Performance Analysis of CNN Frameworks for GPUs

Heehoon Kim†, Hyoungwook Nam†, Wookeun Jung, and Jaejin Lee
Department of Computer Science and Engineering
Seoul National University, Korea
http://aces.snu.ac.kr
†The two authors contributed equally to this work as the first authors
Convolutional Neural Network
Deep Learning Framework
GPU Library
Motivation

- Convolutional Neural Networks (CNN) have been successful in machine learning tasks such as visual recognition.

- Previous studies reveal *performance differences* among deep learning frameworks.

- However, those studies *do not identify reasons* for the differences.
Goals

- Analyze differences in the performance characteristics of the five deep learning frameworks in a single GPU context

- Analyze scalability of the frameworks in the multiple GPU context

- Analyze performance characteristics of different convolution algorithms for each layer
Outline

- Convolutional Neural Network
 - Deep Learning Frameworks
 - Framework Comparison
 - Multi-GPU Comparison
 - Layer-wise Analysis of Convolution Algorithms
 - Conclusions
Convolutional Neural Network

Inputs → conv 1 → conv 2 → ... → conv n → fc 1 → fc 2 → ... → fc n → softmax → Outputs

Convolutional Feature Extractor

Fully-connected Classifier
Computational Complexity of Convolution

Conv2 layer

\[C = 96 \]
(input channel)

\[[H, W] = [13, 13] \]
(input dimension)

\[[R, S] = [5, 5] \]
(kernel dimension)

\[K = 256 \]
(output channel)

\[N = 256 \]
(batch size)

- \[C \times HW \times RS \times K \times N \times 2 \] (multiply and add)
- Ex) \[96 \times 27 \times 27 \times 5 \times 5 \times 256 \times 256 \times 2 = 229 \text{ Gops} \]
Convolution Algorithms for GPU

- **Direct Convolution**
 - Straightforward, but hard to optimize

- **GEMM Convolution**
 - Converts convolutions into matrix multiplications
 - Easier to optimize

- **FFT Convolution**
 - Reduced computational complexity
 - $O(KN)$ (Direct convolution) $\rightarrow O(N\log N)$ (FFT convolution)

- **Winograd Convolution**
 - Reduces the complexity of convolution like Strassen’s algorithm
 - Specific filtering algorithm is required for each kernel dimension
AlexNet Model

- Winner of ILSVRC 2012 (ImageNet Challenge)
- Commonly used CNN model for benchmarking
- Includes various kinds of layers
 - 3x3 convolution, 5x5 convolution, fully connected layers, etc.
Training a CNN

- 1 forward computation and 2 backward computations
- Forward and backward computations are symmetric and have the same computational cost
Outline

- Convolutional Neural Network
- **Deep Learning Frameworks**
- Framework Comparison
- Multi-GPU Comparison
- Layer-wise Analysis of Convolution Algorithms
- Conclusions
Five Deep Learning Frameworks

<table>
<thead>
<tr>
<th>Framework</th>
<th>User Interface</th>
<th>Data Parallelism</th>
<th>Model Parallelism</th>
</tr>
</thead>
<tbody>
<tr>
<td>Caffe</td>
<td>protobuf, C++, Python</td>
<td>Yes</td>
<td>Limited</td>
</tr>
<tr>
<td>CNTK</td>
<td>BrainScript, C++, C#</td>
<td>Yes</td>
<td>No</td>
</tr>
<tr>
<td>TensorFlow</td>
<td>Python, C++</td>
<td>Yes</td>
<td>Yes</td>
</tr>
<tr>
<td>Theano</td>
<td>Python</td>
<td>No</td>
<td>No</td>
</tr>
<tr>
<td>Torch</td>
<td>LuaJIT</td>
<td>Yes</td>
<td>Yes</td>
</tr>
</tbody>
</table>

- Popular frameworks chosen by GitHub stars
- All five frameworks use cuDNN as backend
- Theano only supports single GPU
cuDNN

- Deep Neural Network library with NVIDIA CUDA
- Provides DNN primitives
 - Convolution, pooling, normalization, activation, ...
- State-of-the-art performance
- **All five frameworks** support use of cuDNN as a backend
- Unfortunately, not open-source (distributed in binaries)
System Setup

<table>
<thead>
<tr>
<th></th>
<th>Details</th>
</tr>
</thead>
<tbody>
<tr>
<td>CPU</td>
<td>2 x Intel Xeon E5 2650@2.0GHz</td>
</tr>
<tr>
<td>GPU</td>
<td>4 x NVIDIA Titan X (Maxwell)</td>
</tr>
<tr>
<td>Main memory</td>
<td>128GB DDR3</td>
</tr>
<tr>
<td>GPU memory</td>
<td>4 x 12GB GDDR5</td>
</tr>
<tr>
<td>Operating system</td>
<td>CentOS 7.2.1511 (Linux 3.10.0-327)</td>
</tr>
</tbody>
</table>
Outline

- Convolutional Neural Network
- Deep Learning Frameworks
- **Framework Comparison**
- Multi-GPU Comparison
- Layer-wise Analysis of Convolution Algorithms
- Conclusions
- Convolution layers take up more than 70% of training time
- f: forward computation, b: backward computation
Options for Convolution Algorithms

<table>
<thead>
<tr>
<th>Framework</th>
<th>User Selectable</th>
<th>Heuristic-based</th>
<th>Profile-based</th>
<th>Default</th>
</tr>
</thead>
<tbody>
<tr>
<td>Caffe</td>
<td>No</td>
<td>Yes</td>
<td>No</td>
<td>Heuristic-based</td>
</tr>
<tr>
<td>CNTK</td>
<td>No</td>
<td>No</td>
<td>Yes</td>
<td>Profile-based</td>
</tr>
<tr>
<td>TensorFlow</td>
<td>No</td>
<td>No</td>
<td>No</td>
<td>Heuristic-based†</td>
</tr>
<tr>
<td>Theano</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
<td>GEMM</td>
</tr>
<tr>
<td>Torch</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
<td>GEMM</td>
</tr>
</tbody>
</table>

