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Abstract—In CMP (chip-level multiprocessor) chips, due to
both the temporal and spatial temperature variations, there exist
considerable potential to reduce the thermal emergencies and to
improve the performance of jobs by designing smart thermal
scheduling algorithm. However, scheduling jobs on multiple cores
in CMP introduces the side-effect of thermal cycling, which
harms the chip lifetime. In this paper we propose an aggressive
job scheduling algorithm, ThresHot, to reduce the thermal emer-
gencies, to improve the throughput and reliability by reducing
the thermal cycling effect. For the SPEC2K benchmarks, the
ThresHot saves 13% execution time in penalized period compared
to the Baseline and 6% to the Balancing algorithm. Also,
the thermal cycling effect is minimal in all existing schedule
algorithms.

Index Terms—Task Scheduling, Thermal Design, CMP.

I. I NTRODUCTION

With the semiconductor technology advancing to the
nanometer regime, the immense transistor density leads to in-
creasing intractable power density. With cooling budget limit,
the increasing power injection will overheat the chip package
and degrade the chip reliability. Moreover, running multiple
heterogeneous jobs/threads on the CMP generate multiple
hotspots, introducing more complexities for the chip thermal
design. Unless proper power and thermal managements are
provided, the chip will suffer from boosting power density,
resulting deteriorated reliability, higher cooling cost,and poor
performance.

To alleviate the chip from overheating working conditions,
DTM (Dynamic Thermal Management) is used to throttle the
power injection and to control the peak temperature of the
chip. Although quite effective in reducing the thermal emer-
gencies and peak temperatures, the DTM actions introduce
the performance degradation, including: overhead of triggering
DTMs and DTM frequency scaling. The situation is worse
if DTM is applied at the chip level. In [1], applying DTM
independently at core level yield less performance degradation.
However, more complex hardware is required to support core
level DTM.

Within power budget limit, the OS assisted thermal-aware
job scheduling approach is effective and flexible to mitigate
the thermal burden of the chip, especially in CMP. On a
periodical basis, scheduling a hot job on an available cool core
substantially reduce the peak temperature than assigned ona
hot core. The scheduling problem is to determine how to assign

N jobs on theN cores on consecutive scheduling points. By
exploiting both the temporal and spatial temperature variations
in CMP, the scheduling algorithm may smartly assigning hot
jobs on cool cores to reduce the thermal emergencies. The
temporal variation is due to the fluctuating power of jobs in
different execution phases, providing temperature slacksfor
holding hot jobs in next scheduling cycle. And the spatial
variation crossing multiple cores provides another dimension
of potential to schedule the jobs: the hot jobs could be
allocated on the current cool cores.

However, job scheduling algorithms introduce significant
thermal cycling effect, which stresses the chip materials to
rupture and is a major factor harming the chip lifetime. The
unnecessary context switches in job scheduling cause the
temperature fluctuates significantly over time, accelerating the
thermal cycling effect. Thus, blindly scheduling the hot jobs
on the cool cores overlooks the chip reliability factors, and
smarter algorithms should minimize the thermal cycling effect.

Several task scheduling algorithms have been proposed,
such as the Random, Round-Robin, and the Power-Balancing.
Although Round-Robin and Power-Balancing effectively bal-
ance the power or temperature and reduce the peak temper-
ature, they fail to take the performance of the jobs and the
reliability of the chips together as the primary objective.

In this paper, we propose ThresHot, a task scheduling algo-
rithm on CMP, to minimize the performance degradation from
the DTM thermal emergencies (the peak temperature of the
core overshoots the threshold) and to improve the reliability,
with trivial overhead introduced. Both the temporal and spatial
potential for scheduling on CMP are leveraged. By collecting
the current temperature and aggressively predicting the future
power and temperature, the scheduling decisions are made to
achieve best possible performance and to improve reliability.
Moreover, temperature behavior is studied in the granularity of
function units, and multiple function units those may generate
peak temperature are handled properly in ThresHot.

The rest the paper is organized as follows: section 2 briefly
review the related work of task scheduling in thermal man-
agement; section 3 discuss the motivation and implementation
of ThresHot; section 4 explains how to set up the simulation
environment and validate our algorithm; section 5 analyze the
result; section 6 serves as the conclusion.



