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Abstract

CEFOS is an operating system based on a continuation-
based zero-wait thread model derived from a data-flow
computing model. A program consists of zero-wait threads,
each of which runs to completion without suspension once
started. Synchronization between zero-wait threads is au-
tonomously performed in a dataflow manner according to
their continuation relations. Handler routines for asyn-
chronous events such as events from I/O devices are also
realized with zero-wait threads and executed under the
continuation-based multithreading mechanism. We can
eliminate “interrupts” that interfere with the execution of
instruction streams in typical conventional approaches. In
this paper, we discuss implementation issues in CEFOS on
FUCE. FUCE is a multi-core processor dedicated to the
thread model and we can naturally handle concurrency and
exploit parallelism in programs on FUCE even for I/O-
centric computation. While we observe good scalability in
terms of the number of execution units and I/O devices, re-
lying solely on hardware in managing threads may expose
its bottleneck. We also discuss and evaluate mechanisms
for making up for a weak point of FUCE in handling I/O
requests.

1 Introduction

Processors that exploit coarse-grain threads, such as
SMT (Simultaneous Multi Threading) processors and CMP
(Chip Multiprocessor), are widely available [3, 4, 10, 12,
13, 22]. Major operating systems, such as Linux, provide
threads as a kind of process with reduced resources. We
can write multithreaded applications in popular languages

such as Java. However, as their basic execution model
is a conventional sequential one, it seems difficult to deal
with a considerably large amount of dynamically generated
threads of various granularities that can be found in current
or emerging software.

Multi-tasking operating systems not only handle con-
current tasks but also have concurrency and parallelism of
various granularities in themselves. We claim that oper-
ating systems need to be developed based on a computa-
tion model that can deal with concurrency and parallelism
of various granularities, while current major operating sys-
tems are developed based on the procedural and sequential
computation concept. In order to investigate this claim, we
are developing an operating system called CEFOS based on
a continuation-based multithreading model derived from a
dataflow computation model[1]. The concept of dataflow
computation is suitable for processing parallel and concur-
rent activities of various granularities. There have been
many research and development projects of dataflow archi-
tectures and related languages [5, 6, 7, 8, 9, 16, 18, 19, 20,
21]

A program for CEFOS consists of threads each of which
runs to completion without suspension once started. We
call a thread in our model a zero-wait thread in order to
distinguish from other types of threads like Pthreads. Syn-
chronization between zero-wait threads is performed in a
dataflow manner according to continuation relations be-
tween them. A program can be seen as a dataflow graph
in which a node corresponds to a zero-wait thread and an
edge represents a continuation relation.

Handler routines for external events such as signals from
I/O devices are also realized with zero-wait threads and ex-
ecuted under the continuation-based multithreading mecha-
nism. We can eliminate “interrupts” that interfere with the



execution of instruction streams in typical conventional ap-
proaches, and we can naturally handle concurrency and ex-
ploit parallelism in programs even for I/O-centric compu-
tation. Execution control between zero-wait threads is per-
formed autonomously according to continuation relations
regardless whether threads are for computing some internal
values, for managing shared resources, or for handling ex-
ternal events.

We implemented a prototype version of CEFOS by mod-
ifying Linux on commodity platforms and showed the effec-
tiveness of our approach to some extent[23]. However, we
also conduct a more model-oriented challenging approach,
building our operating system from scratch on a dedicated
platform. In this paper, we discuss mechanisms for han-
dling I/O requests in our operating system on the FUCE
(FUsion Communication and Execution) processor[2]. The
FUCE processor is a continuation-based multithreading
multi-processor dedicated to thread level parallelism.

Handling I/O requests is one of the potential bottlenecks
in operating systems. In commodity operating systems,
threads with an outstanding I/O request are set to a waiting
state and listed in a wait queue associated with the event.
In receiving the response, the current thread is interrupted
and suspended, and threads in the wait queue are woken up
to confirm the actual receiver of that response. Therefore,
when the number of requests increases, the cost of such in-
terrupts and activations considerably increases. On mul-
tiprocessor platforms, providing multiple I/O devices may
improve the situation. However, distributing interrupts from
the devices is one of the problems to achieve an ideal scala-
bility.

