
The Future of Architectures

Ravi Nair IBM Thomas J. Watson Research Center

Abstractions

- Computer systems are built on levels of abstraction
- Higher level of abstraction hides details at lower levels
 - -Example: files are an abstraction of a disk
- Architecture refers to the interface between levels of abstraction
 - Instruction Set Architecture
 Major division between hardware and software
 - Application Binary Interface
 Observed by user processes
 User ISA + OS calls

Hardware

Evolution of Architectures

- Last 15 years
- Significant changes
 - Device level
 - Language level
 - OS level
 - Microarchitecture
- Few changes
 - ISA level
 - Mainstream ISAs today are not significantly different compared to those 40 years ago!

Evolution of Architectures

- Prediction for next 15 years
- Continued changes
 - Device level
 - Language level
 - OS level
 - Microarchitecture
 - ISA level
- Engine for changes
 - Shift in role of computers
 - Virtualization technology

Computers, Appliances, and Solutions

- Computers
 - Originally designed for simulation of physical events
 - Basic design remains the same today
- Appliances
 - Special purpose
 - Legacy less important
 - Fewer layers in software
 - Plenty of opportunity for new ISAs, OSes, etc.
- Solutions
 - Combination of heterogeneous computing elements and software spread across the globe to perform a task
 - These tasks, e.g. search, decision support, are different in characteristics from simulation tasks
 - Not just a "commercial" problem
 - Progress in this area not constrained by hardware technology

Virtualization

- Use of virtualization and virtual machines will be pervasive
 - Will allow interfaces to be decoupled from implementation
- Language VMs will allow new languages to be developed
- Security and maintenance will accelerate System VMs
 - Computing as a utility
- Virtualization of multiprocessor systems
 - Isolation of tasks from different points of view
 - Security, reliability, ...

Appliances

- This will potentially be the area of maximum hardware innovation
 - New ISAs, new microarchitectures, new multiprocessor organizations
 - New technologies
- Compatibility will be less of an issue
 - Hence more flexibility
- Software and hardware designed as a unit
 - Large granularity interface
 - E.g. Java Virtual Machine

Non-deterministic Computing

- Decision-making systems will allow variability in results produced by a program
 - More resources, better results
- Applications will tolerate this variation
 - Competition will be on quality of solution for a given cost
 - Will potentially change the way programs are constructed and optimized

Implications for ISPASS community

- Performance analysis will have to deal with new metrics
 - Cost, deadlines, system-level objectives (SLO)
- and new models
 - Heterogeneity
 - Underlying platform becomes an option, not an input
- Variability of results (non-determinism) must be taken into consideration

- Already an issue with multiprocessor workloads

- Need more work at the "solution" level
 - Trace-driven techniques are running out of steam