II. RELATED WORK

There have been a number of proposals on OS-assisted
thermal management for single core chips. The HybDTM [2]
technique controls temperature by limiting the execution of
a hot job once it enters an alarm zone. This is achieved by
lowering the priority of the hot job so that the OS allocates
fewer time-slices to it and gives cool jobs relatively more time-
slices to execute. An ideal simulation study was performed
in [3] to show the benefits of interleaving hot and cool job
executions. Our work, on the contrary, targets at CMPs.

In the multicore domain, Choi et al. [4] discussed three
different task schedulers, heat-balancing, deferred execution,
and threading with cool-loops, to leverage temporal and spatial
heat slacks among application threads. Performance is traded
for better thermal behavior. Donald and Martonosi [1] looked
at thread migration policy for chip multiprocessor designs.
Their migration policy is a simple balancing scheme which
we will show could increase the temperature variation on the
die. Chong et al. [5] proposed a 3D MPSoC thermal optimiza-
tion algorithm that conducts task assignment, scheduling,and
voltage scaling for a set of real-time workloads.

As an consequence of the scheduling, thermal cycling may
hurt the reliability. Rosing and etc al. [6] considered three
failure mechanisms most commonly used in industry to predict
MTTF (Mean time to failure): EM (electromigration, TDDB
(time-dependent dielectric breakdown), and TC (thermal cy-
cling). They built their system-level reliability model based on
the three mechanisms. Furthermore, they developed a power
management policy which meets system reliability constraints.
Similarly in this paper, we take these reliability concerns.

To achieve multiple optimal objectives, A. Coskun et al. [7]
utilized the ILP (integer linear programming) method to find
the optimal task scheduling both in minimizing the thermal
hotspots and large temperature gradients, achieved by counting
both objectives in the ILP objective. However, the ILP method
is limited by two factors: first, the information such as the
dependence and execution time of the scheduled tasks graph
should be availablea priori; second, the constraints of the
scheduling is just to meet the deadline and dependence of
the graph. With large computation overhead, the ILP-based
scheduling is static, different from our on-line approach to
schedule general applications.

In [8], J. Yang et al. discussed the similar scheduling
approach to leverage the natural discrepancies in the thermal
behavior among different workloads. However, this work tar-
gets the single core architecture and only one function unit
temperature is observed. However, on multi-core CMP chips,
due to the complex inter- and intra-core interaction, even in
a single core multiple function units may be the possible
hotspots. In this paper, we observe and handle multiple func-
tion units in making scheduling decision.

This paper proposes the ThresHot scheduling algorithm that
reduces thermal emergencies, temperature variations across
the die, and improves the reliability, while keeping the per-
formance high. Existing approaches can only achieve part of

those objectives but not all. We also compared with other var-
ious possible schedulers and show that our proposed scheme
outperforms them in all those aspects.

III. TASK SCHEDULING IN THERMAL MANAGEMENT

A. Scheduling problem formulation

Thermal-aware job schedule algorithms reduce thermal
emergencies and improve job throughput by exploiting the
temperature slacks on cool cores to handle the hot jobs. In
CMP, both temporal and spatial temperature slacks can be
exploited, comparing to the only temporal temperature slack
in monolithic processors. Thetemperature slackis the gap
of the current core temperature to the preset threshold. The
larger the slack is, the more possibilities that the hot jobscan
be assigned on the cool cores to reduce thermal emergencies
and improve job throughput. The temporal temperature slack
variations are caused by the fluctuating power of the jobs on
monolithic processors or CMP cores. The spatial temperature
slack variations are caused by the imbalance of temperatures of
CMP cores running different jobs/threads. Hence, the thermal-
aware job schedule algorithm on CMP should exploit both the
spatial and temporal temperature slack potential.

Besides performance improvement, the thermal-aware job
schedule algorithms also need to mitigate the thermal cy-
cling effect. The thermal cycling effect is determined by the
occurrences of large∆T (temperature swing). Scheduling
jobs on CMP cores produces extra∆T due to switching
the hot and cool jobs on cores. Consider an extreme case,
frequently swapping the hottest and coolest jobs on the cores
causes fast and significant∆T , resulting accelerated thermal
cycling effect. Observations from several existing scheduling
algorithms such as Round-Robin and Balancing show that not
all job switches are necessary: even without some schedule
actions, there are no DTM actions to penalize the performance.
Thus, the smart scheduling algorithm should distinguish the
unnecessary schedule actions to mitigate the thermal cycling
effect.

