Architectures for the Future

Doug Burger Roy Ju Ravi Nair Kunle Olukotun Eric Rotenberg

Erik Altman

University of Texas Intel IBM Stanford North Carolina State

IBM

ISPASS Panel

March 21, 2005

Outline

Trends
Questions
Provocations

Growth of Die Size

Fig. 4. Growth in die sizes over time

http://www.taoli.ece.ufl.edu/teaching/spring05/eel6935_schedule_pdf/Stojcev.pdf

http://bwrc.eecs.berkeley.edu/Classes/icdesign/ee141_s03/Lectures/Lecture1_Introduction.pdf

Power and Performance vs F04

Srinivasan et al. MICRO-35, 11/2002

Performance

http://www.eecs.harvard.edu/~dbrooks/micro2003-tutorial-final.pdf

Effect of Critical Paths

http://www.microarch.org/micro37/presentations/MICRO37%20Sborkar.pdf

http://bwrc.eecs.berkeley.edu/Classes/icdesign/ee141_s03/Lectures/Lecture1_Introduction.pdf

Growth of Stepper Cost \$100,000 EUV - Stepper System cost (dollars in thousands) F₂ - Stepper ArF - Stepper \$10,000 KrF - Stepper Hg lamp - Stepper \$1,000 Projection Proximity \$100 Contact \$10 1960 2000 2010 1970 1980 1990 Year Fig. 6. System cost over time

Growth of Onchip Cache 100% Increase on-die Memory Cache % of Total Area 75% Pentium® M 50% Pentium® III

Pentium®

Pentium® 4

25%

0%

486

Impact of Security?

Can architecture help improve security and reliability?

Impact of Apps on Architecture?

 What is general purpose computing?
 Should ISA / microarchitecture be different for DSP, embedded, desktop, games, scientific, commercial transaction processing?

Are there any new killer apps emerging that will drive new architecture?

- Speech recognition
- 🕷 Games
- Pervasive / Sensor based: Everything connected

Role for Specialization?

Will mask costs decrease the number of ASICs, or will energy efficiency increase the number of ASICs?

Will processors employ specialized accelerators to help with increasing power/performance problems?

- TCP/IP
- Encryption
- XML parsing
- Speech Recognition
- SPAM Filters

Will reconfigurable hardware be used in mainstream processors?

Impact of Compiler and OS?

Will compilers and operating systems be able to support more irregular architectural features:

- Accelerators
- **SIMD**
- XY memories
- Circular buffers

Will compilers substantially improve performance over current optimization levels?

Impact of Multiple Threads?

Can SMT/CMP improve single thread performance?

What types of computing naturally have multiple threads?

Provocations

- Uniprocessor performance does not need to get any better.
- Uniprocessor performance cannot get much better.
- Current programming practices make it too hard to generate parallel code from a single thread of execution.
- Parallelism will always be the next big thing.
- Solution Given power limitations and the memory wall, we would get better system performance if we went back to 500 MHz Chips.
- Architecture lives: Accelerators for new applications, control independence, polymorphism, virtual machines, thread level speculation, etc. point to a resurgence of architecture.

