Workloads, Scalability and QoS
Considerations in CMP
Platforms

Agenda

e Trends and research context
e Evolving Workload Scenarios
e Platform Scalability

e Platform QoS

Trends
- Cores, Threads, and Virtual Machines

Topplorroy Nejt ieje) ellsireipit il

Core Core

.o |
Cache
1 i (L !
Memory & 1/0 Memory & 1/0 Memory & 1/0

Lots of hardware threads and greater software diversity will challenge cache/’;
memory and 1/O .

—
E
: —
—
—

“EEERLH
NIRRT
“EEHEEH
REEEEEE
IEEEEEE
- FEEEEEEE
o O Of B BB R) B
EEEEEEEE
of of 5 S/ 5l 5l &
EEEEEEEE
- FEEEEREE
- FEEEEEEE
5| 5| & 5| 5 S 8 §

Trends - Discussion Points

Goal: Scaling up to 100’s of logical processors on a single CPU die

— Scaling hardware threads
means provisioning and re-architecting
other platform resources

— Scaling hardware threads means
learning to share — QoS revisited

Trends - Pool of Virtual Resources

g. Front-End E.g. Mid-Tier E.g. Back-end

Workload| (Workload| (Workload Workload Workload Workload| Workload

| CPU !Memory!Memory M H 10

— CPU

Trends - Decomposed OS

Micro OS Device Driver Thread Thread

Application | | Application

OS Kernel Service OS IO Service

Legacy OS

Saging Interfac

M Memory ! Memory m (o) 10

HW Resources

Platform Scaling

Tera-Scale Workload Scenarios

SMP O/ ovron] s

:: $ © o !
Tera-Scale Platform SM? OrS SMZ OrS
Highly Multi-threaded Server Workloads VM
OLTP, J2EE App Servers, E-commerce, ERP, Search, etc

A

(TPC-C, SPECjbb2005, SAP, SPECjappserver2004, etc)

A 4

Tera-Scale Platform

Virtualized Server Environments
(Workload Consolidation, Datacenter-on-chip Scenarios)

Cache/Memory Considerations:
Performance == Overall Throughput

calability => Headroom \
uality of Service == Performance lIsolation

Let’s begin with single server app........
And follow up with the consolidated scenario

Tera-Scale Cache Hierarchy Design

Node,

G666

IERRIEN RN

Mid-Level Cache

© 0 O O

Node,, ,

GGG 6

(L1 |L1] 2] |La]

Mid-Level Cache

~
@ie Intercon@
T \

LLC,

LLC,

Hierarchical Sharing Benefits
-- Reduces Replication
-- Increases Effective Cache Size
-- Better localized communication
-- Reduced interconnect pressure

LLCy.1

Small L1 shared between
multiple threads on a core

Moderate L2 shared between
cores within the node

Distributed L3 shared by all
nodes within the socket

MLC Perfor, Shared MLC is
0.05 equivalent to 2X of
' private MLCs

0.03 1 B dataMPI
0.02- O codeMPI
-2l

128K ‘ 256K . 512K 512k ‘ 1M . 2M .
1 hardware thread - Prlvat 4 hardware threads -Shared \

Hierarchical sharing increases caching effectiveness significantly/'

OLTP Tera-Scale Case Study

Core / Node Single socket -
Perfect Last-Level Cache 32 Cor%S/4 threads Multiple Socket

e e ke e e e

] o e
e e e e e
e e o e e e
i]
i i e e

1 Large Core T

|

—~4 Small
Cores ™

:

o

o e e o
o
el bl L L

2X Performance Need 100+ GB of

Significant Performance Potential == Memory Scalability Challenges

Scalability Issues

Tera-scale Headroom requirements
e Start with 32 cores in 1st gen; Maybe grow to 48 cores in next gen?
e How much memory & interconnect bandwidth will we need?

Sys
LLC LLC Interconnect LLC

Mem CPU MM cpu CPU

IOH

Scaling Issues Just Get Worse

On-Socket DRAM Caches
(For Memory Scalability)

3D stack MCP
Enable Large Capacity L4s

* Low Latency m M

* High Bandwidth

Technologies 0 (Mayor Server Workloads)

* 3D Stacking RN : specEs

e Multi-chip Packages (MCP) : el Nl
Benefits AU~
* Significant reduction in miss rate L et

* Avoids bandwidth wall

Per Thread Cache Size (MB)

12

QoS and Performance
Management

13

Background for QoS Discussion

’(Trends

" Increasing Core Count for Performance

* Increasing Workload Diversity
= Multi-Workload Scenarios in the Client
= Virtualization and Consolidation in the Server
= Heterogeneous Architectures for Graphics

.

v

— -
Observations l'

" Multi-core enables simultaneous execution of multiple workloads
" But not all Workloads are equal -- users do have preferences

_

How well does the user-preferred application run?
Should platforms optimize for the user-preferred application?