Considering both the performance and reliability, the chal-
lenges to design the thermal-aware job schedule algorithms
are: 1) the inaccurate schedule decisions may harm the perfor-
mance and/or reliability (inaccuracies comes from estimating
the future power and temperature); 2) trade-off of the two goals
of improving performance and reliability, since performance
improvement is maximized by scheduling jobs whenever there
is benefit; 3) the computation overhead of the schedule algo-
rithm should be minimized since it adds to the performance
overhead. Another challenge of CMP schedule algorithms is
the uncertainty of hottest function units of CMP cores. In
CMP, more than one function units may generate the peak
temperature of the core over different execution phases. Shown
in Fig 1 of CMP floorplan based on the Pentium 4 Northwood
processor, Integer Register File, Memory Controller, DTLB
(Data Translation Lookaside Buffer), etc. are candidates of
the hottest function units. Although there are multiple thermal
sensors on chip, most traditional schedule algorithms only
monitor the only possible hottest function unit and treat the



Fig. 1. Floor-plan of the Quad-Core: Multiple Function Units as Hotspots

core as a single node. Hence, the schedule algorithm for CMP
should monitor multiple thermal sensors to generate correct
schedule decisions.

Thus, the thermal-aware job schedule problem in CMP
is formalized as: making consecutive decisions of assigning
N heterogeneous jobs/threads onN homogeneous cores at
scheduling points to achieve the three-fold objective:

• Minimize DTM actions triggered by thermal emergen-
cies;

• Minimize the performance degradation of jobs;
• Minimize the thermal cycling effect.

B. Existing Scheduling Algorithms

Scheduling heterogeneous jobs on CMP has been a hot topic
for years, and the proposed schedule algorithms include:

• Random: the schedule decisions are randomly assigning
the jobs to the cores at each scheduling point.

• Round-Robin: the schedule decisions are generated such
that all jobs are periodically and sequentially assigned to
all the cores.

• Balancing: scheduling the jobs with ascending power
density to the cores with descending temperature. Hence
the cooler jobs are always running on the hotter cores
and vice versa.

The Baseline scenario of the scheduling problem is that
no schedule is applied to the CMP cores: all the jobs run
concurrently and independently on fixed cores. In this paper,
the Baseline scenario serves as the reference for comparison.

C. ThresHot Scheduling Algorithm

1) Motivation: Although all the above algorithms exploit
certain potential to reduce DTM actions or thermal cycling,
they fail to take both the performance and reliability as the
primary objectives and thus can not achieve the three-fold
objective. Moreover, the thermal information of the temper-
ature and power of the function units of the cores is not
utilized to generate smart schedule decisions. Therefore,we
propose the new scheduling algorithm, ThresHot, to improve
the performance of the jobs and reliability of the cores.

First, at each scheduling point, we try to verify the existence
of the optimal decisions subset. For all the decisions in

the optimal subset, there are no DTM actions and hence
performance degradation for all the jobs in the subset during
the current scheduling cycle. However, the optimal subset may
not exist if several hot jobs are so hot that they could not
be assigned to any core without triggering DTM. We define
these hot jobs to be hot-hazard jobs, indicating that they
are too hot and will definitely cause a thermal emergency.
Then we classify the jobs into two groups: hot-hazard jobs
and mild jobs. The hot-hazard jobs should be handled with
higher priority in scheduling, since they introduce thermal
emergencies and performance degradation. Although several
mild jobs may trigger DTMs , the optimal decisions subset
exists for the mild jobs.

To reduce the performance degradation caused by the hot-
hazard jobs in the current scheduling cycle, we assign the
hot-hazard jobs on coolest available cores. Although the hot-
hazard jobs triggers the DTM action, the performance degrada-
tion is minimized. To show this effect, we split the scheduling
cycle into two phases: 1) the transient phase from the start
of the scheduling cycle to the point when the first DTM is
triggered; 2) the penalizing phase in which DTM action is
applied and the core runs in lower frequency. By assigning the
hot-hazard jobs on coolest available cores, the temperature of
the cores with the hot-hazard jobs experience a longer transient
phase and result a shorter DTM penalizing phase in current
scheduling cycle. Hence, the hot-hazard job performance in
current scheduling cycle is improved.