Under the execution mechanism of CEFOS on FUCE,
the receiver thread of the I/O response is explicitly spec-
ified without waking up other threads. The response from
the device is converted into a continuation signal and the tar-
get thread is activated and executed in the same way as other
threads without causing interrupt. This continuation-based
direct activation mechanism of zero-wait threads enables us
to exploit parallelism without complex interrupt manage-
ment mechanisms.

CEFOS naturally exploits parallelism in operating sys-
tem on a multithread machine like FUCE[11]. We can ob-
serve good scalability in terms of the number of execution
units and I/O devices. However, naturally exploiting par-
allelism may lead to explosion of parallel activities which
overwhelms hardware capacity while one of the important
roles of operating system is hardware resource manage-
ment. Basic execution mechanism is a dynamic dataflow
architecture in which computation proceeds eagerly. The
FUCE processor provides a self-continuation instruction
which can be used in mutual exclusion. Relying solely on
hardware in managing thread execution may result in a sit-
uation like livelock at the point where we introduce a gate

to control eager execution for exclusive threads. The FUCE
processor has only a non-priority queue, which can be over-
whelmingly occupied by a number of threads issuing self-
continuations. We discuss and evaluate our mechanism to
make up for this weak point of FUCE in handling I/O re-
quests. We address this issue by introducing software thread
queues in front of the gate to control exclusive thread exe-
cution.

The organization of this paper is as follows. First, we
explain the outline of the mechanism for handling multiple
I/O requests in CEFOS on FUCE in Section 2. In Section
3, we evaluate the scalability of the I/O handling mecha-
nism when changing the number of execution units and I/O
devices. In Section 4, we examine our mechanism to pre-
vent livelock situation due to increasing number of threads
which check the availability of limited resources in a busy-
wait manner.

2 Our Approach

In this section, we explain the outline of our handling
mechanism for multiple I/O requests.

In handling external events from external devices, we
must handle signals from the devices which are delivered
asynchronously. In the typical interrupt-handling mech-
anisms for conventional platforms, these kinds of asyn-
chronous events are treated as a kind of irregular events.
Interrupt handling needs special mechanisms to satisfy the
requirements to treat these kinds of irregular events, includ-
ing resuming interrupted thread as early as possible, keep-
ing the device busy for as short a time as possible, handling
the nested interruption correctly, and so on.

In our model, handler routines for external events are
also realized with zero-wait threads in the same way as other
routines for internal computation and event handling is inte-
grated into the continuation-based multithreaded execution
mechanism. Figure 1 illustrates two different approaches
in handling events from external devices. In our approach,
we need not interrupt the running thread while we inter-
rupt the running thread in the conventional interrupt-based
approach. Simultaneous continuation events from differ-
ent devices may activate different handler threads with-
out nesting interrupt handlers. Threads are executed asyn-
chronously, and a device which tries to activate the handler
thread issues a continuation signal to the target thread then
escape from their busy state quickly. Independent threads
are executed in parallel and we can expect good scalability
in terms of the number of execution units and devices. We
can naturally handle concurrency and exploit parallelism
which resides in programs even for I/O-centric computa-
tion.



Figure 1. Two different approaches in han-
dling external events from devices.

Figure 2. Mode changes between threads in
the FUCE processor.

2.1 Execution control for shared resources

2.1.1 Execution mode change

Conventional processors have several execution modes rep-
resented as processor states and methods to change the
modes. For instance, Intel x86 processors haveint 0x80

and sysenter instructions to realize mode change. Ex-
ecution modes in the FUCE processor are set per thread.
Each thread runs either in the user mode, the kernel mode
or the kernel interface mode, and such threads are called as
user thread, kernel thread, or kernel interface thread, respec-
tively. Kernel threads run at the supervisor level and kernel
interface threads support continuations from a user space to
the kernel space.

Figure 2 shows possible continuations between different
thread modes. In order to protect the kernel space, user
threads cannot directly continue to kernel threads. To ac-
tivate kernel threads from user threads as in system calls,
user threads continue to kernel interface threads.