Resource Management

Capitalist Communist/Fair

No management of resources * Fair distribution of resources

If you can generate more * Give equal share of resources to

requests, you will use more all executing threads

resources _ ®* Does not necessarily guarantee

Grab as you will equal performance

E.g. All of today’s policies * E.g. Partitioning resources for
fairness and isolation

15

The Multi-Workload Problem

Foreground Background Execution Time of a

e e e mmmmmL | emm e m e e e e mm - —

!’) foreground application
Office Image

Application Recognition

onse

owdo

Cache

Mem
Foreground Running with
1/0 application background
Running Alone application
Conroe core 2 Duo Measurements
Platform does not distinguish Preferred (foreground) application
in resource allocation can suffer significant slow down

Platform QoS can improve user-preferred application performance

Contention - Client side examples

5x

4x -

exhi

Runtime Slowdown

30%0

i 0-5X
3x | sl n

20% pair
10-20%06
slowdow

Rest

exhibit <10%o

slowdown

2

FEL 5

4 Corporate Client\
Example:
SPEC Pairs

P ;_» 4>Q o°

gap
—<— perlbmk

—x— sixtrack

gzip
—e— twolf

—+—vortex

+WUpWIS€ —e—swim

facerec
mesa

——\pr

fma3d
mgrid

—+—eon
galgel
parser

Similar data collected for server applications

Resource contention will impair the performance of important apps

(Performance Differentiation)

Application Behavior
& Overall Performance

Destructive NoOrmal Constructive Neutral
(streaming) (typical) (co-op threads) (little data)

) E'CZ

Interference |nefficient Sharing

_ /

Many Heterogeneous Applications

Potential to improve
overall performance

Monitor resource usage
and group/partition
accordingly

Example Benefits

) SO 5 : Z
£ EF S S S

m Windows Scheduling O Resource-Aware Scheduling

Clovertown (8Core / 8App) Experiments
(used destructive, normal and neutral apps)

Managing resource contention can improve overall throughput too

(Performance Management)

Service Level Agreements Iin the Enterprise

Server Consolidation

Utility SLA

Disparate resource
usage can cause
performance isolation
concerns

iddle Tier V

OLTP VM i
i App2

Appl

SLA management

Prioritized resource

allocation can help

address performance
Isolation and SLA

Many Different Virtual Machines

Disparate resource usage and contention hurts SLAs

(Need for Performance lIsolation and SLA enforcement)

Shared Platform Resources

Hi Priority
Workloads

Low Priority
Workloads

T T T T
e
... @
. . . .

@¥§¥§¥§¥§¥§i@¥§¥§¥§¥§¥§i@i@i@ﬁ@i@ﬁéE@i@i@ﬁ@ﬁéﬁéE@¥§¥§¥§¥§¥§E@i@i@i@ﬁéi@ﬁéiﬁéﬁ
o
-

.
...
-

-

.

|

-
.
-
.
.

-

=
-
-
-

e
-
-
-
-
-

e
-
-
-

-
-

e
-
-

e
-
-

e

|
-
-
]
-
]

o
S

s
.
.

-
-
-
-
-
-
_

-
-

-

S

.
.

-
-
-
-
:%
-
.
-

e

-

-

.
.
.

*
-

.
-
-
-

-
-
-
-
-
-
-

-
-

-
-

-

-

-

-

-

-

-

.

-

-
-

.
.

-
-
-
-
.
?*‘I:

-
. - -

Fn

.

”
-
T
)
)
i
.
.
i
£
M
G
-

)

|
=
o

o

-

|

.

Y

W
)
)

-
_
@
o
N

M
|
<
y
.
1
J
v
!
|
)
?

’

-
-
=
.
T
A\
o~
@
'
i

...’
.
.
...
...
;.
.
.
...
g
..
g
;.
...
.
...
.
...

-
i:fiﬁ?»x
o
i
-
)
-
5

- -

g
N

o
n

=

.

-

-

i
O
o
5&
o
=
,

.

.
.

7
-t 3

-y
-
*%
|
-
-

C

)

b bt
.
.
.
.
.

.

=
.
-

T

o

-

§
|

-

o
-
-
-

-

. -

-
-
-
:%
-
-
.
-
-

.
|
.
.
s
.

-
-
-
;%

.
-
-
*

-
=
-
-
-
-
-
-
%

.
-
-
-
-
-
-
-
.