Then, after scheduling the hot-hazard jobs, ThresHot gen-
erates the optimal subset for the remaining mild jobs. In the
current scheduling cycle, the performance of the mild jobs is
not penalized since there is no DTM action. Then, we only
need to make schedule decisions to improve the performance
of the job in next scheduling cycle and to reduce the thermal
cycling effect.

We found that the two above goals can be achieved together
by creating as large spatial temperature slacks as possibleat
the end of current scheduling cycle for the mild jobs. To
enlarge the spatial temperature slack, we assign remaininghot
jobs in the optimal decisions subset on hot cores to boost
the temperature of the hot core as much as possible and still
under the threshold temperature. Consequently, the cool jobs
are left to be assigned to the cool cores. In this way, running
cool jobs on cool cores yield coolest possible core at the end
of the current scheduling cycle. Then, the hot-hazard jobs in
next scheduling cycle will benefit from the reserved cooler
cores, which improves the performance in next scheduling
cycle. For the thermal cycling, creating large temperatureslack
inherently maintains the mapping of the jobs on the cores since
hot jobs have already warm up the cores to be hot. Thus, the
unnecessary switches are decreased to minimize the thermal
cycling effect.

In estimating the peak temperature of the core at next
scheduling point, we need to handle multiple hotspot function
units. From our observation there are at most 4 function units
to be the candidates of the hotspots with peak temperature in
execution. For each core, we pick first 4 hottest function units



at current scheduling point, and then estimate the temperature
of them at the next scheduling point. Then we pick the
maximum of the peak temperature of the 4 function units to
be the core peak temperature. In simulation, we verified that
considering the first 4 hottest function units is accurate and
sufficient to get the peak core temperature at next scheduling
point.

2) ThresHot Algorithm:The ThresHot algorithm uses an
aggressive approach to predict the power of current schedul-
ing cycle, to schedule the jobs for current cycle such that
performance both in current and next scheduling cycles are
maximized, and to minimize the thermal cycling effect to
improve the reliability, which achieves the 3-fold objective.

We design and build a special data structure, TSM (Tem-
perature Slack Matrix), to implement the ThresHot algorithm.
With TSM, it is simple and efficient to detect and schedule
the hot-hazard jobs, and to schedule the jobs in the optimal
subset to enlarge the spatial temperature slack. An exampleof
TSM is shown in the Fig 2-(a).

To solve the problem of how to assignN jobs toN cores
at scheduling pointt, we build aN ×N TSM. At scheduling
point n, the elementS(i, j) in TSM is the temperature slack
of corei at scheduling pointn+1 with assigning the jobj on
core i in the scheduling cycle fromn to n + 1. Then theN2

elements in the table stand for the temperature slack causedby
N2 possible decisions that the scheduler can make. Instead of
searching the temperature of all the function units to get the
peak core temperature,S(i, j) is obtained by searching the
minimum slack value from the picked 4 candidate function
units. If S(i, j) < 0, the decision that assigning jobj on core
i causes the corei to overshoot the threshold and to trigger
DTM action at least once in the current scheduling cycle. If
S(i, j) > 0, the decision will not trigger the DTM action on
core i. With smaller positiveS(i, j) value, the decision will
generate higher temperature (tighter slack) and the temperature
is under the threshold.

We use the TILTS [9] thermal model once per scheduling
cycle to efficiently calculate the temperature of all the function
units on the next scheduling point. Built on the HotSpot
4.0 [9] thermal model, the TILTS thermal model uses matrix
multiplication to accelerate the temperature calculation. With
the temperature at the current scheduling point and power
of the current scheduling cycle, the temperature at the next
scheduling point are calculated as the output of a thermal
linear system. The power used for the current scheduling cycle
is predicted as that of the last scheduling cycle. This simple
power estimation method is verified to be within tolerance.
Based on the TILTS thermal model, the temperature of all
function units are calculated by combining two independent
components in (1): future temperature determined by current
temperature (AT (n−1)) and determined by the injected power
in the current scheduling cycle (BP (n − 1)):

