proposed
by Martin et. al in [22], when they proposed the Token
Coherence protocol. However, the Token Coherence relays on
broadcast communication, so it cant reach a high degree of
scalability with respect to the increasing number of processors.
For this reason, we prefer to analyze conventional directory
coherence protocols.

III. THE MESI AND MOESI COHERENCE PROTOCOLS

This section presents our directory-based version of both
MESI and MOESI. Such kind of protocols have had a renewed
relevance in the context of CMP systems, but it is difficult to
find a detailed description of their characteristic in recent CMP
papers. The main characteristic of our protocols is that the
directory (i.e. the NUCA bank the current block is mapped to)
is non-blocking (with the exception of a new request received
for a L2 block that is going to be replaced). A non-blocking
directory is able to serve a subsequent request for a given



block even if this is still ongoing on a previous transaction,
without the need of stalling the request or nacking it [20]. Both
the protocols relay on three virtual networks [18], [19], [20]:
the first one (called vn0) is dedicated to requests that the L1s
send to the interested L2 bank; the second one (called vn1)
is used by the L2 bank to provide the requesting L1 with the
needed block (L2-to-L1 transfer), but also by the L1 that has
the unique copy of the block to send it to the requesting L1
(L1-to-L1 transfer); the last one (called vn2) is used by the
L2 bank to forward the request received by an L1 requestor to
the L1 cache that holds the unique copy of the block (L2-to-
L1 request forwarding). Our protocols were designed without
requiring total ordering of messages.

Fig. 2: Sequence of messages in case of Load Miss, when there is one
remote copy. Contiguous lines represent request messages travelling
on vn0; non-contiguous lines depict response messages on vn1; dotted
lines represent represent messages travelling on vn2

In
particular, vn0 e vn1 were developed without any ordering
assumption, while vn2 only requires point-to-point ordering.
The reason of such choice is that the performance of NUCA
cache are strongly influenced by the performance (and thus
by the circuital complexity) of network switches [23], [24],
[25]. By utilizing wormhole flow control and static routing it
is possible to design high-performance switches [19] that are
particularly suited for NUCA caches.

A. MESI

The base version of our MESI protocol is similar to the one
described in [20]. A block stored in L1 can be in one of the
four states M (Modified: this is the unique copy among all the
L1s, and the datum is dirty with respect to the L2 copy), E
(Exclusive: this is the unique copy among all the L1s, and the
datum is clean with respect to the L2 copy), S (Shared: this is
one of the copies stored in the L1s, and the datum is clean with
respect to the L2 copy) and I (Invalid: the block is not stored
in the local L1). The L1 controller receives LOAD, IFETCH
and STORE from the processor; in case of hit, the block is
provided to the processor, and the corresponding coherence
actions are taken; in case of miss, the corresponding request
is build as a network message and is sent to the dedicated L2
bank through the vn0 (LOAD and IFETCH requests generate
the same sequence of actions in any case, so from this moment
on we consider only LOAD and STORE operations). When

Fig. 3: Sequence of message in case of Store Hit (a) when the block
is shared by two remote L1s, and Store Miss (b) when there is one
remote copy

the L2 bank receives a request coming from any of the L1s, it
can result in a hit or in a miss. In case of hit, the corresponding
sequence of coherence actions is taken; in case of miss, a GET
message is sent to the Memory Controller, a block is allocated
to the datum, and the copy goes in a transient state [26] while
waiting for the block; when the block is received from the off-
chip memory, it is stored in the bank, and a copy is sent to
the L1 requestor. We now discuss the actions taken by the L1
controller when a LOAD or a STORE is received, assuming
that a L1-to-L2 request always hits in the L2 bank:

Load Hit. The L1 controller simply provides the processor
with the referred datum, and no coherence action is taken.