Figure 3. An example of mutual exclusion.

2.1.2 Mutual exclusion

Simultaneous invocations of the same code segment are al-
lowed in our execution model in a way similar to those of
dynamic-colored dataflow architectures. However, a mu-
tual exclusion mechanism is necessary for critical regions
which must not be executed simultaneously. There may be
threads which are executed several times but which can not
be executed simultaneously. For example, consider the case
shown in Figure 3. In this example, three threads (Thread
A, Thread B, and Thread C) try to continue to Thread D.
However, only one thread can continue to Thread D at one
time.

If we have a mechanism to lock a thread, we can achieve
this mutual exclusion. Three threads try to lock Thread
D. But, only one thread can lock thread D, and the thread
which succeeded in locking Thread D (for example, Thread
B) can continue to Thread D. Other threads which failed to
lock Thread D continue to the starting point of themselves
and try to lock thread D again. The critical thread, thread
D in this case, also continues to the starting point of itself
and resets the synchronization counter to a predefined value
in order to wait for continuation signals from other threads
which try to continue to Thread D.

2.2 Handling I/O requests with zero-wait
threads

We explain the mechanism for handling I/O requests
with zero-wait threads. The program structure is illustrated
in Figure 4. The role of each thread is explained below.

sender thread: System call requests from a user space
must go through agate thread that is an interface to
the kernel space. Threads issuing system calls try to
lock thegate thread at first (1-1). If a thread suc-
ceeds in locking thegate thread , it continues to the
gate thread after delivering the necessary informa-
tion such as the system call number, parameters to the



Figure 4. Handling multiple I/O requests with zero-wait threads.

system call and the receiver thread in the user space (1-
2). Otherwise, it continues to the starting point of itself
and tries to lock agate thread again (1-3). While
sender threads in user space are dynamically cre-
ated in a dynamic dataflow mechanism, the number of
gate threads are statically fixed since they should
be known to threads in user space as an entry point in
a static manner. Each of thegate threads cannot be
activated simultaneously.

gate thread: Threads in a user space cannot directly
continue to the threads in the kernel space. Thisgate

thread works as an interface to the kernel space. This
thread identifies the system call from the system call
number and specifies the thread (syscall thread )
for the system call (2-1). Then, it continues to the
thread after delivering the parameters to the system call
and data to identify thereceiver thread (2-2).

syscall thread: This thread is the system call body.
In this case, as the system call is for an I/O opera-
tion, this thread continues to thesemaphore thread

which guards the I/O device required by the I/O oper-
ation (3-1, 3-2).

semaphore thread: First, this thread tries to lock
the device thread which is a continuation of this
thread (4-1). Then it continues to thedevice thread

if it can lock the thread (4-2). Otherwise, the I/O de-
vice is currently used and this thread enqueues data of
the I/O operation in the queue before its termination(4-
3).

device thread: This receives data from the
semaphore thread (5-1), and issues an I/O

request to the device (5-2). Then, it continues to the
handler thread after delivering data to specify the
receiver thread (5-3).

handler thread: The handler thread is activated
by the continuation signal from the device and re-
ceives the result data from the device (6-1). It
executes a continuation instruction whose target is
the receiver thread and passes I/O data to the
thread (6-2). Then it issues a continuation to the
device thread after delivering the data if there ex-
ist other I/O request data in the queue (6-3).

3 Scalability

In this section, we evaluate our handling mechanism for
I/O requests on FUCE focusing on the scalability in terms
of the number of thread execution units (TEU) and I/O de-
vices.