.

5t

-

-
-

-
- -
-

-
-

i
-
'

-
i
-
-
-
-
-
-
%
-
-
%
-
:%
-
-
-
-
-
-
.
.
i

.
.
-
.
-
.
-
.
-
.
-
.
-
.
-
.
b

.
-
.
.

o

-
.
.
.
.

-

-
.

”
-
-

e
4

.
:***
.
r
-
@
et

-
-

-
-

%
-
-
-
.

-
.
e
-
-
-
-
-
-
-
-
.
-
.
=
|
o
-
|
.
-
-
-
-
-
-
-
-
-
.
S
-
-
-
.
-
.
-
.
?%
S
.
-
-
-
-
-
-
_

”
5%
:***

]
:***
:***
:***
:***

.
.
.
-
.
.
.
.
.
.

-
-
-
-
-
.
|
-
|
|
i
&
.
-
-
.
-
:%
-
-
-
-
-
-
-
.

&
£
|

-
.
.
.
.
.
.
-
.
.
-
.
.
.
.
.
.
.

-
-
8
Y
[
.
|
-
-
-
:;:I;x
:;:I;x
:::'Iz
::f
-
-
-
% |
5
|
/
i
E
fa
.
-
-
-
-
-
-
-
-
-
-
-
-
-
L
.
-
-
-
-
-
s

.

=

1

. ey
.
.
-
- .

-
-
-
.

-
-
-
-
-
-
-
-

.
|
3
|
)
-
-
-
-
.
.
-
.
.
-
-
.
-
i
.
.
.
.

i
:%
-
-
-
.
§§
-
-
-
-
-
-
-
.

N
5
-
EM
-
.
:***
:***
:*.ﬁ{:
e
:%
:***
-
.
N
-
D
&
-
.
4
§
4
4
-
.
-
.
:***
EM
-
.
-
.
:***
:***

-

e

.

D
.
§b
.
:%
-
-
-
-
-
.
;%
-
-
aﬁ
1
.
o
-
.
-
.
4
4

E
.

-
-

y
4
£
-
.
-
-
-
-
.
-
-
-
.
-
-
-
-
-
-
-

.
.
-

-
-
.
.
-
.

.
%

-
-
-
-
-
-
*
\
-
:***
:***
EM
-
:***
:***
s
.
-
EM"
-
-
:***
5
4

.
-

-

-
-
-

-
-

-
.

.
.
-

. =
v

- - -

X
-
-
:***
:***
:***
:***
:***
:***
:***
:***
:***
-
5
.
o
e
2
.
-
e
.
-
Ly
4
.
.
.
.
-
.
-
-
-
_

-
-
@

%;
.
%%
-
-
-
-
-
-
-
-
-
.

-

-
—
=
-
.
.
-
.
-
.
.
.
4
.
-
.
.
.
.
.
.
.
.
.
s

-
-
.
.
.
L

=
-

¢
1
i
-
b
N
-
-
-
-
-
-
??
.
:
<
-
-
-
-
.
-
o
¢
.
-
-
.
-
.
-
.
s

?*
o
.
@
-
S
.
=%
.
-
-

=
g
-
.
>
@
=
-
-
.
-
=
=
-
-
-
.
:***
4
g

g

-
.

-
.

-
.

-
.

-
.

-
.

-

_

42
i
g?
.
-
.
<
5
-
.

;%
-
s
.
-
-
-
1
.
S
.
-
-
-
-

.

.

g
F

A
<
.

-
-
-
-

. .

.

i
T
|

.

.

.

.

.

.

S

-

-

:;x***

:***

:***

.

.
.

G

**
-
-
-
-
-
-
-
-

B
el
)

:
.
0

il
-
-
.

p
b
.
-
-
-
S
.

o
-

g%
-
g

N
!
i ¢
-

:%
3‘&;‘
g
-
.
-
.

C
-

.
.

%%
:***
=
—
=
.

L

.
.
:::I:
W
.
-
.
-

|
.
|
§
-
.
”‘%‘*

1

|
§
|
|
#
:
|
|

OS Invisible

(Unmanaged Resources) Shared Micro-

architectural
resources

Problem Summary

« CMP = Many heterogeneous threads, apps, VMs

Not all applications are equal

— Users have preferences

 End-users (client) want to treat foreground preferentially

 End-users (server) want service level differentiation (SLA) or isolation
— Applications use resources differently

» Destructive vs. Constructive vs. Neutral Threads

* No performance management to protect from bad behavior

= Priority-based OS scheduling no longer sufficient

— With more cores, OS will allow high and low priority applications to run
simultaneously and contend for resources