Load Miss. The block has to be fetched from the L2 cache:
a GETS (GET SHARED) request message is sent to the L2
home bank on the vn0, a block in the L1 is allocated to the
datum, and the copy goes in a transient state while waiting
for the block. When the L2 bank receives the GETS, if the
copy is already shared by other L1s, the requestor is added to
the sharers list, and the block is provided, marked as shared,
directly by the L2 bank; if the block is present in exactly one
L1, the L2 bank assumes the copy might be dirty, and the
request is forwarded to the remote L1 on vn2, then the L2
copy goes in a transient state while waiting for a response.
When the remote L1 receives the forwarded GETS, provides
the L1 requestor with the block, then issues toward the L2
directory -on vn0- a PUTS message (PUT SHARED: it carries
the latest version of the block to be sent to the bank -the L2
copy has to be updated) if the local copy was in M, or an
ACCEPT message (a control message that notifies that the L2
copy is still valid) if the local copy was in E; once the L2
directory receives the response from the remote L1, updates
directory information, a WriteBack Acknowledgment is sent
to the remote L1, and the block is marked as Shared. Figure
2 shows this sequence of actions. Of course, if the block is
not present in any of the L1s, the L2 directory directly sends
an exclusive copy of the block to the L1 requestor. When the
block is received by the original requestor on vn1, if it is
marked as shared the copy goes in the S state, otherwise it
goes in E.



Store Hit. If the block is in M, the L1 controller provides the
processor with the datum, and the transaction terminates. If the
block is in E, the L1 controller provides the processor with the
datum, the state of the copy changes to M and the transaction
terminates. If the copy is in S, the L1 controller sends a
message to the L2 bank, on vn0, in order to notify it that the
local copy is going to be modified, and the other shares have to
be invalidated, then the copy goes in a transient state waiting
for the response from the L2 bank. When the L2 bank receives
the message from the L1, sends an Invalidation message to
all the sharers (except the current requestor) on vn2, then
clears all the sharers in the blocks directory, and sends on vn1
to the current requestor a message containing the number of
Invalidation Ack to be waited for. When a remote L1 receives
a Invalidation for an S block, sends on vn1 an Invalidation Ack
to the L1 requestor, then the copy is invalidated. Once the L1
requestor has received all the Invalidation Acks, the controller
provides the processor with the requested block, the block
is modified, then the state changes to M and the transaction
terminates. Figure 3 shows this situation.

Store Miss. A GETX (GET EXCLUSIVE) message is sent
to the L2 bank on vn0, a cache block is allocated to the
datum and the copy goes in a transient state, waiting for the
response. When the L2 bank receives the GETX, if there are
two or more L1 sharers for that block, the L2 bank sends the
Invalidation messages to all the sharers on vn2, then sends
the block, together with the number of Invalidation Acks to
be received, to the current L1 requestor, on vn1; from this
moment on, everything works as in the case of Store Hit of a
block in the S state. If there are no sharers for that block, the
L2 bank simply stores the ID of the L1 requestor in the blocks
directory information and sends on vn1 the datum to the L1
requestor. If there is just one copy stored in one L1, the L2
assumes it is potentially dirty, and forwards the request on vn2
to the L1 that holds the unique copy, then updates the blocks
directory information clearing the old L1 owner and setting
the new owner to the current requestor. When the remote L1
receives the GETX in forwards, sends the block to the L1
requestor on vn1, then invalidates its copy. At the end, the L1
requestor receives the block, then the controller provides the
processor with the datum, the state of the copy is set to M and
the transaction terminates. Figure 3 depicts this sequence of
actions.

L1 Replacement. In case of conflict miss, the L1 controller
chooses a block to be evicted from the cache, adopting a
pseudo-LRU replacement policy. If the block is in the S state,
the copy is simply invalidated, without notifying the L2 bank.
If the block is either in the M or in the E state, the L1
Controller sends a PUTX (PUT EXCLUSIVE, in case of M
copy: this message contains the last version of the block to
be stored in the L2 bank) or an EJECT (in case of E copy:
this is a very small control message that simply notifies the L2
directory that the block has been evicted by the L1, but the old
value is still valid). When the L2 bank receives one of those
messages, updates the directory information by removing the
L1 sender, updates the block value in case of PUTX, then

Fig. 4: Sequence of messages in case of Load Miss, when the block
is present in one remote L1, and it has been modified. The remote
copy is not invalidates; instead, when the WriteBack Ack is received
by the remote L1, it is marked ad Owned

issues a WriteBack Acknowledgment to the L1 sender; once
this receives the acknowledgment, invalidates the copy.