T (n) = AT (n − 1) + BP (n − 1) (1)

The vectorT (n− 1), P (n− 1) andT (n) are the temperature
at scheduling pointn − 1 (current temperature), power in
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Fig. 2. ThresHot Scheduling Based on TSM

scheduling cyclen−1 (current) and temperature at scheduling
point n (future temperature) of all function units of CMP
cores. A depicts the thermal resistance and capacitance in
the heat dissipation.AT (n − 1) illustrates how the future
temperature is determined by the natural heat dissipation based
on the current temperature. AndB depicts how the injected
power P (n − 1) boost the temperature at the scheduling
point n up by BP (n − 1). N2 elements in TSM can be
calculated efficiently by running TILTS once. We compute
BP (n − 1) of each job and combine them withAT (n − 1)
to generate the temperature slacks ofN2 dependent decisions.
This simplification is achieved by leveraging two properties of
B matrix, which reflects the temperature change determined
by the schedule decisions:

• Bi,j ≈ 0, for all i 6= j: the job that is running on corei
has little influence on the temperature of corej.

• Bi,i = Bj,j , for all i 6= j: for the same job, the boosted
temperature of each function unit caused by injected
power is same for all cores, although theAT (n − 1)
is dependent on the current temperature of the cores.

With the generated TSM, an example of making schedule
decisions based on the TSM is illustrated in Fig 2. And the
pseudo code is in Alg 1.

a All the decisions are valid.
b For hot-hazardJob3, assignJob3 on current coolest

Core4, and invalid all the decisions associated withJob3
andCore4 (with cross). Then, all the remaining decisions
does not trigger DTM, which comprises the optimal
subset.

c Find the remaining decision with minimal positive
S(1, 1) = 0.415, assignJob1 on Core1, and invalid all
the decisions associated withJob1 andCore1.

d Find the remaining decision with minimal positive
S(2, 2) = 9.285, assignJob2 on Core2, and invalid
all the decisions associated withJob2 and Core2. The
remainingJob4 is assigned to remainingCore3.



Algorithm 1 ThresHot Scheduling Algorithm
Require: Access the power and temperature from hardware

(Performance Counter and Temperature Sensor) at schedul-
ing point n.
Predict the power in the current scheduling cycle.
Assume no DTM for all cores at current scheduling point.
In TILTS, calculate the temperature of scheduling pointn+
1.
Generate theN × N matrix TSM.
Calculate the sum of the temperature slack of each job on
each core.
Sort the sum of temperature slack with ascending order.
Set all the cores and jobs unoccupied.
for The job j with least temperature slack (hottest job) to
the job with the largest temperature slack (coolest job)do

if The S(i, j) < 0, for all i then
Assign jobj to the current coolest core.
Mark the jobj and corei occupied.

end if
end for
Sort theS(i, j), for all i, j that is unoccupied with ascend
order
for all S(i, j)unused from small to largedo

For currentS(i, j), assign jobj to corei

Mark the jobj and corei used
end for

D. Comparison

In this subsection, 5 algorithms: Baseline, Random, Round-
Robin, Balancing and ThresHot are compared in the measure
of DTM actions reduction, performance degradation, and
thermal cycling effect.

In Baseline, since there is no job scheduling, no temporal
and spatial temperature slack is exploited. Hence, the perfor-
mance of the hot jobs are penalized most. However, there is no
context switch overhead for Baseline configuration, resulting
an optimal thermal cycling effect.

In Random, both the hot and cool jobs are treated evenly
and arbitrarily. However, it is not smart enough to avoid the
scenarios in which the hot jobs are assigned to hot cores,
resulting more performance degradation than assigned to cool
cores. Also, the context switch overhead and its influence on
thermal cycling effect is random, dependent on the scheduling
decisions.

In Round-Robin, intuitively, the power of each job is
temporally evenly distributed on theN cores, resulting even
spatial temperature. However, the temporal variation of the
power of jobs cause that Round-Robin fails to achieve even
power distribution at every scheduling point. Although DTM
actions and performance degradation are reduced, the context
switch overhead and the effect of thermal cycling for the
Round-Robin is huge.