— Low priority applications will steal platform resources from high priority
apps = loss in performance & user experience

e Platform has no support for application differentiation
— Platform has no knowledge of preferences or resource usage

— Platform has no support for fine-grained tracking of many shared
resources that have significant performance value 21

Platform QoS

Software

Domain QOS
ExXposure
QoS Hints via
Ui Feedback/ Architectural Interface
Domain ‘ Ly
Resource Resource

: . Policies
Monitoring Enforcement

QoS Enabled Resources

uArch resource Cache Bandwidth 1/0 Voltage/
usage Space and Latency Response Frequency
Time

Goals — Preferential Treatment of VIP, Better Overall Throughput

Visible QoS Spectrum (cache/Memory)

Class 1 Class 2 I e
PP P PP
APPL |ARp'2 ApP'S App 1|||App 2 App 3 E.g.
@ w 1181 11z
monitoringﬁ L enforcement ﬁ ﬁ ﬁ ﬁErggrrg;nsint >
Full Full
P monitoring Cache f t
cache Feram?| Cache T
Memory
Memory Memory
No determinism Classes of Service Guarantee per App
No QoS Possible Approach Per-App Partitions
* No complexity * Incremental Complexity ® Significant Complexity
* — Good resource * Bridges the gap ®* — Lower resource
usage due to greedy o Extensible Architecture ~ US29€ due to per VM
approach B s R _ 1 guarantee
atisfies Requirements ~
* ~ Okay throughput for perf management, = — Foorer throughput

perf. differentiation

QoS Aware Architecture - Cache

Set Application’s
Platform Priority

Qo0S Exposure:
QoS Aware OS/VMM

Expose QoS

Interface
Platform QoS Register
Requests tagged
with Priority
Resource Resource

Monitoring: Enforcement:
Monitor cache - — Enforce cache
utilization per Viemory, utilization for

application priority levels

24

Cache/Memory QoS Benefits

Client SPEC Case Study

; £ Unmanaged Sharing
QO S Potential BEMemory QoS (BW reservation for Hi
~(Cache QoS + Memory QoS) [ICache QoS (Lo restricted to 20%)

1.0x 7

0.0x™

2 [JCache + Mem QoS

N M Dedicated (Best Case)
© 6.0X

£]

§ 5.0 x

— 4.0x]

)

£ 30x"

|_

o 2.0x7

0

c

o

2 m 1
U) T

Q

(e

Art (Hi) Swim (Lo) mcf (Hi) Swim (Lo)

Response Time -- Lower Is better

Based on Measurements, Simulations and Analytical Projections

Significant Benefits of Cache/Memory QoS

QoS Aware Architecture: Power

Power management knobs

Low
Priority

- Voltage/Frequency scaling
- Issue restriction
- Gating

0Oo0S Monitoring
Cache, Memory,
10, Power

App
& Jos & |
= =

Lo

Resource
Enforcement#1
Victimize low priority for
Power QoS

Resource
Enforcement#2
Use power throttling to
enforce Performance
QoS

26

Power QoS Benefits _ |

Platform Resources

Performance impact with CPU clock throttling
S5X 7
B S| 4X1000
~ 0 freq
QLT
&" E 3x -/\ Reduced frequency (89%)
0 for low priority -> Reduced low frequency (39%) to
09 ??:A’ Slowdown for Hi Priority low priority > Minimal
D <| 2x- . slowdown for Hi Priority
1X f f f
S A N T R I P P E PN ESRLLEE S &8 R
Q ©) & @0 O7 T @ N > o7 F A O
< S %@@«z&&\ oo\\oqu}@%,ngé*sz}@Q& > L T &K ST @
Swim as low priority application

Improves performance of the user-preferred application

Virtualization: From VMs to VPAS

(Managing Transparent Resources)

Virtual RPlatform:Architecture

Workload || Workload |Workload Workload || Workload [Workload

Workload| (Workload| (Workload
Guest OS

Performance Isolation /7 SLA Differentiation motivates

Virtual Platform Architectures

T 1 |'| [—1 [= Capdacity [SapPdaciy | DIvy

Summary

Large-scale CMP iIs going to happen

—Lots of work to be done to identify and remove platform and
architectural limitations preventing applications and execution
environments from scaling up to 100’s of logical processors on a
single CPU die

eScalability concerns can be addressed
—Hierarchy of Shared Caches

—Large DRAM caches

*Qo0S concerns can be addressed

—Dynamic Cache Allocation (Cache Qo0S)

—Dynamic Power Management (Power QoS)
eSmart performance management requires more visibility be available
to the execution environment

—Resource utilization counters for schedulers, etc.

29