B. MOESI

The MOESI coherence protocol adopts the same four states
M, E, S, and I that characterize MESI, with the same semantic
meaning; the difference is that MOESI adds the state O for
the L1 copies (Owned: the copy is shared, but the value of
the block is dirty with respect to the copy stored in the L2
directory).

The L1 that holds its copy in the O state is called the owner
of the block, while all the other sharers have their copies stored
in the classical S state, and are not aware that the value of the
block is dirty with respect to the copy of the L2 bank. For
this reason the owner has to maintain the information of dirty
copy, and update the L2 value in case of L1 Replacement.
Also this MOESI coherence protocol is designed with the L2
banks that realize a non-blocking directory. Here we discuss
the differences with MESI, referring to the Owner state:

Load Hit. The L1 controller simply provides the processor
with the referred datum, and no other coherence action is
taken.

Load Miss. The GETS message is sent to the L2 bank on
vn0. When the L2 directory receives the request, if the copy
is private of a remote L1 cache, the L2 bank assumes it is
potentially dirty and forwards the GETS to the remote L1
through the vn2, then goes in a transient state while waiting
for a response. When the remote L1 receives the forwarded
GETS, if the block is dirty (i.e. in the M state) then a PUTO
(PUT OWNER: this control message notifies the L2 directory
that the block is dirty and is going to be owned) is sent to the
L2 bank, otherwise if the block is clean (i.e. in the E state)
then an ACCEPT message is sent to the L2 bank in order
to notify it that the copy was not dirty, and the copy has to
be considered as Shared and not Owned; in both cases, the
remote L1 sends a copy of the block to the current requestor
on vn1, and the L2 directory responds to the remote L1
with a WriteBack Acknowledgment, then updates the directory
information by storing that the block is either owned in case of
PUTO- by the remote L1 or shared in case of ACCEPT. Once



Fig. 5: Sequence of messages in case of Store Miss when copy is
Owned be a remote L1

the L1 requestor receives the block, the controller provides the
processor with the referred datum, then the copy is stored in
the S state. Figure 4 illustrates this sequence of actions. If
the copy was already Owned, when the L2 directory receives
the GETS request, simply adds the L1 requestor to the sharers
list and forwards the request to the owner, that will provide
the L1 requestor with the last version of the block.

Store Hit. When a store hit occurs for an O copy, the
sequence of steps is the same as in the case of a store hit
for an S copy in MESI.

Store Miss. The GETX message is sent to the L2 directory
through the vn0. If the block is tagged as Owned by a remote
L1, the GETX is forwarded through the vn1 to the current
owner (together with the number of Invalidation Acknowledg-
ment to be waited by the L1 requestor) and an Invalidation
is sent to the other sharers in the list, then the sharers list is
empty and the L1 requestor is set as the new owner of the
block. When the current owner receives the forwarded GETX,
sends the block to the L1 requestor together with the number
of Invalidation Acknowledgment that it has to wait, then the
local copy is invalidated. Once the L1 requestor has received
the block and all the Invalidation Acknowledgment, the cache
controller provides the processor with the referred datum, then
the block is modified and stored in the local cache in the M
state. Figure 5 shows this case. L1 Replacement. When the L1
controller wants to replace a copy in O, sends a PUTX message
to the L2 directory. Once this message has been received,
the L2 bank updates the directory information by clearing the
current owner, then stores the new value of the block in its
cache line, and sends a WriteBack Acknowledgment to the
old owner (from this moment on, the block is supposed to be
Shared as in the case of MESI). When the owner receives the
WriteBack Acknowledgment, invalidates its local copy.