In Balancing, the decision is to balance the dynamic power
on the cores, based on the collected thermal information of
core temperature and the power of the jobs. The context switch

overhead and the thermal cycling for balancing may be huge,
depending on the variation of the temperature.

Overall, all the above existing algorithms except ThresHot
just blindly schedule or intuitively evenly distribute thepower
of jobs to the cores for the current scheduling cycle, the
performance and the thermal cycling effect are not handled.
Moreover, the information of the power and temperature of
the last scheduling cycle is scarcely utilized. Thus, they
could not fully exploit the temporal and spatial temperature
slacks in current and future scheduling cycles to improve
performance and reliability. Although ThresHot algorithmis
a bit more complex to implement, it yields best performance
with minimal thermal cycling.

IV. EXPERIMENT METHODOLOGY

A. Experiment Setup

We use the HotSpot 4.0 [9] thermal model with the quad-
core floorplan, and use TILTS to speedup the thermal simu-
lation and to calculate the schedule decisions. All the simu-
lations start with the steady state temperature after warming
up.

To construct the quad-core floor-plan, we duplicate 4 Pen-
tium 4 Northwood processors, and scale them to quarter area,
as in Fig 1. The shared L2 cache locates at the center of
the chip. Also, the power traces are scaled to1

3
, which are

originally collected from running benchmark on real North-
wood processor with 8ms intervals. The power traces for each
function unit are then calibrated. The power is perceived tobe
constant in the 8ms interval. In the quad-core thermal model,
there are 93 function units for quad-core, with the L2 cache
shared for 4 cores.

Then, we pack four benchmarks from the pool of 19
SPEC 2K benchmarks as one test suit. The benchmarks are
classified by the type (Integer and Float Point), hottest function
unit, peak temperature and peak temperature variation. Thus,
we classify the test cases into several sub-cases: HHCC(2),
HHMC(2), HMMC(2), HMCC(2), IIII(1), FFFF(1)1.

In our scheme, the DTM is configured to be triggered on at
the threshold temperature of86.5 ◦C and off at85.5 ◦C. The
frequency scaling coefficient is 0.7, and the voltage scaling
coefficient is 0.92, resulting the power scaling coefficientto
be 0.6286. The stall incurred by entering and exiting the DTM
is 30µs. The DTM scheme follows the independent distributed
policy for each core. Although the scheduling cycle is 8ms,
the time step for detecting and applying the DTM actions is
set to be80µs, providing more accuracy.

B. Evaluation Metric

1) ETPP: Execution Time in Penalized Period:The
DTM actions penalize the performance from DTM overhead
(triggering-on/off and frequency scaling) and context switch
overhead. In our experiment, four benchmarks in a test pack
contains 2000 scheduling points with 8ms interval. With the

1H: Hot workload, M: Mild workload, C: Cool workload, I: Integer
Benchmark, F: Floating Point Benchmark



penalty from the DTM actions, four benchmarks end indi-
vidual execution at(Talg1, Talg2, Talg3, Talg4) (for Baseline,
Tbasei), and the TPP (Time in Penalized Period) of thealg is
normalized to that of Baseline by:

ETPPalg =

∑N

i=1
Talgi − 2000N

∑N

i=1
Tbasei − 2000N

,N = 4 (2)

The performance overhead incurred by the thermal-aware
job schedule algorithms include:

• DTM Triggering Overhead (10µs to 30µs).
• DTM Frequency Scaling Overhead.
• Task Migration Overhead.
• Task Scheduling Computation Overhead.
2) Reliability Improvement:The reliability of the chip is

measured in MTTF (mean time to failure), which is affected by
thermal cycling. The power management and the task schedul-
ing will introduce frequent and significant thermal cycling.
The number of thermal cycling to failure is determined by the
occurrences and∆T (the amplitude of the temperature swing)
in the thermal cycling. Significant variations of temperature
over time degrade the reliability a lot. Hence, we collected
the occurrences ratio of∆T over the execution for each job
schedule algorithm.

