
Siva Hari

Timothy Tsai, Mark Stephenson, 

Stephen W. Keckler, Joel Emer



2
NVIDIA CONFIDENTIAL

MOTIVATION

Need to evaluate resilience of applications

Silent Data Corruption (SDC), Detected Unrecoverable Error (DUE) probabilities

Identify vulnerable program sections – key for developing low-cost mitigation schemes

Automotive and HPC systems need high resilience



3
NVIDIA CONFIDENTIAL

CHALLENGES

Application-level resilience evaluation is challenging

Traditional low-level error injection experiments are slow

Low visibility into application behavior

Need quicker GPU application resilience evaluation scheme

Application-level evaluation can be slow

Application

System software

Architecture

Gate

Circuit



4
NVIDIA CONFIDENTIAL

APPROACH

Inject error at architecture level

Fast and visibility into application

Leverage a low-level assembly-language instrumentation tool (SASSI)

Advantages:

Analyze and study SDCs in detail: Magnitude of SDCs and which errors produce SDCs

Ability to correlate program properties with program vulnerability

Key to develop low cost error mitigation schemes

Ability to quantify application level error derating factors

Architecture-level Error Injections

Application

System software

Architecture

Gate

Circuit



5
NVIDIA CONFIDENTIAL

CONTRIBUTIONS

Developed SASSIFI tool

Flexible options to inject many types of errors

Examples: single, multiple bit flips in register values; address vs. value errors

Demonstrated by conducting four types of resilience studies

Released SASSIFI for public usage

GitHub: https://github.com/NVlabs/sassifi

SASSIFI: Architecture-level GPU fault injection tool

https://github.com/NVlabs/sassifi


6
NVIDIA CONFIDENTIAL

OUTLINE

Background: SASSI

SASSIFI tool

Error injection methodology

Use cases: Error models

Results



7
NVIDIA CONFIDENTIAL

OVERVIEW OF SASSI
Background

.L_8:

ISCADD R7, R5, R3, 0x2;

STS [R7], R2;

BAR.SYNC 0x0;

MOV R0, c[0x0][0x28];

SHF.R R0, R0, 0x1, RZ;

ISETP.EQ.AND P0, PT, ...

@P0 BRA `(.L_12);

.L_8:

ISCADD R7, R5, R3, 0x2;

IADD R1, R1, -0x4;

STL [R1], R4;

IADD R4, R7, 0x0;

JCAL `(_users_function);

LDL R4, [R1];

IADD R1, R1, 0x4;

STS [R7], R2;

BAR.SYNC 0x0;

SASSI is a compiler-based instrumentation framework that allows us to inject code before or 

after specific points in a program

Example: Identify all SASS memory ops and inject code needed to pass op’s 

address to a user-defined function

User writes a handler function, _users_function, in CUDA

1. Create extra stack space

2. Save live registers

3. Pass parameters of interest to user-defined function

4. Call user-defined function

5. Restore live registers

6. Restore stack

7. Execute instrumented instruction

“Flexible Software Profiling of GPU Architectures,” Mark Stephenson, Siva Hari, Yunsup Lee, Eiman Ebrahimi, 

Daniel Johnson, Dave Nellans, Mike O’Connor, and Steve Keckler, ISCA 2015



8
NVIDIA CONFIDENTIAL

SASSIFI: SASSI BASED FAULT INJECTOR

Leveraged SASSI for error injections

Instrumented kernels for profiling and error injections



9
NVIDIA CONFIDENTIAL

SASSIFI METHODOLOGY

Profile: Identify possible injection sites

Instrumented kernels execute on the GPU

Steps

GPU KernelsCPU Code

Output



10
NVIDIA CONFIDENTIAL

SASSIFI METHODOLOGY
Steps

GPU KernelsCPU Code

Output

Profile: Identify possible injection sites

Instrumented kernels execute on the GPU

Statistically select injection sites based on the error model



11
NVIDIA CONFIDENTIAL

SASSIFI METHODOLOGY
Steps

GPU KernelsCPU Code

Output
Golden 
Output

Profile: Identify possible injection sites

Instrumented kernels execute on the GPU

Statistically select injection sites based on the error model

Injection runs: inject one error at a time

Instrument before/after instructions and collect reg/mem info

Start application, inject error at the selected site

Continue execution until a crash or the output



12
NVIDIA CONFIDENTIAL

OUTCOME CATEGORIES

Categories Explanation

DUE

Application exits with non-zero exit status

Application does not terminate within allocated time (3x fault-

free runtime)

Potential 

DUEs

Kernel exit status is not cudaSuccess

Error messages in stdout/stderr (e.g., Error: misaligned address)

SDC Program output file or stdout is different

Masked
Application output is same as the error free output without any 

error symptoms



13
NVIDIA CONFIDENTIAL

SASSIFI USE CASES

What is the probability that a particle-strike in the register file produce an SDC?