†TensorFlow uses its own heuristic algorithm

- cuDNN Get API is a **heuristic based** approach to choose an algorithm
- cuDNN Find API is a **profile-based** approach to choose an algorithm
- By default, Torch and Theano use GEMM convolution
Options for Convolution Algorithms

- Up to 2x speedup by providing algorithm options
For example, cuDNN’s FFT convolution only supports NCHW

If the user uses another layout, TensorFlow implicitly transposes

Changing the layout leads to **15% speedup** in TensorFlow
Unnecessary Backpropagation

- 'Backward Data' is unnecessary in the first layer.

- Caffe, CNTK, Theano
 - Automatically omitted.

- Torch
 - User option (layer0.gradInput = nil)

- TensorFlow
 - No options to users
Unnecessary Backpropagation

- Speedup in the backward computation of the first layer
Optimized Results

- Framework differences are not significant if carefully optimized
- Remaining differences come from other operations, such as bias addition and ReLU activation
Outline

- Convolutional Neural Network
- Deep Learning Frameworks
- Framework Comparison
- Multi-GPU Comparison
- Layer-wise Analysis of Convolution Algorithms
- Conclusions
Data-parallel SGD

Critical path: 2\log N transfer
Multi-GPU Scalability

- With **small batches**, multi-GPU is worse than a single GPU
- Even with large batches, 4GPUs’ speedup is only around **1.5x**
Communication-Compute Overlapping

- Transfer overhead is not negligible
- Transfer as soon as gradients of each layer become available
- TensorFlow is partly doing this
Reducing Amount of Data Transfer

- **Quantization** methods
 - CNTK’s 1bit-SGD (1/32 transfer)
- Avoid fully connected layers
 - 90% of parameters reside in fully-connected layers
 - Use 1x1 convolution layers instead of fully-connected layers (e.g. GoogLeNet)

![Diagram](image)

<table>
<thead>
<tr>
<th>1GPU</th>
<th>2GPUs</th>
<th>4GPUs</th>
</tr>
</thead>
<tbody>
<tr>
<td>128</td>
<td>256</td>
<td>512</td>
</tr>
</tbody>
</table>

Speedup

CNTK 1bit-SGD
Outline

- Convolutional Neural Network
- Deep Learning Frameworks
- Framework Comparison
- Multi-GPU Comparison
- **Layer-wise Analysis of Convolution Algorithms**
- Conclusions
Direct Convolution Algorithm

- Straightforward convolution algorithm
- Not supported by cuDNN, thus we use `cuda-convnet3` for testing
- Easy to implement but hard to optimize
- `cuda-convnet` requires CHWN tensor layout instead of NCHW
- Computation time for forward and backward computations are not symmetric
GEMM Convolution Algorithm

- Treat convolutions as **vector dot products** in matrix multiplication
- Forward and backward computations are **symmetric**
- Efficiently optimized, but tiling inserts unnecessary computations
FFT Convolution Algorithm

- FFT \rightarrow CGEMM \rightarrow inverse FFT $==$ Convolution
- In 2D convolution, computational complexity reduces from $O(HWRS)$ to $O(HW \log(HW))$
- Computational cost does not depend on kernel dimension
- cuDNN FFT convolution does not support strides
Winograd Convolution Algorithm

- Based on GEMM convolution method
- **Minimal filtering algorithm** for 3x3 kernel and 4x4 tiling reduces 144 multiplications into 36 (4x difference).
- Each kernel dimension requires own minimal filtering algorithm.
- cuDNN 5.1 supports Winograd algorithm for 3x3 and 5x5 convolutions with no strides

![Kernel operation counts for each convolution layer](chart)

Legend:
- Direct
- GEMM
- FFT
- Winograd
- Theoretical
Computation Time Comparison

- **Direct** algorithm shows poor performance on **backward computations**
- **FFT** is the fastest algorithm for most of the time
Computation Time Comparison

- **Direct** algorithm shows poor performance on **backward computations**
- **FFT** is the fastest algorithm for most of the time
- **Winograd** performs better in **smaller batches** and **3x3 convolutions**
Computation Time Comparison

- **Direct** algorithm shows poor performance on **backward computation**
- **FFT** is the fastest algorithm for most of the time
- **Winograd** performs better in **smaller batches** and **3x3 convolutions**
- Memory usage differences are not significant
Layer-wise Analysis of Convolution Layers

- **Operation count** is the primary factor for the execution time

- Conv2 layer requires the most computations

- Thus, **FFT** and **Winograd** are faster than **Direct** or **GEMM**
Layer-wise Analysis of Convolution Layers

- **Operation count** is the primary factor for execution time.
- Conv2 layer requires the most computations.
- Thus, **FFT** and **Winograd** are faster than **Direct** or **GEMM**.
- Direct convolution is slow because its backward computation in the first layer is inefficient.
Conclusions

- **Convolution layers** take up most of the computation time while training CNN models.

- Performance difference of the frameworks are mainly due to convolution algorithms.

- Choosing **optimal options** can **double the training speed** of the AlexNet model.

- **Tensor layout** and **unnecessary backpropagation** might result in minor performance differences.
Conclusions

- **FFT convolution** algorithm is the fastest in most of the time because of its **reduced computation complexity**

- **Winograd convolution** can be faster than FFT in 3x3 convolution layers with **small batch sizes**

- Data parallelism is **inefficient** in most frameworks because of the **communication cost**, but some techniques might improve the multi-GPU scalability