As a typical conventional platform, consider the Linux
Kernel 2.6 on a multiprocessing system. The Linux Ker-
nel on a multiprocessing system has a run queue for ready
threads (processes) per PE, and a wait queue for waiting
threads per resource. In order to fully exploit the parallelism
of the multiprocessing architecture, interrupts need to be de-
livered to any CPU in the system. Advanced Programmable
Interrupt Controllers (APICs) such as the Intel APIC Ar-
chitecture are designed as one of the attempts to efficiently
deliver interrupts in multiprocessor computer systems. In-
terrupts requests in such systems can be distributed among
the CPUs in two ways: static distribution or dynamic distri-
bution. However, it is not easy to achieve an ideal scalabil-
ity in handling I/O requests. We have to deliver the result to



the waiting thread in the multiprocessor system while tak-
ing care of load-balancing and mutual exclusion for critical
resources. In our approach, the continuation signal directly
activates the waiting thread without using a wait queue, and
the activated thread is scheduled by means of the hardware
property.

3.1 Preliminaries

In evaluation, we simulate the FUCE processor de-
scribed in VHDL on the ModelSim simulator. The current
specification of the FUCE processor is as follows: the size
of Instruction Cache = 4KB/TEU, the size of Activation
Control Memory = 40KB (5B/entry×8 entries/page×1K
pages), the size of Thread Queue = 10KB (10B/entry×1k
entries), and size of Memory = 256MB. We use a pro-
gram whose outline is shown in Figure 4. Programs of
the operating system kernel and user applications issuing
system calls are written in the FUCE assembly language.
We assume the speed of FUCE processor is 1GHz. As
we cannot connect real devices to our evaluation environ-
ment so far, we simulate a device as avirtual hw thread

which occupies one execution unit during evaluation.
This means that thedevice thread continues to the
virtual hw thread and thevirtual hw thread con-
tinues to the handler thread in Figure 4. This
virtual hw thread has a loop and the RTT (Round Trip
Time) of the simulated device is parameterized as the loop
length. The maximum number of execution units is four in
this evaluation.

We set RTT of thevirtual hw thread as 0, 2, 4,
and 6 micro seconds. We considered a system with multi-
ple NICs (Network Interface Cards) of 10Gb Ethernet with
TOE (TCP/IP Offload Engine). The estimated shortest in-
terval of data packets is about 1 to 2 micro seconds in case
of the maximum packet size of 1.5KB on 10Gb Ethernet.
This interval amounts to1.0×103 to 2.0×103 clock cycles
when the speed of the FUCE processor is 1GHz.

We measured, as the throughput value, the maximum
number of system calls completed within the fixed period
without loss or delay. The fixed period was1.0× 105 clock
cycles. We examine whether the maximum number of sys-
tem calls scales with the number of TEUs and I/O devices.

3.2 Evaluation results

We consider a parallel I/O system which has a set of
fixed pairs of a device and a processing unit. A device is
tightly coupled to the paired processing unit, and interrupts
from the device are handled by the specific processing unit.
In such a system, we can improve throughput by N times
when we have N device-processing pairs in an ideal situ-
ation while it is difficult to expect such an ideal situation.

00.511.522.533.5
(1,1) (2,2) (3,3)(# TEUs, # devices)Throughput Ratio normali

zed with (1,1) 0 micro seconds 2 micro seconds4 micro seconds 6 micro seconds
Figure 5. Relative throughput normalized
compared to the case (the number of devices,
the number of TEUs) is (1, 1).

As another assumption, we consider a system in which de-
vices and processing units are loosely coupled. If we have a
perfect load balancing mechanism for handling events from
devices, we can also expect ideal scalability.

We examine whether our results are comparable to such
ideal situations. Figure 5 shows the result. When RTT
was 2 micro seconds, changing the pair of (the number of
devices, the number of TEUs) from (1, 1) to (3, 3) im-
proved throughput about 2.5 times. When RTT was 6 micro
seconds, changing (the number of devices, the number of
TEUs) from (1, 1) to (3, 3) improved throughput about 3.1
times.

Thus, we conclude we can expect good scalability in I/O
handling in terms of the number of devices and the num-
ber of execution units. However, existence of a superliner
case may mean a bad performance of the base case. One of
the potential reasons is the problem of self-continuation in
exclusive thread execution, we discuss in the next section.

4 Exclusive Thread Execution

Most operating systems are interrupt-driven systems
which can provide low overhead and short latency at low
interrupt frequency. However, they suffer from degradation
situations at high interrupt frequency, such as receive live-
lock in which no useful work cannot be performed[14] as
shown in Figure 6.