IV. METHODOLOGY

We performed full-system simulation using Simics [27].
We simulated an 8-cpu UltraSparc II CMP system, each cpu
using in-order issue, running at 5 GHz. We used GEMS
[28] in order to simulate the cache hierarchy and coherence
protocols: private L1s have 64 KB of storage capacity, 2 ways
set associate Instructions and Data caches (32 KB each), while
the shared S-NUCA L2 cache is composed by 256 banks (each

of 64 KB, 4 ways set associative), for a total storage capacity
of 16 MB; we assumed Simple Mapping, with the low-order
bits of index determining the bank [16]. We assumed 2 GB
of main memory with a 300-cycle latency. Cache latencies to
access TAG and TAG+Data have been obtained by CACTI
5.1 [29] for the specified nanotechnology (65 nm). The NoC
is organized as a partial 2D mesh network, with 256 wormhole
[18], [19] switches (one for each NUCA bank); NoC link
latency has been calculated using the Berkeley Predictive
Model.

Number of CPUs 8
CPU type UltraSparcII
Clock Frequency 5 GHz (16 FO4 @ 65 nm)
L2NUCA Cache 16 MB, 256 x 64KB, 16 ways s.a.

L1 cache
Private 32 Kbytes I + 32
Kbytes D, 2 way s.a., 3 cycles
to TAG, 5 cycles to TAG+Data

L2 cache
16 Mbytes, 256 banks (64
Kbyte banks, 4 way s.a., 4 cycles
to TAG, 6 cycles to TAG+Data

NoC configuration
Partial 2D Mesh Network;
NoC switch latency: 1 cycle;
NoC link latency: 1 cycle

Main Memory 2 GByte, 300 cycles latency
TABLE I: Simulation Parameters

Table I summarizes the configuration parameters for the
considered CMP. Our simulated system runs the Sun Solaris
10 operating system. We run applications from the SPLASH-2
[30] benchmark suite, compiled with the gcc provided with the
Sun Studio 10 suite. Our simulations run until run completion,
with a warm-up phase of 50 Million instructions.

V. RESULTS

We simulated the execution of different benchmarks from
the SPLASH-2 suite running on the three different systems
(8p, 4+4p and 2+2+2+2p) we introduced before. We chose
the Cycles-per-Instruction (CPI) as the reference performance
indicator.

Fig. 6: Coordinates of the accesses baricentres

Figure 7 shows the normalized CPI for the considered
configurations. As we can see, the performance difference
between MESI and MOESI is very little (less than 1%) in all
cases (except cholesky that presents a performance degradation
of about 2% in the 4+4p configuration). This is a consequence
of the very little number of L1-to-L1 block transfers with



Fig. 7: Normalized CPI

Fig. 8: (L1-to-L1 block transfers / L1-to-L2 total requests) Ratio

respect the total L2 accesses, as Figure 8 demonstrates
(about 5% on average). Cholesky has a great number of
L1-to-L1 transfers (15% for MESI, 20% for MOESI) that
lead to a performance degradation in the 4+4p configuration
for MOESI: the requests reach the directory bank of the S-
NUCA, then 20% of them have to be forwarded to another L1
owner; if we have half of the L1s on the opposite side of the
chip, the communication paths are longer, thus latencies are
increased. Figure 9 shows the normalized L1 miss latency,
and highlights the contribution of each type of transfer. As
one might expect, the contribution of L1-to-L1 transfers is
very little in all the considered cases (in cholesky the L1-to-
L1 transfer has the bigger impact), and the miss latency is
dominated either by L2-to-L1 block transfers or by the case
of L2 miss. Figure 7 also shows that performance are in
some cases affected by topology changes: to investigate this
aspect, we calculated the baricentres of the accesses for each
benchmark as a function of the accesses to each S-NUCA
bank; the baricentres are reported in Figure 6. As the ideal
case (i.e. a completely uniform accesses distribution) has the
baricentre in (8.5;8.5), Figure 6 shows that there are three
classes of applications, having the baricentre i) very close to
the ideal case (e.g., ocean and lu), ii) in the lowest part of the
S-NUCA (e.g., radix and barnes), or iii) in the highest part of
the shared cache (e.g., raytrace and waterspatial). We observe
three different behaviors: the ocean class of the applications
dont present a significant performance variation when moving
from 8p to 4+4p, but the 2+2+2+2p configuration performs
worst then the others (except for lu); cholesky presents a little
performance degradation also for 4+4p, even if its baricentre
is very close to the ideal case: this phenomenon is due to
the great impact of L1-to-L1 transfers, that have to travel
along longest paths. The radix class has a greater performance