What is the probability that a bit-flip in the destination register of an executing 
instruction will result in an SDC?

What instruction types are likely to produce more SDCs when subjected to errors in 
destination registers?

How do SDC probabilities change when different architecture-level states (addresses 
vs. values) are subjected to errors?

How do the results change if we inject different bit-flip patterns (single vs. double 
bit-flips)?

Many uses of SASSIFI



14
NVIDIA CONFIDENTIAL

SASSIFI USE CASES

What is the probability that a particle-strike in the register file produce an SDC?

What is the probability that a bit-flip in the destination register of an executing 
instruction will result in an SDC?

What instruction types are likely to produce more SDCs when subjected to errors in 
destination registers?

How do SDC probabilities change when different architecture-level states (addresses 
vs. values) are subjected to errors?

How do the results change if we inject different bit-flip patterns (single vs. double 
bit-flips)?

Many uses of SASSIFI

SASSIFI can be used to address all 

these questions



15
NVIDIA CONFIDENTIAL

ERROR MODELS
SASSIFI can inject many types of errors

Instruction 
groups

Bit-flip models

Injection 
modesRandomly selected 

register (RF)

All instructions

Single thread: Single-bit flip Double-bit flip

Use case 1: Register file 

injections for AVF analysis



16
NVIDIA CONFIDENTIAL

ERROR MODELS
SASSIFI can inject many types of errors

Instruction 
groups

Bit-flip models

Injection 
modesRandomly selected 

register (RF)

All instructions

Single thread: Single-bit flip Double-bit flip

Instruction output 
value (IOV)

GPR

Single thread:

Use case 2: Injecting into a 

destination register of a 

randomly selected instruction



17
NVIDIA CONFIDENTIAL

ERROR MODELS
SASSIFI can inject many types of errors

Instruction 
groups

Bit-flip models

Injection 
modesRandomly selected 

register (RF)

All instructions

Single thread: Single-bit flip Double-bit flip

Instruction output 
value (IOV)

GPR

I/F/D ADD-MUL

I/F/D FMA

LDS

LD

ST

Single thread:

CC
PR

SETP

Use case 3: Identifying 

instruction types that produce 

more SDCs



18
NVIDIA CONFIDENTIAL

ERROR MODELS
SASSIFI can inject many types of errors

Instruction 
groups

Bit-flip models

Injection 
modesRandomly selected 

register (RF)

All instructions

Single thread: Single-bit flip Double-bit flip

Instruction output 
value (IOV)

GPR

I/F/D ADD-MUL

I/F/D FMA

LDS

LD

ST

Single thread:

CC
PR

SETP

Instruction output 
address (IOA)

GPR ST
Use case 4: Injecting into 

different architecture states



19
NVIDIA CONFIDENTIAL

ERROR MODELS
SASSIFI can inject many types of errors

Instruction 
groups

Bit-flip models

Injection 
modesRandomly selected 

register (RF)

All instructions

Instruction output 
value (IOV)

GPR

I/F/D ADD-MUL

I/F/D FMA

LDS

LD

ST

CC
PR

SETP

Instruction output 
address (IOA)

GPR ST

Random value Zero value

Random value Zero value

Single thread:

All threads 
in one warp:

Single-bit flip

Single-bit flip

Double-bit flip

Double-bit flip

Use case 5: Injecting different 

bit-flip patterns



20
NVIDIA CONFIDENTIAL

ERROR MODELS
SASSIFI can inject many types of errors

Instruction 
groups

Bit-flip models

Injection 
modesRandomly selected 

register (RF)

All instructions

Instruction output 
value (IOV)

GPR

I/F/D ADD-MUL

I/F/D FMA

LDS

LD

ST

CC
PR

SETP

Instruction output 
address (IOA)

GPR ST

Random value Zero value

Random value Zero value

Single thread:

All threads 
in one warp:

Single-bit flip

Single-bit flip

Double-bit flip

Double-bit flip

Easy to extend to include other models



21
NVIDIA CONFIDENTIAL

IMPLEMENTING DIFFERENT ERROR MODES

.

