
The Era of Single Chip 
Multiprocessors 

Kunle Olukotun
kunle@stanford.edu 

Computer Systems Laboratory
Stanford University



UM Dec2004 Olukotun

The End of the Word As We Know It

• Process Technology Stops Improving
� Moore’s law but …
� Transistors don’t get faster (65nm vs. 45nm)
� Wires are much worse

• Single Thread Performance Plateau
� Design and verification complexity is overwhelming
� Power consumption increasing dramatically
� Instruction-level parallelism (ILP) is limited

From Intel Developer Forum, September 2004



UM Dec2004 Olukotun

The Era of Single-Chip Multiprocessors

• Single-chip multiprocessors provide a scalable 
alternative
� Relies on scalable forms of parallelism

• Request level parallelism
• Data level parallelism

� Obvious scaling path that matches VLSI technology
� Modular design with inherent fault-tolerance

• Single-chip multiprocessors systems are here
� All processor vendors are following this approach
� In embedded, server, and even desktop systems

• CMPs need thread-level parallelism



UM Dec2004 Olukotun

The Parallel Programming Problem

• It’s the Software Stupid!
� Parallel programming is too difficult for average programmer

• The reality
� Millions of people can write decent sequential programs
� Few people can write correct parallel programs

• Races, deadlock, memory consistency

� Even fewer can write efficient parallel programs
• Lock contention, coherence misses, false sharing

• We must solve this problem: there’s no safety net
� Single thread performance is over
� The future of computer architecture rests on the solution



UM Dec2004 Olukotun

Transactional Coherence & Consistency (TCC) 

• Threads and locks are the wrong programming model

• Parallel programming with transactions
� No threads, no locks, just transactions…

• Transactions are the only abstraction for
� Parallel work
� Communication
� Memory coherence
� Memory consistency
� Failure atomicity and recovery
� Performance optimization

• Transactions run continuously



UM Dec2004 Olukotun

Transactions Solve the Parallel Programming 
Problem 

• Identifying irregular parallelism
� Transactions allow for unproven, speculative parallelism

• Difficulty of using locks
� Transactions provide coarse-grain atomicity for multi-object tasks 

• Reasoning about consistency models
� Consistency at transactions boundaries 

• Difficulty of tuning parallel programs
� Transactional execution identifies bottlenecks & optimizations

• Handling faults and recovery
� Transactions support fault isolation and atomic recovery

• Transactions have a problem
� Transactional memory is slow
� Now there is an architecture problem worth solving