While CEFOS naturally exploits parallelism in operat-
ing system on a multithread machine like FUCE, naturally
exploiting parallelism may lead to a similar situation due
to explosion of parallel activities which overwhelms hard-
ware capacity. In this section, we evaluate the mechanism



Figure 6. Overloaded systems may lead to re-
ceive livelock in which no useful work cannot
be performed.

to prevent a potential livelock situation due to increasing
number of threads which check the availability of limited
continuation threads in a busy-wait manner. We examine
mechanisms to control contention for shared threads and
resources as well as scalability. The FUCE processor pro-
vides a self-continuation instruction which can be used in
mutual exclusion. Relying solely on hardware in managing
thread execution may result in a situation like livelock at the
point where we introduce a gate to control eager execution
for exclusive threads. The FUCE processor has only a non-
priority queue, which can be overwhelmingly occupied by
a number of threads issuing self-continuations. We discuss
and evaluate our mechanism to make up for this weak point
of FUCE in handling I/O requests. We address this issue by
introducing software thread queues in front of the gate to
control exclusive thread execution.

4.1 Problem due to self-continuation

Figure 7 shows total clocks required to complete multi-
ple system calls. We changed the number of system calls as
5, 10, 20, 40, 60, and 80.

The graph seems non-linear. If we increase the number
of system callsn, the total clocks seem to grow inO(n2).
We observed the clocks required per system calls increased
linearly as shown in Figure 8. As the total clocks is the sum
of clocks per system call, it grows inO(n2).

In order to find the cause of this situation, we analyzed
simulation data. As shown in Figure 9, the number of self-
continuations persender thread in user space has in-
creased linearly. Although FUCE has a hardware thread
queue, it is a non-priority queue. A self-continuation from
a thread to reactivate the thread consumes one entry of the
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Figure 7. Total clocks for changing number of
system calls.

hardware queue. As the number of self-continuations in-
creases, more queue entries are occupied without contribut-
ing the progress of actual computation.

4.2 Introducing software level thread
queue

We introduce software level thread queues in order to
avoid the situation in which the hardware level thread queue
is occupied by the self-continuations checking the availabil-
ity of limited resources in a busy-wait manner. In this case,
we introduce software queues in front ofgate threads . A
denied request for agate thread from asender thread

is enqueued in software queue instead of issuing a self-
continuation instruction, which will occupy an entry of the
hardware queue. Figure 10 compares the total number of
self-continuations when using software queues and those
without software queues. We changed the number of sys-
tem calls as the same as the previous subsection. As we can
see from the figure, when introducing software queues, the
increase of the self-continuations is almost proportional to
the number of system calls without explosion like the case
without software queues.

Figure 11 compares the total clocks required to complete
system calls when using software queues and those without
software queues. As we can see from the figure, when in-
troducing software queues, the total clocks are significantly
reduced as the number of system calls increases.
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5 Concluding Remarks

We discussed an operating system called CEFOS based
on a dataflow based computation model. A program for CE-
FOS consists of zero-wait threads which run to completion
without suspension once started. Synchronization among
such threads is performed in a dataflow manner along con-
tinuation relations between threads. Handler routines for
external devices are also realized with zero-wait threads and
integrated in the continuation-based multithreaded execu-
tion mechanism. We can eliminate “interrupts” which dis-
rupt the instruction stream inside the main processing unit
in conventional platforms. In this paper, after introducing
our model and our operating system based on the model,
we discussed implementation issues on FUCE, which is a
continuation-based multithreading processor dedicated to
the thread level parallelism. We evaluated the scalability
in throughput in terms of the number of execution units and
I/O devices. We can naturally handle concurrency and ex-
ploit parallelism in programs even for I/O-centric compu-
tation. Self-continuations to realize mutual exclusion may
cause a problem. Number of self-continuation threads may
harmfully occupy the non-priority queue of FUCE proces-
sor in handling I/O requests. We addressed this issue by
introducing software level thread queues and observed sig-
nificant performance improvement for the increasing num-
ber of system calls.
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