degradation when moving to 4+4p and 2+2+2+2p, as the most
part of the accesses are in the bottom of the shared NUCA, so
moving half (or more) of the cpus to distant sides of the NUCA
leads to an increase of the NUCAs response time. Finally, the
raytrace class performs better with the 4+4p topology, as the
most part of the accesses are in the top of the shared NUCA.
Figure 10 shows the percentage of NUCA bandwidth utilized
by the considered applications. When the baricentre is in the
bottom of the cache, the bandwidth occupancy increases for
4+4p and 2+2+2+2p topology, but when the baricentre is in
the top, the utilization decreases. For those applications similar
to the ideal case, the utilization doesnt change for 8p and
4+4p, but increases for the 2+2+2+2p (except for cholesky).
Having a low bandwidth utilization is impor- tant as dynamic
power budget is tired to the traffic traveling on the NoC. In
conclusion, topology changes have a greater influence on both
performance and NoC traffic than the choice of the coherence
protocol.

VI. CONCLUSION AND FUTURE WORKS

We presented a preliminary evaluation for two different
coherence strategy, MESI and MOESI, in a 8-cpus CMP
system with a large shared S-NUCA cache where the topology
vary across three different configurations (i.e. 8p, 4+4p and
2+2+2+2p). Our experiment show that CMP topology has
a great influence on performances, instead the protocol has
not. Future works will present a full benchmarks evaluation
of this aspect for S-NUCA based systems and also for D-
NUCA based CMP architectures. The aim is to find an
architecture which is mapping independent for general purpose
applications and to exploit the different mappings strategy to
increase performances in the case of specific applications.



Fig. 9: Breakdown of Average L1 Miss Latency (Normalized)

Fig. 10: Impact of different classes of messages on total NoC Bandwidth Link Utilization (%)

ACKNOWLEDGMENT

This paper has been supported by the HiPEAC European
Network of Excellence (www.hipeac.net) and has been devel-
oped under the SARC European Project on Scalable Computer
Architecture (www.sarc-ip.org).

REFERENCES

[1] J. Laudon and D. Lenoski, “The sgi origin:a ccnuma highly scalable
server,” Proceedings of the 24th international symposium on Computer
architecture, pp. 241–251, 1997.

[2] D. Lenoski, J. Laudon, K. Gharachorloo, A. Gupta, and J. Hennessy,
“The directory-based cache coherence protocol for the dash multipro-
cessor,” Proceedings of the 17th international symposium on Computer
Architecture, p. 148, 1997.

[3] “International technology roadmap for semiconductors. semiconductor
industrial association, 2005.”

[4] K. Olukotun, B. A. Nayfeh, L. Hammond, K. Wilson, and K. Chang,
“The case for a single-chip multiprocessor,” pp. 2–11, 1996.

[5] L. Hammond, B. Nayfeh, and K. Olukotun, “A single-chip multiproces-
sor,” IEEE Computer, vol. 30, no. 9, 1997.

[6] K. Krewell, “Ultrasparc iv mirrors predecessors,” Microprocessor Re-
port, Nov. 1997.

[7] C. McNairy and R. Bhatia, “Montecito: A dual-core dual-thread itanium
processor,” IEEE Micro, vol. 25, no. 2, pp. 10–20, 1997.

[8] B. Sinharoy, R. Kalla, J. Tendler, R. Eickemeyer, and J. Joyner,
“Power5 system architecture,” IBM Journal of Research and Develop-
ment, vol. 49, no. 4, 2005.

[9] P. Kongetira, K. Aingaran, and K. Olukotun, “Niagara: A 32-way
multithreaded sparc processor,” IEEE Micro, vol. 25, no. 2, pp. 21–29,
2005.