V. RESULTS

A. Results for Performance and Reliability

As in Fig 3, the ETPP of 5 task scheduling algo-
rithms: Balancing, Random, RoundRobin1, RoundRobin22,
and ThresHot are shown. On average, the ThresHot saves
13% execution time in penalized period, while the Balancing
saves around 8% and RoundRobin saves around 3%. Then,
the ETPP is further split into two stacks, the DTM action
overhead and switching overhead. The ThresHot algorithm
effectively reduce the DTM actions and frequency scaling
overhead, especially in the benchmarks with significant spatial
temperature variation, since ThresHot fully exploits the spatial
temperature slacks. In some benchmarks the DTM action
overhead of ThresHot is larger than other algorithms. The
reason is the imprecise power prediction and consequent
wrong schedule desitions. For the benchmarks with significant
temporal power variations, more errors are introduced in the
calculating the TSM. Overall, even with the imperfections,the
average DTM overhead of the ThresHot is the smallest among
all the algorithms.

Also, the switching overhead of ThresHot is also the small-
est of all the algorithms. Balancing and two Round-Robin
algorithms always try to frequently and blindly migrate the
jobs on the cores. On the other hand, ThresHot tries to enlarge
the spatial temperature gap as long as the performance is not
hurt, and the cool job could remain on the cool core as long
as the hot job does not trigger DTM, resulting reduced context
switches effectively.

Besides reducing the context switching overhead, the min-
imal context switching also reduces the thermal cycling and

2RoundRobin1 and RoundRobin2 is different from the task queue
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improves reliability. In Table I, the distribution of∆T occur-
rences is shown. ThresHot is least likely to generate significant
∆T among all the scheduling algorithms. Without frequently
swapping jobs on cores, the temporal variation of the cores
due to the task scheduling is reduced.

B. Thermal Behavior Analysis

The excerpt of the thermal behavior of the 6 scheduling
algorithms: Base, Random, RoundRobin1, RoundRobin2, Bal-
ancing and ThresHot on the temperature behavior are shown in
the Fig 4. In each sub-figure, 6 consecutive scheduling cycles
(8ms each) are shown. For clarity, there are 100 finer intervals
in each 8ms (the granularity of the DTM detecting intervals)
scheduling cycle.

In Fig 4, all the temperature traces are classified into two
distinct phases: transient phase without DTM actions from the
scheduling point, and the oscillating phase from first DTM
action. In the former phase, the temperature rises from the
temperature at the scheduling point and approaches to the
steady temperature determined by the power in the current
scheduling cycle. If the steady temperature of the job is higher
than the threshold, the oscillating phase is entered at some

TABLE I
DISTRIBUTION(IN PERCENTAGE) OF TEMPORAL VARIATIONS

Algorithm <10◦C [10◦C, 15◦C] [15◦C, 20◦C] >20◦C

Baseline 99.91 0.07 0.02 0.01

Random 97.45 1.55 0.68 0.32

Balancing 95.50 2.67 1.23 0.60

Round-Robin1 95.83 2.60 1.05 0.52

Round-Robin2 96.91 1.93 0.78 0.38

ThresHot 98.22 1.21 0.43 0.14
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(c) RoundRobin1
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Fig. 4. Thermal behavior of 6 scheduling algorithms

point in the current scheduling cycle. In the latter phase, the
temperature experiences high-frequency fluctuation between
the turning-off and turning-on threshold temperature. Allthe
temperatures are referred by each job, and the core on which
the job is running is marked byCx.

We collect the power from real processors with 8ms in-
tervals. In the simulation, the DTM actions slow down the
execution progress of the job, resulting the delay of certain
portion of the power in the current scheduling cycle to the
next scheduling cycle. We model this effect in our simulation
by linearly combining the remaining power of last cycle and

the power of current cycle. Then, we will discuss how the
scheduling algorithms impact the temperature of the CMP and
the context switch.

As shown in Fig 4(a), there is no job switching in the
Baseline design. Thus, the temperature of each job reflects its
intrinsic properties determined by the power, such as the 3 jobs
(HotJob1, CoolJob1&2) without oscillating phase. However,
the HotJob2 can not utilize the possible temperature slacks
of other cool cores. Thus, the hot jobs under the oscillating
phase suffer performance degradation in all execution period.
There is no context switch overhead, and the thermal cycling



effect is minimal.

