The Lazy Student and the Computer Architect

ISPASS-05 Technical Panel March 21, 2005

Doug Burger Computer Architecture and Technology Laboratory Department of Computer Sciences The University of Texas at Austin

Discussion of Trends

- Frequency is obviously slowing
 - 40% per year since 1990, half due to pipelining, half devices
 - Effects: froze ISAs, particularly in academic research
 - Exacerbated memory latencies and dynamic power limits more quickly
 - Pipelining pretty much done, devices may slow due to leakage
 - Clocks eventually going the other way?
- Power is now a constraint just like area
 - Here is your power and area budget, how much performance can you get?
- Leakage will create new problems and opportunities for architects
 - Transistors are no longer free each generation
 - May have 10B on a chip, but only 500M can be powered up
- Wire delays continue to get worse
- Don't believe uniprocessor performance claims
 - Who saw the web coming?

The times, they are a'changing

- Big changes underway in our field, for all the usual reasons
 - Wires, power, complexity, workloads, costs, reliability, memory latencies, blah, blah, etc., etc.
- How should we evaluate future directions given all of these strains?

Follow the Lazy Student!

- What do students do?
 - Learn from the past ... so should we when projecting new models.
- What do lazy people do?
 - Minimize effort ... so should we when designing new interfaces.

Learn from the Past

- We have to ask ourselves when re-proposing an old model ... what has changed?
 - How often do smart people work on a hard problem for two decades, fail to solve the problems, and then all of a sudden the problem is solved in the conventional context?
 - Almost never!
- Good examples from recent history:
 - VLIW what changed to make IA-64 viable whereas VLIW didn't work the first few times?
 - CMPs parallel programming has always been just around the corner
 - Every time the market has voted, it has voted for uniprocessors!
 - 90M-transistor, single-core Pentium IV, or 450 8086 processors?
 - What is different now?

It's Good to Be Lazy

- Key goal is to minimize effort
 - Programmer laziness is always underestimated (not pejorative)
 - Architect's proposing programming models is dangerous
 - Compiler effort often underestimated by microarchitects
 - Hardware effort now driven by power
 - DId we really hit a complexity wall in design effort (probably close)
- Future systems must renegotiate interfaces to minimize effort at multiple levels
 - VLIW was too much compiler effort (wrong burdens on the compiler)
 - Wide-issue RISC/CISC too much hardware effort (power)
 - Leakage will create new metrics for effort (things just being on)
 - CMPs are too much effort for most programmers
 - We must re-negotiate these interfaces!
 - Concurrency is key, but not the types that people typically think! (i.e. what is single thread performance?)

Conclusions

- We have to get concurrency as easily as possible
- Must re-negotiate compiler/hardware interfaces significantly
 - Anything done in the compiler is energy-free at runtime!
- Must re-negotiate programming models/parallel architecture interfaces
 - Lots of interesting work
 - Speculative locking, transactions
 - Vectors/threads/speculation/SIMD/Other and mix!
- General-purpose computing will continue
 - The markets under it may shift
 - People will find ways to use the performance
- Need to convey the need for innovative research to the wider community