.

sassi_before_handler()

Opcode Dest, Src1, Src2

sassi_after_handler()

.

.

Inject error at the 

selected instruction 

count according to 

the selected bit-flip 

model

Empty handler

Record register/memory 

content at the selected 

instruction count 

At the selected instruction, 

inject error if the selected 

register is a source. If not, 

monitor subsequent 

instructions and inject 

when found as a source.

At the injection instruction

• Read values from correct 

address and write them to 

the corrupted address

• Revert content at the 

correct address with the 

recorded values

Empty handler

IOV mode IOA modeRF mode



22
NVIDIA CONFIDENTIAL

RESULTS: USE CASE 1

SDC AVF = SDC probability from injections in occupied registers * RF occupancy

0.075 and 0.07 for CoMD and Lulesh, respectively, for single-bit flips

Register File AVF

0%

20%

40%

60%

80%

100%

Single-bit flip Double-bit flip Single-bit flip Double-bit flip

CoMD Lulesh

%
 o

f 
in

je
ct

io
n

s
Error injection results

Masked DUEs Potential DUEs SDCs



23
NVIDIA CONFIDENTIAL

RESULTS: USE CASE 2

Program level manifestations of errors that propagate to instruction outputs are 
application dependent

Injecting into a destination register of a randomly selected instruction

0%

20%

40%

60%

80%

100%

C
o

M
D

Lu
le

sh

b
+t

re
e

b
ac

kp
ro

p

b
fs

ga
u

ss
ia

n

h
ea

rt
w

al
l

h
o

ts
p

o
t

km
ea

n
s

la
va

M
D

lu
d

m
u

m
m

er
gp

u

n
n

n
w

p
at

h
fi

n
d

er

sr
ad

_
v1

sr
ad

_
v2

st
re

am
cl

u
st

er

Masked DUEs Potential DUEs SDCs



24
NVIDIA CONFIDENTIAL

RESULTS: USE CASE 3

Double instructions are less susceptible than integer instructions for CoMD

Results for the remaining use cases can be found in the paper

Identifying instruction types that produce more SDCs

0%

5%

10%

15%

20%
Si

n
gl

e-
b

it
 f

lip

R
an

d
o

m
 v

al
u

e

Si
n

gl
e-

b
it

 f
lip

R
an

d
o

m
 v

al
u

e

Si
n

gl
e-

b
it

 f
lip

R
an

d
o

m
 v

al
u

e

Si
n

gl
e-

b
it

 f
lip

R
an

d
o

m
 v

al
u

e

Si
n

gl
e-

b
it

 f
lip

R
an

d
o

m
 v

al
u

e

Si
n

gl
e-

b
it

 f
lip

R
an

d
o

m
 v

al
u

e

IADD-IMAD DADD-DMUL MAD DFMA LDS LD

O
u

tc
o

m
e

 p
ro

b
ab

ili
ti

e
s 

w
e

ig
h

te
d

 b
y 

th
e

 %
 o

f 
d

yn
am

ic
 in

st
ru

ct
io

n
s Masked DUEs Potential DUEs SDCs

IADD-IMUL



25
NVIDIA CONFIDENTIAL

SLOWDOWNS

1.02x to 166x slowdowns at the application-level (depends on host vs. GPU runtime)

Kernel-level slowdowns were higher, ranging from 5.2x to 488x

Orders of magnitude faster than lower level simulators

Modest application-level slowdowns

CoMD Lulesh Rodinia

(Geomean)

RF Mode 94 85 57

IOV Mode 81 81 57

IOA Mode 55 46 64

GPGPU Sim <0.1

Performance in Million Warp-Instructions Per Second (MWIPS)

S
A
S
S
IF

I



26
NVIDIA CONFIDENTIAL

CONCLUSIONS

Developed an error injection based tool for GPU application resilience evaluation

Fast in-silicon error injections

Flexible to inject many types of errors

Demonstrated by conducting various types of resilience studies

Released the code for public usage

GitHub: https://github.com/NVlabs/sassifi

SASSIFI tool for GPU application resilience evaluations

https://github.com/NVlabs/sassifi