In Fig 4(b), the Random algorithm randomly assigns the
jobs to the cores on every scheduling point. The Random takes
advantage when the hot jobs are occasionally assigned to cool
cores, such as the case in501 point. Although the randomness
can remove some DTM actions when the hot jobs are scattered
across the cores, but it could not handle all similar cases inthe
consistent manner. Even worse, it may randomly continuously
assign the hot jobs on the hot cores, resulting similar casesas
in Baseline. Also, the context switch overhead is random.

In Fig 4(c) and 4(d), two Round-Robin algorithms assign the
jobs on the cores in the Round-Robin way. The difference of
the two algorithms is the job queue: the hot jobs are aggregated
in the 4(c), and the hot jobs and cool jobs are interleaved
in 4(d). In both cases, the cores will iterate the temperature
caused by 4 jobs periodically. As in 4(c), there are 2 hot jobs:
HotJob1 andHotJob2. TheHotJob2 is assigned on the core
on whichHotJob2 was running on, thus theHotJob1 could
not utilize the temperature slack of the cool cores. However,
the HotJob1 can fully utilize temperature slack of the core
on which the cool job just ran. Thus, performance degradation
of the two hot jobs are maximized. On the other hand, as in
4(d), both theHotJob1 andHotJob2 can be assigned to cool
cores, resulting a minimized difference of the performance
degradation. However, in both cases, the hot job can not be
always put on the cooler cores. As for the context switch
overhead, the RoundRobin suffers most since all the jobs are
rescheduled on each scheduling point.

In Fig 4(e), the Balancing algorithm tries to balance the
power of each core to achieve an evenly distributed temper-
ature. As we can see, the hot jobs are always assigned to
the cool cores. Thus, the hot job can experience the longest
possible transient phase, and the performance degradationof
the hot job for the current cycle can be minimized. However,
the jobs with mild temperature are also switched to balance the
power, which introduces unnecessary context switches. Even
worse, if the power difference of the jobs are not large enough,
Balancing algorithm has little potential to further balance the
temperature. As for the context switch overhead, the Balancing
algorithm suffers almost as RoundRobin, since all the hot, mild
and cool jobs are to be rescheduled on each scheduling point.

In Fig 4(f), the ThresHot algorithm schedule the jobs on the
cores in a smarter way. It first tries to find whether all the jobs
could be assigned on the cores without DTM actions. In 4(f),
theHotJob2 triggers DTMs no matter what core it is assigned
to. Thus, theHotJob2 is assigned on the current coolest
core. For the remaining jobs those do not trigger DTMs, the
schedule decisions are made such that the temperature gaps
are enlarged as much as possible. Since the temperature gaps
are the intrinsic results of the power gap of different jobs,the
jobs are assigned such that the power gaps are maintained. In
this way, the context switch is minimized, as long as no DTM
actions occur, as shown in 501-505 in 4(f). Thus, ThresHot
can both minimizing the DTMs of the hot jobs and context
switches, resulting better performance and reliability.

C. Computation Overhead of ThresHot algorithm

The computation overhead of ThresHot is optimized by
running TILTS once, and combining theBP (n − 1) portions
of different jobs onAt(n − 1) to generate the TSM. The
main computation overhead is the matrix multiplication, and
the computation in the decision phase is trivial. Assuming
the current temperature can be obtained from the hardware
sensor, and only the temperature of up to 4 function units
for each core is required for the decision making phase,
we measured the computation time to be≈ 25.15µs. This
overhead includes both the matrix computation and decision
phase. This computation overhead is not included in the later
performance results, since we believe this computation canbe
performed efficiently on a dedicated assisting hardware block.

VI. CONCLUSION

We propose an aggressive thermal scheduling algorithm,
with the object to reduce the thermal emergencies, to boost
the performance and to increase the chip reliability. By fully
exploiting the spatial and temporal temperature slacks and
utilizing the thermal information of temperature and power,
ThresHot responds well to varying temporal power and spa-
tial temperature, and generates the scheduling decisions to
improve both the current and next scheduling cycle. For the
SPEC2K benchmarks, the ThresHot algorithm reduces 13%
execution time in the penalized period, compared to 8% for
Balanced and 3% for RoundRobin algorithm. Also, by remov-
ing unnecessary context switches, the thermal cycling effect
are minimal among all the existing scheduling algorithms,
which improves the chip reliability.
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