[10] B. Beckmann and D. Wood, “Managing wire delay in large chip-
multiprocessor caches,” IEEE Micro, Dec. 2004.

[11] Mendelson, Mandelblat, Gochman, Shemer, Chabukswar, Niemeyer, and
Kumar, “Cmp implementation in systems based on the intel core duo
processor,” Intel Technology Journal, vol. 10, 2006.

[12] Z. Chishti, M. Powell, and T. Vijaykumar, “Optimizing replication,
communication, and capacity allocation in cmps,” Proceedings of the
32nd annual international symposium on Computer Architecture, pp.
357–368, 2005.

[13] J. Chang and G. Sohi, “Cooperative caching for chip multiprocessors,”
Proceedings of the 33rd annual international symposium on Computer
Architecture, pp. 264–276, 2006.

[14] M. Zhang and K. Asanovic, “Victim replication:maximizing capacity
while hiding wire delay in tiled chip multiprocessors,” Proceedings of
the 32nd annual international symposium on Computer Architecture, pp.
336–345, 2005.

[15] M. Ho and Horowitz, “The future of wires,” Proc. of the IEEE, vol. 89,
pp. 490–504, 2001.

[16] C. Kim, D. Burger, and S. W. Keckler, “Nonuniform cache architectures
for wire-delay dominated on-chip caches,” IEEE Micro, Nov./Dec. 2003.

[17] J. Huh, C. Kim, H. Shafi, L. Zhang, D. Burger, and S. W. Keckler, “A
nuca substrate for flexible cmp cache sharing,” Proc. of the 19th annual
int. conf. on Supercomputing, pp. 31–40, 2005.

[18] J. Duato, S. Yalamanchili, and L. Ni, Interconnection Networks an
Engineering Approach. Morgan Kauffmann,Elsevier, 2003.

[19] Dally and Towels, Principles and Practices of Interconnection Networks.
Morgan Kauffmann,Elsevier, 2004.

[20] K. Gharachorloo, M. Sharma, S. Steely, and S. V. Doren, “Architecture
and design of alphaserver gs320,” Proc. of the 9th int. conf. ASPLOS,
pp. 13–24, 2000.

[21] J. Hennessy and D. Patterson, Computer Architecture: A Quantitative
Approach. 4th edition. Morgan Kauffmann,Elsevier, 2007.

[22] M. Martin, M. Hill, and D. Wood, “Token coherence:decoupling perfor-
mance and correctness,” ACM SIGARCH Computer Architecture News,
vol. 31, no. 2, pp. 182–193, 2003.

[23] A. Bardine, M. Comparetti, P. Foglia, G. Gabrielli, and C. A. Prete,
“Nuca caches: Analysis of performance sensitivity to noc parameters,”
Proc. of the Poster Session of the 4th Int. Summer School on Advanced
Computer Architecture and Compilation for Embedded Systems, 2008.

[24] ——, “On-chip networks: Impact on the performances of nuca caches,”
Proceedings of the 11th EUROMICRO Conference on Digital System
Design, 2008.



[25] ——, “Performance sensitivity of nuca caches to on-chip network
parameters,” Proceedings of the 20th International Symposium on Com-
puter Architecture and High Performance Computing, 2008.

[26] D. Sorin, M. Plakal, A. Condon, M. Hill, M. Martin, and D. A. Wood,
“Specifying and verifying a broadcast and multicast snooping cache
coherence protocol,” IEEE Transaction on Parallel and Distributed
Systems, vol. 13, no. 6, pp. 556–578, 2002.

[27] “Simics: full system simulation platform,”
http://www.simics.net/.

[28] “Winsconsin multifacet gems simulator,”
http://www.cs.wisc.edu/gems/.

[29] “Cacti 5.1: cache memory model,”
http://quid.hpl.hp.com:9082/cacti/.

[30] Woo, Ohara, Torrie, Singh, and Gupta, “The splash-2 programs: char-
acterization and methodological considerations,” roceedings of the 22th
Internationl Symposium on Computer Architecture, pp. 24–36, 1995.


